* Step 1: Sum WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: #less(@x,@y) -> #cklt(#compare(@x,@y)) findMin(@l) -> findMin#1(@l) findMin#1(::(@x,@xs)) -> findMin#2(findMin(@xs),@x) findMin#1(nil()) -> nil() findMin#2(::(@y,@ys),@x) -> findMin#3(#less(@x,@y),@x,@y,@ys) findMin#2(nil(),@x) -> ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) -> ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) minSort(@l) -> minSort#1(findMin(@l)) minSort#1(::(@x,@xs)) -> ::(@x,minSort(@xs)) minSort#1(nil()) -> nil() - Weak TRS: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) - Signature: {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1} / {#0/0 ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {#cklt,#compare,#less,findMin,findMin#1,findMin#2 ,findMin#3,minSort,minSort#1} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: WeightGap WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: #less(@x,@y) -> #cklt(#compare(@x,@y)) findMin(@l) -> findMin#1(@l) findMin#1(::(@x,@xs)) -> findMin#2(findMin(@xs),@x) findMin#1(nil()) -> nil() findMin#2(::(@y,@ys),@x) -> findMin#3(#less(@x,@y),@x,@y,@ys) findMin#2(nil(),@x) -> ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) -> ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) minSort(@l) -> minSort#1(findMin(@l)) minSort#1(::(@x,@xs)) -> ::(@x,minSort(@xs)) minSort#1(nil()) -> nil() - Weak TRS: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) - Signature: {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1} / {#0/0 ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {#cklt,#compare,#less,findMin,findMin#1,findMin#2 ,findMin#3,minSort,minSort#1} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(#cklt) = {1}, uargs(::) = {2}, uargs(findMin#2) = {1}, uargs(findMin#3) = {1}, uargs(minSort#1) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(#0) = [0] p(#EQ) = [6] p(#GT) = [6] p(#LT) = [6] p(#cklt) = [1] x1 + [1] p(#compare) = [6] p(#false) = [7] p(#less) = [0] p(#neg) = [1] x1 + [0] p(#pos) = [1] x1 + [0] p(#s) = [1] x1 + [0] p(#true) = [7] p(::) = [1] x2 + [6] p(findMin) = [1] x1 + [0] p(findMin#1) = [1] x1 + [0] p(findMin#2) = [1] x1 + [0] p(findMin#3) = [1] x1 + [1] x4 + [0] p(minSort) = [1] x1 + [0] p(minSort#1) = [1] x1 + [1] p(nil) = [0] Following rules are strictly oriented: findMin#1(::(@x,@xs)) = [1] @xs + [6] > [1] @xs + [0] = findMin#2(findMin(@xs),@x) findMin#2(::(@y,@ys),@x) = [1] @ys + [6] > [1] @ys + [0] = findMin#3(#less(@x,@y),@x,@y,@ys) minSort#1(::(@x,@xs)) = [1] @xs + [7] > [1] @xs + [6] = ::(@x,minSort(@xs)) minSort#1(nil()) = [1] > [0] = nil() Following rules are (at-least) weakly oriented: #cklt(#EQ()) = [7] >= [7] = #false() #cklt(#GT()) = [7] >= [7] = #false() #cklt(#LT()) = [7] >= [7] = #true() #compare(#0(),#0()) = [6] >= [6] = #EQ() #compare(#0(),#neg(@y)) = [6] >= [6] = #GT() #compare(#0(),#pos(@y)) = [6] >= [6] = #LT() #compare(#0(),#s(@y)) = [6] >= [6] = #LT() #compare(#neg(@x),#0()) = [6] >= [6] = #LT() #compare(#neg(@x),#neg(@y)) = [6] >= [6] = #compare(@y,@x) #compare(#neg(@x),#pos(@y)) = [6] >= [6] = #LT() #compare(#pos(@x),#0()) = [6] >= [6] = #GT() #compare(#pos(@x),#neg(@y)) = [6] >= [6] = #GT() #compare(#pos(@x),#pos(@y)) = [6] >= [6] = #compare(@x,@y) #compare(#s(@x),#0()) = [6] >= [6] = #GT() #compare(#s(@x),#s(@y)) = [6] >= [6] = #compare(@x,@y) #less(@x,@y) = [0] >= [7] = #cklt(#compare(@x,@y)) findMin(@l) = [1] @l + [0] >= [1] @l + [0] = findMin#1(@l) findMin#1(nil()) = [0] >= [0] = nil() findMin#2(nil(),@x) = [0] >= [6] = ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) = [1] @ys + [7] >= [1] @ys + [12] = ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) = [1] @ys + [7] >= [1] @ys + [12] = ::(@x,::(@y,@ys)) minSort(@l) = [1] @l + [0] >= [1] @l + [1] = minSort#1(findMin(@l)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 3: WeightGap WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: #less(@x,@y) -> #cklt(#compare(@x,@y)) findMin(@l) -> findMin#1(@l) findMin#1(nil()) -> nil() findMin#2(nil(),@x) -> ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) -> ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) minSort(@l) -> minSort#1(findMin(@l)) - Weak TRS: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) findMin#1(::(@x,@xs)) -> findMin#2(findMin(@xs),@x) findMin#2(::(@y,@ys),@x) -> findMin#3(#less(@x,@y),@x,@y,@ys) minSort#1(::(@x,@xs)) -> ::(@x,minSort(@xs)) minSort#1(nil()) -> nil() - Signature: {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1} / {#0/0 ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {#cklt,#compare,#less,findMin,findMin#1,findMin#2 ,findMin#3,minSort,minSort#1} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(#cklt) = {1}, uargs(::) = {2}, uargs(findMin#2) = {1}, uargs(findMin#3) = {1}, uargs(minSort#1) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(#0) = [0] p(#EQ) = [0] p(#GT) = [3] p(#LT) = [0] p(#cklt) = [1] x1 + [6] p(#compare) = [3] p(#false) = [0] p(#less) = [0] p(#neg) = [0] p(#pos) = [1] x1 + [0] p(#s) = [1] x1 + [0] p(#true) = [1] p(::) = [1] x2 + [0] p(findMin) = [0] p(findMin#1) = [0] p(findMin#2) = [1] x1 + [0] p(findMin#3) = [1] x1 + [1] x4 + [0] p(minSort) = [1] x1 + [0] p(minSort#1) = [1] x1 + [0] p(nil) = [1] Following rules are strictly oriented: findMin#3(#true(),@x,@y,@ys) = [1] @ys + [1] > [1] @ys + [0] = ::(@x,::(@y,@ys)) Following rules are (at-least) weakly oriented: #cklt(#EQ()) = [6] >= [0] = #false() #cklt(#GT()) = [9] >= [0] = #false() #cklt(#LT()) = [6] >= [1] = #true() #compare(#0(),#0()) = [3] >= [0] = #EQ() #compare(#0(),#neg(@y)) = [3] >= [3] = #GT() #compare(#0(),#pos(@y)) = [3] >= [0] = #LT() #compare(#0(),#s(@y)) = [3] >= [0] = #LT() #compare(#neg(@x),#0()) = [3] >= [0] = #LT() #compare(#neg(@x),#neg(@y)) = [3] >= [3] = #compare(@y,@x) #compare(#neg(@x),#pos(@y)) = [3] >= [0] = #LT() #compare(#pos(@x),#0()) = [3] >= [3] = #GT() #compare(#pos(@x),#neg(@y)) = [3] >= [3] = #GT() #compare(#pos(@x),#pos(@y)) = [3] >= [3] = #compare(@x,@y) #compare(#s(@x),#0()) = [3] >= [3] = #GT() #compare(#s(@x),#s(@y)) = [3] >= [3] = #compare(@x,@y) #less(@x,@y) = [0] >= [9] = #cklt(#compare(@x,@y)) findMin(@l) = [0] >= [0] = findMin#1(@l) findMin#1(::(@x,@xs)) = [0] >= [0] = findMin#2(findMin(@xs),@x) findMin#1(nil()) = [0] >= [1] = nil() findMin#2(::(@y,@ys),@x) = [1] @ys + [0] >= [1] @ys + [0] = findMin#3(#less(@x,@y),@x,@y,@ys) findMin#2(nil(),@x) = [1] >= [1] = ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) = [1] @ys + [0] >= [1] @ys + [0] = ::(@y,::(@x,@ys)) minSort(@l) = [1] @l + [0] >= [0] = minSort#1(findMin(@l)) minSort#1(::(@x,@xs)) = [1] @xs + [0] >= [1] @xs + [0] = ::(@x,minSort(@xs)) minSort#1(nil()) = [1] >= [1] = nil() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 4: WeightGap WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: #less(@x,@y) -> #cklt(#compare(@x,@y)) findMin(@l) -> findMin#1(@l) findMin#1(nil()) -> nil() findMin#2(nil(),@x) -> ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) -> ::(@y,::(@x,@ys)) minSort(@l) -> minSort#1(findMin(@l)) - Weak TRS: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) findMin#1(::(@x,@xs)) -> findMin#2(findMin(@xs),@x) findMin#2(::(@y,@ys),@x) -> findMin#3(#less(@x,@y),@x,@y,@ys) findMin#3(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) minSort#1(::(@x,@xs)) -> ::(@x,minSort(@xs)) minSort#1(nil()) -> nil() - Signature: {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1} / {#0/0 ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {#cklt,#compare,#less,findMin,findMin#1,findMin#2 ,findMin#3,minSort,minSort#1} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(#cklt) = {1}, uargs(::) = {2}, uargs(findMin#2) = {1}, uargs(findMin#3) = {1}, uargs(minSort#1) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(#0) = [0] p(#EQ) = [1] p(#GT) = [1] p(#LT) = [0] p(#cklt) = [1] x1 + [2] p(#compare) = [2] p(#false) = [1] p(#less) = [0] p(#neg) = [0] p(#pos) = [1] x1 + [0] p(#s) = [0] p(#true) = [2] p(::) = [1] x2 + [4] p(findMin) = [1] p(findMin#1) = [4] p(findMin#2) = [1] x1 + [3] p(findMin#3) = [1] x1 + [1] x4 + [7] p(minSort) = [1] x1 + [0] p(minSort#1) = [1] x1 + [0] p(nil) = [0] Following rules are strictly oriented: findMin#1(nil()) = [4] > [0] = nil() Following rules are (at-least) weakly oriented: #cklt(#EQ()) = [3] >= [1] = #false() #cklt(#GT()) = [3] >= [1] = #false() #cklt(#LT()) = [2] >= [2] = #true() #compare(#0(),#0()) = [2] >= [1] = #EQ() #compare(#0(),#neg(@y)) = [2] >= [1] = #GT() #compare(#0(),#pos(@y)) = [2] >= [0] = #LT() #compare(#0(),#s(@y)) = [2] >= [0] = #LT() #compare(#neg(@x),#0()) = [2] >= [0] = #LT() #compare(#neg(@x),#neg(@y)) = [2] >= [2] = #compare(@y,@x) #compare(#neg(@x),#pos(@y)) = [2] >= [0] = #LT() #compare(#pos(@x),#0()) = [2] >= [1] = #GT() #compare(#pos(@x),#neg(@y)) = [2] >= [1] = #GT() #compare(#pos(@x),#pos(@y)) = [2] >= [2] = #compare(@x,@y) #compare(#s(@x),#0()) = [2] >= [1] = #GT() #compare(#s(@x),#s(@y)) = [2] >= [2] = #compare(@x,@y) #less(@x,@y) = [0] >= [4] = #cklt(#compare(@x,@y)) findMin(@l) = [1] >= [4] = findMin#1(@l) findMin#1(::(@x,@xs)) = [4] >= [4] = findMin#2(findMin(@xs),@x) findMin#2(::(@y,@ys),@x) = [1] @ys + [7] >= [1] @ys + [7] = findMin#3(#less(@x,@y),@x,@y,@ys) findMin#2(nil(),@x) = [3] >= [4] = ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) = [1] @ys + [8] >= [1] @ys + [8] = ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) = [1] @ys + [9] >= [1] @ys + [8] = ::(@x,::(@y,@ys)) minSort(@l) = [1] @l + [0] >= [1] = minSort#1(findMin(@l)) minSort#1(::(@x,@xs)) = [1] @xs + [4] >= [1] @xs + [4] = ::(@x,minSort(@xs)) minSort#1(nil()) = [0] >= [0] = nil() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 5: WeightGap WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: #less(@x,@y) -> #cklt(#compare(@x,@y)) findMin(@l) -> findMin#1(@l) findMin#2(nil(),@x) -> ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) -> ::(@y,::(@x,@ys)) minSort(@l) -> minSort#1(findMin(@l)) - Weak TRS: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) findMin#1(::(@x,@xs)) -> findMin#2(findMin(@xs),@x) findMin#1(nil()) -> nil() findMin#2(::(@y,@ys),@x) -> findMin#3(#less(@x,@y),@x,@y,@ys) findMin#3(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) minSort#1(::(@x,@xs)) -> ::(@x,minSort(@xs)) minSort#1(nil()) -> nil() - Signature: {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1} / {#0/0 ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {#cklt,#compare,#less,findMin,findMin#1,findMin#2 ,findMin#3,minSort,minSort#1} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(#cklt) = {1}, uargs(::) = {2}, uargs(findMin#2) = {1}, uargs(findMin#3) = {1}, uargs(minSort#1) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(#0) = [0] p(#EQ) = [2] p(#GT) = [1] p(#LT) = [1] p(#cklt) = [1] x1 + [2] p(#compare) = [5] p(#false) = [3] p(#less) = [1] p(#neg) = [0] p(#pos) = [1] x1 + [0] p(#s) = [1] x1 + [0] p(#true) = [0] p(::) = [1] x2 + [0] p(findMin) = [1] p(findMin#1) = [3] p(findMin#2) = [1] x1 + [1] p(findMin#3) = [1] x1 + [1] x4 + [0] p(minSort) = [1] p(minSort#1) = [1] x1 + [1] p(nil) = [0] Following rules are strictly oriented: findMin#2(nil(),@x) = [1] > [0] = ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) = [1] @ys + [3] > [1] @ys + [0] = ::(@y,::(@x,@ys)) Following rules are (at-least) weakly oriented: #cklt(#EQ()) = [4] >= [3] = #false() #cklt(#GT()) = [3] >= [3] = #false() #cklt(#LT()) = [3] >= [0] = #true() #compare(#0(),#0()) = [5] >= [2] = #EQ() #compare(#0(),#neg(@y)) = [5] >= [1] = #GT() #compare(#0(),#pos(@y)) = [5] >= [1] = #LT() #compare(#0(),#s(@y)) = [5] >= [1] = #LT() #compare(#neg(@x),#0()) = [5] >= [1] = #LT() #compare(#neg(@x),#neg(@y)) = [5] >= [5] = #compare(@y,@x) #compare(#neg(@x),#pos(@y)) = [5] >= [1] = #LT() #compare(#pos(@x),#0()) = [5] >= [1] = #GT() #compare(#pos(@x),#neg(@y)) = [5] >= [1] = #GT() #compare(#pos(@x),#pos(@y)) = [5] >= [5] = #compare(@x,@y) #compare(#s(@x),#0()) = [5] >= [1] = #GT() #compare(#s(@x),#s(@y)) = [5] >= [5] = #compare(@x,@y) #less(@x,@y) = [1] >= [7] = #cklt(#compare(@x,@y)) findMin(@l) = [1] >= [3] = findMin#1(@l) findMin#1(::(@x,@xs)) = [3] >= [2] = findMin#2(findMin(@xs),@x) findMin#1(nil()) = [3] >= [0] = nil() findMin#2(::(@y,@ys),@x) = [1] @ys + [1] >= [1] @ys + [1] = findMin#3(#less(@x,@y),@x,@y,@ys) findMin#3(#true(),@x,@y,@ys) = [1] @ys + [0] >= [1] @ys + [0] = ::(@x,::(@y,@ys)) minSort(@l) = [1] >= [2] = minSort#1(findMin(@l)) minSort#1(::(@x,@xs)) = [1] @xs + [1] >= [1] = ::(@x,minSort(@xs)) minSort#1(nil()) = [1] >= [0] = nil() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 6: WeightGap WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: #less(@x,@y) -> #cklt(#compare(@x,@y)) findMin(@l) -> findMin#1(@l) minSort(@l) -> minSort#1(findMin(@l)) - Weak TRS: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) findMin#1(::(@x,@xs)) -> findMin#2(findMin(@xs),@x) findMin#1(nil()) -> nil() findMin#2(::(@y,@ys),@x) -> findMin#3(#less(@x,@y),@x,@y,@ys) findMin#2(nil(),@x) -> ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) -> ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) minSort#1(::(@x,@xs)) -> ::(@x,minSort(@xs)) minSort#1(nil()) -> nil() - Signature: {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1} / {#0/0 ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {#cklt,#compare,#less,findMin,findMin#1,findMin#2 ,findMin#3,minSort,minSort#1} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(#cklt) = {1}, uargs(::) = {2}, uargs(findMin#2) = {1}, uargs(findMin#3) = {1}, uargs(minSort#1) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(#0) = [0] p(#EQ) = [0] p(#GT) = [0] p(#LT) = [0] p(#cklt) = [1] x1 + [3] p(#compare) = [0] p(#false) = [0] p(#less) = [4] p(#neg) = [0] p(#pos) = [0] p(#s) = [1] x1 + [0] p(#true) = [0] p(::) = [1] x2 + [0] p(findMin) = [0] p(findMin#1) = [4] p(findMin#2) = [1] x1 + [4] p(findMin#3) = [1] x1 + [1] x4 + [0] p(minSort) = [1] x1 + [0] p(minSort#1) = [1] x1 + [0] p(nil) = [4] Following rules are strictly oriented: #less(@x,@y) = [4] > [3] = #cklt(#compare(@x,@y)) Following rules are (at-least) weakly oriented: #cklt(#EQ()) = [3] >= [0] = #false() #cklt(#GT()) = [3] >= [0] = #false() #cklt(#LT()) = [3] >= [0] = #true() #compare(#0(),#0()) = [0] >= [0] = #EQ() #compare(#0(),#neg(@y)) = [0] >= [0] = #GT() #compare(#0(),#pos(@y)) = [0] >= [0] = #LT() #compare(#0(),#s(@y)) = [0] >= [0] = #LT() #compare(#neg(@x),#0()) = [0] >= [0] = #LT() #compare(#neg(@x),#neg(@y)) = [0] >= [0] = #compare(@y,@x) #compare(#neg(@x),#pos(@y)) = [0] >= [0] = #LT() #compare(#pos(@x),#0()) = [0] >= [0] = #GT() #compare(#pos(@x),#neg(@y)) = [0] >= [0] = #GT() #compare(#pos(@x),#pos(@y)) = [0] >= [0] = #compare(@x,@y) #compare(#s(@x),#0()) = [0] >= [0] = #GT() #compare(#s(@x),#s(@y)) = [0] >= [0] = #compare(@x,@y) findMin(@l) = [0] >= [4] = findMin#1(@l) findMin#1(::(@x,@xs)) = [4] >= [4] = findMin#2(findMin(@xs),@x) findMin#1(nil()) = [4] >= [4] = nil() findMin#2(::(@y,@ys),@x) = [1] @ys + [4] >= [1] @ys + [4] = findMin#3(#less(@x,@y),@x,@y,@ys) findMin#2(nil(),@x) = [8] >= [4] = ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) = [1] @ys + [0] >= [1] @ys + [0] = ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) = [1] @ys + [0] >= [1] @ys + [0] = ::(@x,::(@y,@ys)) minSort(@l) = [1] @l + [0] >= [0] = minSort#1(findMin(@l)) minSort#1(::(@x,@xs)) = [1] @xs + [0] >= [1] @xs + [0] = ::(@x,minSort(@xs)) minSort#1(nil()) = [4] >= [4] = nil() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 7: MI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: findMin(@l) -> findMin#1(@l) minSort(@l) -> minSort#1(findMin(@l)) - Weak TRS: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) findMin#1(::(@x,@xs)) -> findMin#2(findMin(@xs),@x) findMin#1(nil()) -> nil() findMin#2(::(@y,@ys),@x) -> findMin#3(#less(@x,@y),@x,@y,@ys) findMin#2(nil(),@x) -> ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) -> ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) minSort#1(::(@x,@xs)) -> ::(@x,minSort(@xs)) minSort#1(nil()) -> nil() - Signature: {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1} / {#0/0 ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {#cklt,#compare,#less,findMin,findMin#1,findMin#2 ,findMin#3,minSort,minSort#1} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(#cklt) = {1}, uargs(::) = {2}, uargs(findMin#2) = {1}, uargs(findMin#3) = {1}, uargs(minSort#1) = {1} Following symbols are considered usable: {#cklt,#compare,#less,findMin,findMin#1,findMin#2,findMin#3,minSort,minSort#1} TcT has computed the following interpretation: p(#0) = [8] p(#EQ) = [0] p(#GT) = [0] p(#LT) = [0] p(#cklt) = [1] x_1 + [0] p(#compare) = [0] p(#false) = [0] p(#less) = [0] p(#neg) = [1] x_1 + [0] p(#pos) = [4] p(#s) = [1] x_1 + [0] p(#true) = [0] p(::) = [1] x_2 + [1] p(findMin) = [1] x_1 + [0] p(findMin#1) = [1] x_1 + [0] p(findMin#2) = [1] x_1 + [1] p(findMin#3) = [4] x_1 + [1] x_4 + [2] p(minSort) = [2] x_1 + [10] p(minSort#1) = [2] x_1 + [9] p(nil) = [0] Following rules are strictly oriented: minSort(@l) = [2] @l + [10] > [2] @l + [9] = minSort#1(findMin(@l)) Following rules are (at-least) weakly oriented: #cklt(#EQ()) = [0] >= [0] = #false() #cklt(#GT()) = [0] >= [0] = #false() #cklt(#LT()) = [0] >= [0] = #true() #compare(#0(),#0()) = [0] >= [0] = #EQ() #compare(#0(),#neg(@y)) = [0] >= [0] = #GT() #compare(#0(),#pos(@y)) = [0] >= [0] = #LT() #compare(#0(),#s(@y)) = [0] >= [0] = #LT() #compare(#neg(@x),#0()) = [0] >= [0] = #LT() #compare(#neg(@x),#neg(@y)) = [0] >= [0] = #compare(@y,@x) #compare(#neg(@x),#pos(@y)) = [0] >= [0] = #LT() #compare(#pos(@x),#0()) = [0] >= [0] = #GT() #compare(#pos(@x),#neg(@y)) = [0] >= [0] = #GT() #compare(#pos(@x),#pos(@y)) = [0] >= [0] = #compare(@x,@y) #compare(#s(@x),#0()) = [0] >= [0] = #GT() #compare(#s(@x),#s(@y)) = [0] >= [0] = #compare(@x,@y) #less(@x,@y) = [0] >= [0] = #cklt(#compare(@x,@y)) findMin(@l) = [1] @l + [0] >= [1] @l + [0] = findMin#1(@l) findMin#1(::(@x,@xs)) = [1] @xs + [1] >= [1] @xs + [1] = findMin#2(findMin(@xs),@x) findMin#1(nil()) = [0] >= [0] = nil() findMin#2(::(@y,@ys),@x) = [1] @ys + [2] >= [1] @ys + [2] = findMin#3(#less(@x,@y),@x,@y,@ys) findMin#2(nil(),@x) = [1] >= [1] = ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) = [1] @ys + [2] >= [1] @ys + [2] = ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) = [1] @ys + [2] >= [1] @ys + [2] = ::(@x,::(@y,@ys)) minSort#1(::(@x,@xs)) = [2] @xs + [11] >= [2] @xs + [11] = ::(@x,minSort(@xs)) minSort#1(nil()) = [9] >= [0] = nil() * Step 8: MI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: findMin(@l) -> findMin#1(@l) - Weak TRS: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) findMin#1(::(@x,@xs)) -> findMin#2(findMin(@xs),@x) findMin#1(nil()) -> nil() findMin#2(::(@y,@ys),@x) -> findMin#3(#less(@x,@y),@x,@y,@ys) findMin#2(nil(),@x) -> ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) -> ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) minSort(@l) -> minSort#1(findMin(@l)) minSort#1(::(@x,@xs)) -> ::(@x,minSort(@xs)) minSort#1(nil()) -> nil() - Signature: {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1} / {#0/0 ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {#cklt,#compare,#less,findMin,findMin#1,findMin#2 ,findMin#3,minSort,minSort#1} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(#cklt) = {1}, uargs(::) = {2}, uargs(findMin#2) = {1}, uargs(findMin#3) = {1}, uargs(minSort#1) = {1} Following symbols are considered usable: {#cklt,#compare,#less,findMin,findMin#1,findMin#2,findMin#3,minSort,minSort#1} TcT has computed the following interpretation: p(#0) = [0] [0] p(#EQ) = [1] [1] p(#GT) = [1] [1] p(#LT) = [1] [1] p(#cklt) = [4 0] x_1 + [0] [0 2] [0] p(#compare) = [1] [1] p(#false) = [2] [2] p(#less) = [4] [2] p(#neg) = [0] [0] p(#pos) = [0 0] x_1 + [0] [0 1] [1] p(#s) = [0] [0] p(#true) = [3] [2] p(::) = [0 1] x_1 + [1 2] x_2 + [0] [0 0] [0 1] [5] p(findMin) = [1 1] x_1 + [2] [0 1] [0] p(findMin#1) = [1 1] x_1 + [0] [0 1] [0] p(findMin#2) = [1 2] x_1 + [0 1] x_2 + [2] [0 1] [0 0] [5] p(findMin#3) = [1 4] x_1 + [0 1] x_2 + [0 1] x_3 + [1 4] x_4 + [0] [0 4] [0 0] [0 0] [0 1] [2] p(minSort) = [2 3] x_1 + [6] [0 1] [0] p(minSort#1) = [2 1] x_1 + [1] [0 1] [0] p(nil) = [0] [0] Following rules are strictly oriented: findMin(@l) = [1 1] @l + [2] [0 1] [0] > [1 1] @l + [0] [0 1] [0] = findMin#1(@l) Following rules are (at-least) weakly oriented: #cklt(#EQ()) = [4] [2] >= [2] [2] = #false() #cklt(#GT()) = [4] [2] >= [2] [2] = #false() #cklt(#LT()) = [4] [2] >= [3] [2] = #true() #compare(#0(),#0()) = [1] [1] >= [1] [1] = #EQ() #compare(#0(),#neg(@y)) = [1] [1] >= [1] [1] = #GT() #compare(#0(),#pos(@y)) = [1] [1] >= [1] [1] = #LT() #compare(#0(),#s(@y)) = [1] [1] >= [1] [1] = #LT() #compare(#neg(@x),#0()) = [1] [1] >= [1] [1] = #LT() #compare(#neg(@x),#neg(@y)) = [1] [1] >= [1] [1] = #compare(@y,@x) #compare(#neg(@x),#pos(@y)) = [1] [1] >= [1] [1] = #LT() #compare(#pos(@x),#0()) = [1] [1] >= [1] [1] = #GT() #compare(#pos(@x),#neg(@y)) = [1] [1] >= [1] [1] = #GT() #compare(#pos(@x),#pos(@y)) = [1] [1] >= [1] [1] = #compare(@x,@y) #compare(#s(@x),#0()) = [1] [1] >= [1] [1] = #GT() #compare(#s(@x),#s(@y)) = [1] [1] >= [1] [1] = #compare(@x,@y) #less(@x,@y) = [4] [2] >= [4] [2] = #cklt(#compare(@x,@y)) findMin#1(::(@x,@xs)) = [0 1] @x + [1 3] @xs + [5] [0 0] [0 1] [5] >= [0 1] @x + [1 3] @xs + [4] [0 0] [0 1] [5] = findMin#2(findMin(@xs),@x) findMin#1(nil()) = [0] [0] >= [0] [0] = nil() findMin#2(::(@y,@ys),@x) = [0 1] @x + [0 1] @y + [1 4] @ys + [12] [0 0] [0 0] [0 1] [10] >= [0 1] @x + [0 1] @y + [1 4] @ys + [12] [0 0] [0 0] [0 1] [10] = findMin#3(#less(@x,@y),@x,@y,@ys) findMin#2(nil(),@x) = [0 1] @x + [2] [0 0] [5] >= [0 1] @x + [0] [0 0] [5] = ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) = [0 1] @x + [0 1] @y + [1 4] @ys + [10] [0 0] [0 0] [0 1] [10] >= [0 1] @x + [0 1] @y + [1 4] @ys + [10] [0 0] [0 0] [0 1] [10] = ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) = [0 1] @x + [0 1] @y + [1 4] @ys + [11] [0 0] [0 0] [0 1] [10] >= [0 1] @x + [0 1] @y + [1 4] @ys + [10] [0 0] [0 0] [0 1] [10] = ::(@x,::(@y,@ys)) minSort(@l) = [2 3] @l + [6] [0 1] [0] >= [2 3] @l + [5] [0 1] [0] = minSort#1(findMin(@l)) minSort#1(::(@x,@xs)) = [0 2] @x + [2 5] @xs + [6] [0 0] [0 1] [5] >= [0 1] @x + [2 5] @xs + [6] [0 0] [0 1] [5] = ::(@x,minSort(@xs)) minSort#1(nil()) = [1] [0] >= [0] [0] = nil() * Step 9: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: #cklt(#EQ()) -> #false() #cklt(#GT()) -> #false() #cklt(#LT()) -> #true() #compare(#0(),#0()) -> #EQ() #compare(#0(),#neg(@y)) -> #GT() #compare(#0(),#pos(@y)) -> #LT() #compare(#0(),#s(@y)) -> #LT() #compare(#neg(@x),#0()) -> #LT() #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x) #compare(#neg(@x),#pos(@y)) -> #LT() #compare(#pos(@x),#0()) -> #GT() #compare(#pos(@x),#neg(@y)) -> #GT() #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y) #compare(#s(@x),#0()) -> #GT() #compare(#s(@x),#s(@y)) -> #compare(@x,@y) #less(@x,@y) -> #cklt(#compare(@x,@y)) findMin(@l) -> findMin#1(@l) findMin#1(::(@x,@xs)) -> findMin#2(findMin(@xs),@x) findMin#1(nil()) -> nil() findMin#2(::(@y,@ys),@x) -> findMin#3(#less(@x,@y),@x,@y,@ys) findMin#2(nil(),@x) -> ::(@x,nil()) findMin#3(#false(),@x,@y,@ys) -> ::(@y,::(@x,@ys)) findMin#3(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys)) minSort(@l) -> minSort#1(findMin(@l)) minSort#1(::(@x,@xs)) -> ::(@x,minSort(@xs)) minSort#1(nil()) -> nil() - Signature: {#cklt/1,#compare/2,#less/2,findMin/1,findMin#1/1,findMin#2/2,findMin#3/4,minSort/1,minSort#1/1} / {#0/0 ,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0} - Obligation: innermost runtime complexity wrt. defined symbols {#cklt,#compare,#less,findMin,findMin#1,findMin#2 ,findMin#3,minSort,minSort#1} and constructors {#0,#EQ,#GT,#LT,#false,#neg,#pos,#s,#true,::,nil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^2))