* Step 1: Sum WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            #equal(@x,@y) -> #eq(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            and(@x,@y) -> #and(@x,@y)
            insert(@x,@l) -> insert#1(@l,@x)
            insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
            insert#1(nil(),@x) -> ::(@x,nil())
            insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
            insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
            isortlist(@l) -> isortlist#1(@l)
            isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
            isortlist#1(nil()) -> nil()
            leq(@l1,@l2) -> leq#1(@l1,@l2)
            leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
            leq#1(nil(),@l2) -> #true()
            leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
            leq#2(nil(),@x,@xs) -> #false()
            or(@x,@y) -> #or(@x,@y)
        - Weak TRS:
            #and(#false(),#false()) -> #false()
            #and(#false(),#true()) -> #false()
            #and(#true(),#false()) -> #false()
            #and(#true(),#true()) -> #true()
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #eq(#0(),#0()) -> #true()
            #eq(#0(),#neg(@y)) -> #false()
            #eq(#0(),#pos(@y)) -> #false()
            #eq(#0(),#s(@y)) -> #false()
            #eq(#neg(@x),#0()) -> #false()
            #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
            #eq(#neg(@x),#pos(@y)) -> #false()
            #eq(#pos(@x),#0()) -> #false()
            #eq(#pos(@x),#neg(@y)) -> #false()
            #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
            #eq(#s(@x),#0()) -> #false()
            #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
            #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
            #eq(::(@x_1,@x_2),nil()) -> #false()
            #eq(nil(),::(@y_1,@y_2)) -> #false()
            #eq(nil(),nil()) -> #true()
            #or(#false(),#false()) -> #false()
            #or(#false(),#true()) -> #true()
            #or(#true(),#false()) -> #true()
            #or(#true(),#true()) -> #true()
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0
            ,::/2,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and,#cklt,#compare,#eq,#equal,#less,#or,and,insert
            ,insert#1,insert#2,isortlist,isortlist#1,leq,leq#1,leq#2,or} and constructors {#0,#EQ,#GT,#LT,#false,#neg
            ,#pos,#s,#true,::,nil}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DependencyPairs WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            #equal(@x,@y) -> #eq(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            and(@x,@y) -> #and(@x,@y)
            insert(@x,@l) -> insert#1(@l,@x)
            insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
            insert#1(nil(),@x) -> ::(@x,nil())
            insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
            insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
            isortlist(@l) -> isortlist#1(@l)
            isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
            isortlist#1(nil()) -> nil()
            leq(@l1,@l2) -> leq#1(@l1,@l2)
            leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
            leq#1(nil(),@l2) -> #true()
            leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
            leq#2(nil(),@x,@xs) -> #false()
            or(@x,@y) -> #or(@x,@y)
        - Weak TRS:
            #and(#false(),#false()) -> #false()
            #and(#false(),#true()) -> #false()
            #and(#true(),#false()) -> #false()
            #and(#true(),#true()) -> #true()
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #eq(#0(),#0()) -> #true()
            #eq(#0(),#neg(@y)) -> #false()
            #eq(#0(),#pos(@y)) -> #false()
            #eq(#0(),#s(@y)) -> #false()
            #eq(#neg(@x),#0()) -> #false()
            #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
            #eq(#neg(@x),#pos(@y)) -> #false()
            #eq(#pos(@x),#0()) -> #false()
            #eq(#pos(@x),#neg(@y)) -> #false()
            #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
            #eq(#s(@x),#0()) -> #false()
            #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
            #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
            #eq(::(@x_1,@x_2),nil()) -> #false()
            #eq(nil(),::(@y_1,@y_2)) -> #false()
            #eq(nil(),nil()) -> #true()
            #or(#false(),#false()) -> #false()
            #or(#false(),#true()) -> #true()
            #or(#true(),#false()) -> #true()
            #or(#true(),#true()) -> #true()
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0
            ,::/2,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and,#cklt,#compare,#eq,#equal,#less,#or,and,insert
            ,insert#1,insert#2,isortlist,isortlist#1,leq,leq#1,leq#2,or} and constructors {#0,#EQ,#GT,#LT,#false,#neg
            ,#pos,#s,#true,::,nil}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          #equal#(@x,@y) -> c_1(#eq#(@x,@y))
          #less#(@x,@y) -> c_2(#cklt#(#compare(@x,@y)),#compare#(@x,@y))
          and#(@x,@y) -> c_3(#and#(@x,@y))
          insert#(@x,@l) -> c_4(insert#1#(@l,@x))
          insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y))
          insert#1#(nil(),@x) -> c_6()
          insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
          insert#2#(#true(),@x,@y,@ys) -> c_8()
          isortlist#(@l) -> c_9(isortlist#1#(@l))
          isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
          isortlist#1#(nil()) -> c_11()
          leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2))
          leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs))
          leq#1#(nil(),@l2) -> c_14()
          leq#2#(::(@y,@ys),@x,@xs) -> c_15(or#(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
                                           ,#less#(@x,@y)
                                           ,and#(#equal(@x,@y),leq(@xs,@ys))
                                           ,#equal#(@x,@y)
                                           ,leq#(@xs,@ys))
          leq#2#(nil(),@x,@xs) -> c_16()
          or#(@x,@y) -> c_17(#or#(@x,@y))
        Weak DPs
          #and#(#false(),#false()) -> c_18()
          #and#(#false(),#true()) -> c_19()
          #and#(#true(),#false()) -> c_20()
          #and#(#true(),#true()) -> c_21()
          #cklt#(#EQ()) -> c_22()
          #cklt#(#GT()) -> c_23()
          #cklt#(#LT()) -> c_24()
          #compare#(#0(),#0()) -> c_25()
          #compare#(#0(),#neg(@y)) -> c_26()
          #compare#(#0(),#pos(@y)) -> c_27()
          #compare#(#0(),#s(@y)) -> c_28()
          #compare#(#neg(@x),#0()) -> c_29()
          #compare#(#neg(@x),#neg(@y)) -> c_30(#compare#(@y,@x))
          #compare#(#neg(@x),#pos(@y)) -> c_31()
          #compare#(#pos(@x),#0()) -> c_32()
          #compare#(#pos(@x),#neg(@y)) -> c_33()
          #compare#(#pos(@x),#pos(@y)) -> c_34(#compare#(@x,@y))
          #compare#(#s(@x),#0()) -> c_35()
          #compare#(#s(@x),#s(@y)) -> c_36(#compare#(@x,@y))
          #eq#(#0(),#0()) -> c_37()
          #eq#(#0(),#neg(@y)) -> c_38()
          #eq#(#0(),#pos(@y)) -> c_39()
          #eq#(#0(),#s(@y)) -> c_40()
          #eq#(#neg(@x),#0()) -> c_41()
          #eq#(#neg(@x),#neg(@y)) -> c_42(#eq#(@x,@y))
          #eq#(#neg(@x),#pos(@y)) -> c_43()
          #eq#(#pos(@x),#0()) -> c_44()
          #eq#(#pos(@x),#neg(@y)) -> c_45()
          #eq#(#pos(@x),#pos(@y)) -> c_46(#eq#(@x,@y))
          #eq#(#s(@x),#0()) -> c_47()
          #eq#(#s(@x),#s(@y)) -> c_48(#eq#(@x,@y))
          #eq#(::(@x_1,@x_2),::(@y_1,@y_2)) -> c_49(#and#(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
                                                   ,#eq#(@x_1,@y_1)
                                                   ,#eq#(@x_2,@y_2))
          #eq#(::(@x_1,@x_2),nil()) -> c_50()
          #eq#(nil(),::(@y_1,@y_2)) -> c_51()
          #eq#(nil(),nil()) -> c_52()
          #or#(#false(),#false()) -> c_53()
          #or#(#false(),#true()) -> c_54()
          #or#(#true(),#false()) -> c_55()
          #or#(#true(),#true()) -> c_56()
        
        and mark the set of starting terms.
* Step 3: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            #equal#(@x,@y) -> c_1(#eq#(@x,@y))
            #less#(@x,@y) -> c_2(#cklt#(#compare(@x,@y)),#compare#(@x,@y))
            and#(@x,@y) -> c_3(#and#(@x,@y))
            insert#(@x,@l) -> c_4(insert#1#(@l,@x))
            insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y))
            insert#1#(nil(),@x) -> c_6()
            insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
            insert#2#(#true(),@x,@y,@ys) -> c_8()
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
            isortlist#1#(nil()) -> c_11()
            leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2))
            leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs))
            leq#1#(nil(),@l2) -> c_14()
            leq#2#(::(@y,@ys),@x,@xs) -> c_15(or#(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
                                             ,#less#(@x,@y)
                                             ,and#(#equal(@x,@y),leq(@xs,@ys))
                                             ,#equal#(@x,@y)
                                             ,leq#(@xs,@ys))
            leq#2#(nil(),@x,@xs) -> c_16()
            or#(@x,@y) -> c_17(#or#(@x,@y))
        - Weak DPs:
            #and#(#false(),#false()) -> c_18()
            #and#(#false(),#true()) -> c_19()
            #and#(#true(),#false()) -> c_20()
            #and#(#true(),#true()) -> c_21()
            #cklt#(#EQ()) -> c_22()
            #cklt#(#GT()) -> c_23()
            #cklt#(#LT()) -> c_24()
            #compare#(#0(),#0()) -> c_25()
            #compare#(#0(),#neg(@y)) -> c_26()
            #compare#(#0(),#pos(@y)) -> c_27()
            #compare#(#0(),#s(@y)) -> c_28()
            #compare#(#neg(@x),#0()) -> c_29()
            #compare#(#neg(@x),#neg(@y)) -> c_30(#compare#(@y,@x))
            #compare#(#neg(@x),#pos(@y)) -> c_31()
            #compare#(#pos(@x),#0()) -> c_32()
            #compare#(#pos(@x),#neg(@y)) -> c_33()
            #compare#(#pos(@x),#pos(@y)) -> c_34(#compare#(@x,@y))
            #compare#(#s(@x),#0()) -> c_35()
            #compare#(#s(@x),#s(@y)) -> c_36(#compare#(@x,@y))
            #eq#(#0(),#0()) -> c_37()
            #eq#(#0(),#neg(@y)) -> c_38()
            #eq#(#0(),#pos(@y)) -> c_39()
            #eq#(#0(),#s(@y)) -> c_40()
            #eq#(#neg(@x),#0()) -> c_41()
            #eq#(#neg(@x),#neg(@y)) -> c_42(#eq#(@x,@y))
            #eq#(#neg(@x),#pos(@y)) -> c_43()
            #eq#(#pos(@x),#0()) -> c_44()
            #eq#(#pos(@x),#neg(@y)) -> c_45()
            #eq#(#pos(@x),#pos(@y)) -> c_46(#eq#(@x,@y))
            #eq#(#s(@x),#0()) -> c_47()
            #eq#(#s(@x),#s(@y)) -> c_48(#eq#(@x,@y))
            #eq#(::(@x_1,@x_2),::(@y_1,@y_2)) -> c_49(#and#(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
                                                     ,#eq#(@x_1,@y_1)
                                                     ,#eq#(@x_2,@y_2))
            #eq#(::(@x_1,@x_2),nil()) -> c_50()
            #eq#(nil(),::(@y_1,@y_2)) -> c_51()
            #eq#(nil(),nil()) -> c_52()
            #or#(#false(),#false()) -> c_53()
            #or#(#false(),#true()) -> c_54()
            #or#(#true(),#false()) -> c_55()
            #or#(#true(),#true()) -> c_56()
        - Weak TRS:
            #and(#false(),#false()) -> #false()
            #and(#false(),#true()) -> #false()
            #and(#true(),#false()) -> #false()
            #and(#true(),#true()) -> #true()
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #eq(#0(),#0()) -> #true()
            #eq(#0(),#neg(@y)) -> #false()
            #eq(#0(),#pos(@y)) -> #false()
            #eq(#0(),#s(@y)) -> #false()
            #eq(#neg(@x),#0()) -> #false()
            #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
            #eq(#neg(@x),#pos(@y)) -> #false()
            #eq(#pos(@x),#0()) -> #false()
            #eq(#pos(@x),#neg(@y)) -> #false()
            #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
            #eq(#s(@x),#0()) -> #false()
            #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
            #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
            #eq(::(@x_1,@x_2),nil()) -> #false()
            #eq(nil(),::(@y_1,@y_2)) -> #false()
            #eq(nil(),nil()) -> #true()
            #equal(@x,@y) -> #eq(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            #or(#false(),#false()) -> #false()
            #or(#false(),#true()) -> #true()
            #or(#true(),#false()) -> #true()
            #or(#true(),#true()) -> #true()
            and(@x,@y) -> #and(@x,@y)
            insert(@x,@l) -> insert#1(@l,@x)
            insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
            insert#1(nil(),@x) -> ::(@x,nil())
            insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
            insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
            isortlist(@l) -> isortlist#1(@l)
            isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
            isortlist#1(nil()) -> nil()
            leq(@l1,@l2) -> leq#1(@l1,@l2)
            leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
            leq#1(nil(),@l2) -> #true()
            leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
            leq#2(nil(),@x,@xs) -> #false()
            or(@x,@y) -> #or(@x,@y)
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/2,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2,c_11/0,c_12/1,c_13/1,c_14/0,c_15/5,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,2,3,6,8,11,14,16,17}
        by application of
          Pre({1,2,3,6,8,11,14,16,17}) = {4,5,9,12,13,15}.
        Here rules are labelled as follows:
          1: #equal#(@x,@y) -> c_1(#eq#(@x,@y))
          2: #less#(@x,@y) -> c_2(#cklt#(#compare(@x,@y)),#compare#(@x,@y))
          3: and#(@x,@y) -> c_3(#and#(@x,@y))
          4: insert#(@x,@l) -> c_4(insert#1#(@l,@x))
          5: insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y))
          6: insert#1#(nil(),@x) -> c_6()
          7: insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
          8: insert#2#(#true(),@x,@y,@ys) -> c_8()
          9: isortlist#(@l) -> c_9(isortlist#1#(@l))
          10: isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
          11: isortlist#1#(nil()) -> c_11()
          12: leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2))
          13: leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs))
          14: leq#1#(nil(),@l2) -> c_14()
          15: leq#2#(::(@y,@ys),@x,@xs) -> c_15(or#(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
                                               ,#less#(@x,@y)
                                               ,and#(#equal(@x,@y),leq(@xs,@ys))
                                               ,#equal#(@x,@y)
                                               ,leq#(@xs,@ys))
          16: leq#2#(nil(),@x,@xs) -> c_16()
          17: or#(@x,@y) -> c_17(#or#(@x,@y))
          18: #and#(#false(),#false()) -> c_18()
          19: #and#(#false(),#true()) -> c_19()
          20: #and#(#true(),#false()) -> c_20()
          21: #and#(#true(),#true()) -> c_21()
          22: #cklt#(#EQ()) -> c_22()
          23: #cklt#(#GT()) -> c_23()
          24: #cklt#(#LT()) -> c_24()
          25: #compare#(#0(),#0()) -> c_25()
          26: #compare#(#0(),#neg(@y)) -> c_26()
          27: #compare#(#0(),#pos(@y)) -> c_27()
          28: #compare#(#0(),#s(@y)) -> c_28()
          29: #compare#(#neg(@x),#0()) -> c_29()
          30: #compare#(#neg(@x),#neg(@y)) -> c_30(#compare#(@y,@x))
          31: #compare#(#neg(@x),#pos(@y)) -> c_31()
          32: #compare#(#pos(@x),#0()) -> c_32()
          33: #compare#(#pos(@x),#neg(@y)) -> c_33()
          34: #compare#(#pos(@x),#pos(@y)) -> c_34(#compare#(@x,@y))
          35: #compare#(#s(@x),#0()) -> c_35()
          36: #compare#(#s(@x),#s(@y)) -> c_36(#compare#(@x,@y))
          37: #eq#(#0(),#0()) -> c_37()
          38: #eq#(#0(),#neg(@y)) -> c_38()
          39: #eq#(#0(),#pos(@y)) -> c_39()
          40: #eq#(#0(),#s(@y)) -> c_40()
          41: #eq#(#neg(@x),#0()) -> c_41()
          42: #eq#(#neg(@x),#neg(@y)) -> c_42(#eq#(@x,@y))
          43: #eq#(#neg(@x),#pos(@y)) -> c_43()
          44: #eq#(#pos(@x),#0()) -> c_44()
          45: #eq#(#pos(@x),#neg(@y)) -> c_45()
          46: #eq#(#pos(@x),#pos(@y)) -> c_46(#eq#(@x,@y))
          47: #eq#(#s(@x),#0()) -> c_47()
          48: #eq#(#s(@x),#s(@y)) -> c_48(#eq#(@x,@y))
          49: #eq#(::(@x_1,@x_2),::(@y_1,@y_2)) -> c_49(#and#(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
                                                       ,#eq#(@x_1,@y_1)
                                                       ,#eq#(@x_2,@y_2))
          50: #eq#(::(@x_1,@x_2),nil()) -> c_50()
          51: #eq#(nil(),::(@y_1,@y_2)) -> c_51()
          52: #eq#(nil(),nil()) -> c_52()
          53: #or#(#false(),#false()) -> c_53()
          54: #or#(#false(),#true()) -> c_54()
          55: #or#(#true(),#false()) -> c_55()
          56: #or#(#true(),#true()) -> c_56()
* Step 4: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            insert#(@x,@l) -> c_4(insert#1#(@l,@x))
            insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y))
            insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
            leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2))
            leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs))
            leq#2#(::(@y,@ys),@x,@xs) -> c_15(or#(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
                                             ,#less#(@x,@y)
                                             ,and#(#equal(@x,@y),leq(@xs,@ys))
                                             ,#equal#(@x,@y)
                                             ,leq#(@xs,@ys))
        - Weak DPs:
            #and#(#false(),#false()) -> c_18()
            #and#(#false(),#true()) -> c_19()
            #and#(#true(),#false()) -> c_20()
            #and#(#true(),#true()) -> c_21()
            #cklt#(#EQ()) -> c_22()
            #cklt#(#GT()) -> c_23()
            #cklt#(#LT()) -> c_24()
            #compare#(#0(),#0()) -> c_25()
            #compare#(#0(),#neg(@y)) -> c_26()
            #compare#(#0(),#pos(@y)) -> c_27()
            #compare#(#0(),#s(@y)) -> c_28()
            #compare#(#neg(@x),#0()) -> c_29()
            #compare#(#neg(@x),#neg(@y)) -> c_30(#compare#(@y,@x))
            #compare#(#neg(@x),#pos(@y)) -> c_31()
            #compare#(#pos(@x),#0()) -> c_32()
            #compare#(#pos(@x),#neg(@y)) -> c_33()
            #compare#(#pos(@x),#pos(@y)) -> c_34(#compare#(@x,@y))
            #compare#(#s(@x),#0()) -> c_35()
            #compare#(#s(@x),#s(@y)) -> c_36(#compare#(@x,@y))
            #eq#(#0(),#0()) -> c_37()
            #eq#(#0(),#neg(@y)) -> c_38()
            #eq#(#0(),#pos(@y)) -> c_39()
            #eq#(#0(),#s(@y)) -> c_40()
            #eq#(#neg(@x),#0()) -> c_41()
            #eq#(#neg(@x),#neg(@y)) -> c_42(#eq#(@x,@y))
            #eq#(#neg(@x),#pos(@y)) -> c_43()
            #eq#(#pos(@x),#0()) -> c_44()
            #eq#(#pos(@x),#neg(@y)) -> c_45()
            #eq#(#pos(@x),#pos(@y)) -> c_46(#eq#(@x,@y))
            #eq#(#s(@x),#0()) -> c_47()
            #eq#(#s(@x),#s(@y)) -> c_48(#eq#(@x,@y))
            #eq#(::(@x_1,@x_2),::(@y_1,@y_2)) -> c_49(#and#(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
                                                     ,#eq#(@x_1,@y_1)
                                                     ,#eq#(@x_2,@y_2))
            #eq#(::(@x_1,@x_2),nil()) -> c_50()
            #eq#(nil(),::(@y_1,@y_2)) -> c_51()
            #eq#(nil(),nil()) -> c_52()
            #equal#(@x,@y) -> c_1(#eq#(@x,@y))
            #less#(@x,@y) -> c_2(#cklt#(#compare(@x,@y)),#compare#(@x,@y))
            #or#(#false(),#false()) -> c_53()
            #or#(#false(),#true()) -> c_54()
            #or#(#true(),#false()) -> c_55()
            #or#(#true(),#true()) -> c_56()
            and#(@x,@y) -> c_3(#and#(@x,@y))
            insert#1#(nil(),@x) -> c_6()
            insert#2#(#true(),@x,@y,@ys) -> c_8()
            isortlist#1#(nil()) -> c_11()
            leq#1#(nil(),@l2) -> c_14()
            leq#2#(nil(),@x,@xs) -> c_16()
            or#(@x,@y) -> c_17(#or#(@x,@y))
        - Weak TRS:
            #and(#false(),#false()) -> #false()
            #and(#false(),#true()) -> #false()
            #and(#true(),#false()) -> #false()
            #and(#true(),#true()) -> #true()
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #eq(#0(),#0()) -> #true()
            #eq(#0(),#neg(@y)) -> #false()
            #eq(#0(),#pos(@y)) -> #false()
            #eq(#0(),#s(@y)) -> #false()
            #eq(#neg(@x),#0()) -> #false()
            #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
            #eq(#neg(@x),#pos(@y)) -> #false()
            #eq(#pos(@x),#0()) -> #false()
            #eq(#pos(@x),#neg(@y)) -> #false()
            #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
            #eq(#s(@x),#0()) -> #false()
            #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
            #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
            #eq(::(@x_1,@x_2),nil()) -> #false()
            #eq(nil(),::(@y_1,@y_2)) -> #false()
            #eq(nil(),nil()) -> #true()
            #equal(@x,@y) -> #eq(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            #or(#false(),#false()) -> #false()
            #or(#false(),#true()) -> #true()
            #or(#true(),#false()) -> #true()
            #or(#true(),#true()) -> #true()
            and(@x,@y) -> #and(@x,@y)
            insert(@x,@l) -> insert#1(@l,@x)
            insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
            insert#1(nil(),@x) -> ::(@x,nil())
            insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
            insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
            isortlist(@l) -> isortlist#1(@l)
            isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
            isortlist#1(nil()) -> nil()
            leq(@l1,@l2) -> leq#1(@l1,@l2)
            leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
            leq#1(nil(),@l2) -> #true()
            leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
            leq#2(nil(),@x,@xs) -> #false()
            or(@x,@y) -> #or(@x,@y)
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/2,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2,c_11/0,c_12/1,c_13/1,c_14/0,c_15/5,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:insert#(@x,@l) -> c_4(insert#1#(@l,@x))
             -->_1 insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y)):2
             -->_1 insert#1#(nil(),@x) -> c_6():51
          
          2:S:insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y))
             -->_2 leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2)):6
             -->_1 insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys)):3
             -->_1 insert#2#(#true(),@x,@y,@ys) -> c_8():52
          
          3:S:insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
             -->_1 insert#(@x,@l) -> c_4(insert#1#(@l,@x)):1
          
          4:S:isortlist#(@l) -> c_9(isortlist#1#(@l))
             -->_1 isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs)):5
             -->_1 isortlist#1#(nil()) -> c_11():53
          
          5:S:isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
             -->_2 isortlist#(@l) -> c_9(isortlist#1#(@l)):4
             -->_1 insert#(@x,@l) -> c_4(insert#1#(@l,@x)):1
          
          6:S:leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2))
             -->_1 leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs)):7
             -->_1 leq#1#(nil(),@l2) -> c_14():54
          
          7:S:leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs))
             -->_1 leq#2#(::(@y,@ys),@x,@xs) -> c_15(or#(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
                                                    ,#less#(@x,@y)
                                                    ,and#(#equal(@x,@y),leq(@xs,@ys))
                                                    ,#equal#(@x,@y)
                                                    ,leq#(@xs,@ys)):8
             -->_1 leq#2#(nil(),@x,@xs) -> c_16():55
          
          8:S:leq#2#(::(@y,@ys),@x,@xs) -> c_15(or#(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
                                               ,#less#(@x,@y)
                                               ,and#(#equal(@x,@y),leq(@xs,@ys))
                                               ,#equal#(@x,@y)
                                               ,leq#(@xs,@ys))
             -->_1 or#(@x,@y) -> c_17(#or#(@x,@y)):56
             -->_3 and#(@x,@y) -> c_3(#and#(@x,@y)):50
             -->_2 #less#(@x,@y) -> c_2(#cklt#(#compare(@x,@y)),#compare#(@x,@y)):45
             -->_4 #equal#(@x,@y) -> c_1(#eq#(@x,@y)):44
             -->_5 leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2)):6
          
          9:W:#and#(#false(),#false()) -> c_18()
             
          
          10:W:#and#(#false(),#true()) -> c_19()
             
          
          11:W:#and#(#true(),#false()) -> c_20()
             
          
          12:W:#and#(#true(),#true()) -> c_21()
             
          
          13:W:#cklt#(#EQ()) -> c_22()
             
          
          14:W:#cklt#(#GT()) -> c_23()
             
          
          15:W:#cklt#(#LT()) -> c_24()
             
          
          16:W:#compare#(#0(),#0()) -> c_25()
             
          
          17:W:#compare#(#0(),#neg(@y)) -> c_26()
             
          
          18:W:#compare#(#0(),#pos(@y)) -> c_27()
             
          
          19:W:#compare#(#0(),#s(@y)) -> c_28()
             
          
          20:W:#compare#(#neg(@x),#0()) -> c_29()
             
          
          21:W:#compare#(#neg(@x),#neg(@y)) -> c_30(#compare#(@y,@x))
             -->_1 #compare#(#s(@x),#s(@y)) -> c_36(#compare#(@x,@y)):27
             -->_1 #compare#(#pos(@x),#pos(@y)) -> c_34(#compare#(@x,@y)):25
             -->_1 #compare#(#s(@x),#0()) -> c_35():26
             -->_1 #compare#(#pos(@x),#neg(@y)) -> c_33():24
             -->_1 #compare#(#pos(@x),#0()) -> c_32():23
             -->_1 #compare#(#neg(@x),#pos(@y)) -> c_31():22
             -->_1 #compare#(#neg(@x),#neg(@y)) -> c_30(#compare#(@y,@x)):21
             -->_1 #compare#(#neg(@x),#0()) -> c_29():20
             -->_1 #compare#(#0(),#s(@y)) -> c_28():19
             -->_1 #compare#(#0(),#pos(@y)) -> c_27():18
             -->_1 #compare#(#0(),#neg(@y)) -> c_26():17
             -->_1 #compare#(#0(),#0()) -> c_25():16
          
          22:W:#compare#(#neg(@x),#pos(@y)) -> c_31()
             
          
          23:W:#compare#(#pos(@x),#0()) -> c_32()
             
          
          24:W:#compare#(#pos(@x),#neg(@y)) -> c_33()
             
          
          25:W:#compare#(#pos(@x),#pos(@y)) -> c_34(#compare#(@x,@y))
             -->_1 #compare#(#s(@x),#s(@y)) -> c_36(#compare#(@x,@y)):27
             -->_1 #compare#(#s(@x),#0()) -> c_35():26
             -->_1 #compare#(#pos(@x),#pos(@y)) -> c_34(#compare#(@x,@y)):25
             -->_1 #compare#(#pos(@x),#neg(@y)) -> c_33():24
             -->_1 #compare#(#pos(@x),#0()) -> c_32():23
             -->_1 #compare#(#neg(@x),#pos(@y)) -> c_31():22
             -->_1 #compare#(#neg(@x),#neg(@y)) -> c_30(#compare#(@y,@x)):21
             -->_1 #compare#(#neg(@x),#0()) -> c_29():20
             -->_1 #compare#(#0(),#s(@y)) -> c_28():19
             -->_1 #compare#(#0(),#pos(@y)) -> c_27():18
             -->_1 #compare#(#0(),#neg(@y)) -> c_26():17
             -->_1 #compare#(#0(),#0()) -> c_25():16
          
          26:W:#compare#(#s(@x),#0()) -> c_35()
             
          
          27:W:#compare#(#s(@x),#s(@y)) -> c_36(#compare#(@x,@y))
             -->_1 #compare#(#s(@x),#s(@y)) -> c_36(#compare#(@x,@y)):27
             -->_1 #compare#(#s(@x),#0()) -> c_35():26
             -->_1 #compare#(#pos(@x),#pos(@y)) -> c_34(#compare#(@x,@y)):25
             -->_1 #compare#(#pos(@x),#neg(@y)) -> c_33():24
             -->_1 #compare#(#pos(@x),#0()) -> c_32():23
             -->_1 #compare#(#neg(@x),#pos(@y)) -> c_31():22
             -->_1 #compare#(#neg(@x),#neg(@y)) -> c_30(#compare#(@y,@x)):21
             -->_1 #compare#(#neg(@x),#0()) -> c_29():20
             -->_1 #compare#(#0(),#s(@y)) -> c_28():19
             -->_1 #compare#(#0(),#pos(@y)) -> c_27():18
             -->_1 #compare#(#0(),#neg(@y)) -> c_26():17
             -->_1 #compare#(#0(),#0()) -> c_25():16
          
          28:W:#eq#(#0(),#0()) -> c_37()
             
          
          29:W:#eq#(#0(),#neg(@y)) -> c_38()
             
          
          30:W:#eq#(#0(),#pos(@y)) -> c_39()
             
          
          31:W:#eq#(#0(),#s(@y)) -> c_40()
             
          
          32:W:#eq#(#neg(@x),#0()) -> c_41()
             
          
          33:W:#eq#(#neg(@x),#neg(@y)) -> c_42(#eq#(@x,@y))
             -->_1 #eq#(::(@x_1,@x_2),::(@y_1,@y_2)) -> c_49(#and#(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
                                                            ,#eq#(@x_1,@y_1)
                                                            ,#eq#(@x_2,@y_2)):40
             -->_1 #eq#(#s(@x),#s(@y)) -> c_48(#eq#(@x,@y)):39
             -->_1 #eq#(#pos(@x),#pos(@y)) -> c_46(#eq#(@x,@y)):37
             -->_1 #eq#(nil(),nil()) -> c_52():43
             -->_1 #eq#(nil(),::(@y_1,@y_2)) -> c_51():42
             -->_1 #eq#(::(@x_1,@x_2),nil()) -> c_50():41
             -->_1 #eq#(#s(@x),#0()) -> c_47():38
             -->_1 #eq#(#pos(@x),#neg(@y)) -> c_45():36
             -->_1 #eq#(#pos(@x),#0()) -> c_44():35
             -->_1 #eq#(#neg(@x),#pos(@y)) -> c_43():34
             -->_1 #eq#(#neg(@x),#neg(@y)) -> c_42(#eq#(@x,@y)):33
             -->_1 #eq#(#neg(@x),#0()) -> c_41():32
             -->_1 #eq#(#0(),#s(@y)) -> c_40():31
             -->_1 #eq#(#0(),#pos(@y)) -> c_39():30
             -->_1 #eq#(#0(),#neg(@y)) -> c_38():29
             -->_1 #eq#(#0(),#0()) -> c_37():28
          
          34:W:#eq#(#neg(@x),#pos(@y)) -> c_43()
             
          
          35:W:#eq#(#pos(@x),#0()) -> c_44()
             
          
          36:W:#eq#(#pos(@x),#neg(@y)) -> c_45()
             
          
          37:W:#eq#(#pos(@x),#pos(@y)) -> c_46(#eq#(@x,@y))
             -->_1 #eq#(::(@x_1,@x_2),::(@y_1,@y_2)) -> c_49(#and#(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
                                                            ,#eq#(@x_1,@y_1)
                                                            ,#eq#(@x_2,@y_2)):40
             -->_1 #eq#(#s(@x),#s(@y)) -> c_48(#eq#(@x,@y)):39
             -->_1 #eq#(nil(),nil()) -> c_52():43
             -->_1 #eq#(nil(),::(@y_1,@y_2)) -> c_51():42
             -->_1 #eq#(::(@x_1,@x_2),nil()) -> c_50():41
             -->_1 #eq#(#s(@x),#0()) -> c_47():38
             -->_1 #eq#(#pos(@x),#pos(@y)) -> c_46(#eq#(@x,@y)):37
             -->_1 #eq#(#pos(@x),#neg(@y)) -> c_45():36
             -->_1 #eq#(#pos(@x),#0()) -> c_44():35
             -->_1 #eq#(#neg(@x),#pos(@y)) -> c_43():34
             -->_1 #eq#(#neg(@x),#neg(@y)) -> c_42(#eq#(@x,@y)):33
             -->_1 #eq#(#neg(@x),#0()) -> c_41():32
             -->_1 #eq#(#0(),#s(@y)) -> c_40():31
             -->_1 #eq#(#0(),#pos(@y)) -> c_39():30
             -->_1 #eq#(#0(),#neg(@y)) -> c_38():29
             -->_1 #eq#(#0(),#0()) -> c_37():28
          
          38:W:#eq#(#s(@x),#0()) -> c_47()
             
          
          39:W:#eq#(#s(@x),#s(@y)) -> c_48(#eq#(@x,@y))
             -->_1 #eq#(::(@x_1,@x_2),::(@y_1,@y_2)) -> c_49(#and#(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
                                                            ,#eq#(@x_1,@y_1)
                                                            ,#eq#(@x_2,@y_2)):40
             -->_1 #eq#(nil(),nil()) -> c_52():43
             -->_1 #eq#(nil(),::(@y_1,@y_2)) -> c_51():42
             -->_1 #eq#(::(@x_1,@x_2),nil()) -> c_50():41
             -->_1 #eq#(#s(@x),#s(@y)) -> c_48(#eq#(@x,@y)):39
             -->_1 #eq#(#s(@x),#0()) -> c_47():38
             -->_1 #eq#(#pos(@x),#pos(@y)) -> c_46(#eq#(@x,@y)):37
             -->_1 #eq#(#pos(@x),#neg(@y)) -> c_45():36
             -->_1 #eq#(#pos(@x),#0()) -> c_44():35
             -->_1 #eq#(#neg(@x),#pos(@y)) -> c_43():34
             -->_1 #eq#(#neg(@x),#neg(@y)) -> c_42(#eq#(@x,@y)):33
             -->_1 #eq#(#neg(@x),#0()) -> c_41():32
             -->_1 #eq#(#0(),#s(@y)) -> c_40():31
             -->_1 #eq#(#0(),#pos(@y)) -> c_39():30
             -->_1 #eq#(#0(),#neg(@y)) -> c_38():29
             -->_1 #eq#(#0(),#0()) -> c_37():28
          
          40:W:#eq#(::(@x_1,@x_2),::(@y_1,@y_2)) -> c_49(#and#(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
                                                        ,#eq#(@x_1,@y_1)
                                                        ,#eq#(@x_2,@y_2))
             -->_3 #eq#(nil(),nil()) -> c_52():43
             -->_2 #eq#(nil(),nil()) -> c_52():43
             -->_3 #eq#(nil(),::(@y_1,@y_2)) -> c_51():42
             -->_2 #eq#(nil(),::(@y_1,@y_2)) -> c_51():42
             -->_3 #eq#(::(@x_1,@x_2),nil()) -> c_50():41
             -->_2 #eq#(::(@x_1,@x_2),nil()) -> c_50():41
             -->_3 #eq#(::(@x_1,@x_2),::(@y_1,@y_2)) -> c_49(#and#(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
                                                            ,#eq#(@x_1,@y_1)
                                                            ,#eq#(@x_2,@y_2)):40
             -->_2 #eq#(::(@x_1,@x_2),::(@y_1,@y_2)) -> c_49(#and#(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
                                                            ,#eq#(@x_1,@y_1)
                                                            ,#eq#(@x_2,@y_2)):40
             -->_3 #eq#(#s(@x),#s(@y)) -> c_48(#eq#(@x,@y)):39
             -->_2 #eq#(#s(@x),#s(@y)) -> c_48(#eq#(@x,@y)):39
             -->_3 #eq#(#s(@x),#0()) -> c_47():38
             -->_2 #eq#(#s(@x),#0()) -> c_47():38
             -->_3 #eq#(#pos(@x),#pos(@y)) -> c_46(#eq#(@x,@y)):37
             -->_2 #eq#(#pos(@x),#pos(@y)) -> c_46(#eq#(@x,@y)):37
             -->_3 #eq#(#pos(@x),#neg(@y)) -> c_45():36
             -->_2 #eq#(#pos(@x),#neg(@y)) -> c_45():36
             -->_3 #eq#(#pos(@x),#0()) -> c_44():35
             -->_2 #eq#(#pos(@x),#0()) -> c_44():35
             -->_3 #eq#(#neg(@x),#pos(@y)) -> c_43():34
             -->_2 #eq#(#neg(@x),#pos(@y)) -> c_43():34
             -->_3 #eq#(#neg(@x),#neg(@y)) -> c_42(#eq#(@x,@y)):33
             -->_2 #eq#(#neg(@x),#neg(@y)) -> c_42(#eq#(@x,@y)):33
             -->_3 #eq#(#neg(@x),#0()) -> c_41():32
             -->_2 #eq#(#neg(@x),#0()) -> c_41():32
             -->_3 #eq#(#0(),#s(@y)) -> c_40():31
             -->_2 #eq#(#0(),#s(@y)) -> c_40():31
             -->_3 #eq#(#0(),#pos(@y)) -> c_39():30
             -->_2 #eq#(#0(),#pos(@y)) -> c_39():30
             -->_3 #eq#(#0(),#neg(@y)) -> c_38():29
             -->_2 #eq#(#0(),#neg(@y)) -> c_38():29
             -->_3 #eq#(#0(),#0()) -> c_37():28
             -->_2 #eq#(#0(),#0()) -> c_37():28
             -->_1 #and#(#true(),#true()) -> c_21():12
             -->_1 #and#(#true(),#false()) -> c_20():11
             -->_1 #and#(#false(),#true()) -> c_19():10
             -->_1 #and#(#false(),#false()) -> c_18():9
          
          41:W:#eq#(::(@x_1,@x_2),nil()) -> c_50()
             
          
          42:W:#eq#(nil(),::(@y_1,@y_2)) -> c_51()
             
          
          43:W:#eq#(nil(),nil()) -> c_52()
             
          
          44:W:#equal#(@x,@y) -> c_1(#eq#(@x,@y))
             -->_1 #eq#(nil(),nil()) -> c_52():43
             -->_1 #eq#(nil(),::(@y_1,@y_2)) -> c_51():42
             -->_1 #eq#(::(@x_1,@x_2),nil()) -> c_50():41
             -->_1 #eq#(::(@x_1,@x_2),::(@y_1,@y_2)) -> c_49(#and#(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
                                                            ,#eq#(@x_1,@y_1)
                                                            ,#eq#(@x_2,@y_2)):40
             -->_1 #eq#(#s(@x),#s(@y)) -> c_48(#eq#(@x,@y)):39
             -->_1 #eq#(#s(@x),#0()) -> c_47():38
             -->_1 #eq#(#pos(@x),#pos(@y)) -> c_46(#eq#(@x,@y)):37
             -->_1 #eq#(#pos(@x),#neg(@y)) -> c_45():36
             -->_1 #eq#(#pos(@x),#0()) -> c_44():35
             -->_1 #eq#(#neg(@x),#pos(@y)) -> c_43():34
             -->_1 #eq#(#neg(@x),#neg(@y)) -> c_42(#eq#(@x,@y)):33
             -->_1 #eq#(#neg(@x),#0()) -> c_41():32
             -->_1 #eq#(#0(),#s(@y)) -> c_40():31
             -->_1 #eq#(#0(),#pos(@y)) -> c_39():30
             -->_1 #eq#(#0(),#neg(@y)) -> c_38():29
             -->_1 #eq#(#0(),#0()) -> c_37():28
          
          45:W:#less#(@x,@y) -> c_2(#cklt#(#compare(@x,@y)),#compare#(@x,@y))
             -->_2 #compare#(#s(@x),#s(@y)) -> c_36(#compare#(@x,@y)):27
             -->_2 #compare#(#s(@x),#0()) -> c_35():26
             -->_2 #compare#(#pos(@x),#pos(@y)) -> c_34(#compare#(@x,@y)):25
             -->_2 #compare#(#pos(@x),#neg(@y)) -> c_33():24
             -->_2 #compare#(#pos(@x),#0()) -> c_32():23
             -->_2 #compare#(#neg(@x),#pos(@y)) -> c_31():22
             -->_2 #compare#(#neg(@x),#neg(@y)) -> c_30(#compare#(@y,@x)):21
             -->_2 #compare#(#neg(@x),#0()) -> c_29():20
             -->_2 #compare#(#0(),#s(@y)) -> c_28():19
             -->_2 #compare#(#0(),#pos(@y)) -> c_27():18
             -->_2 #compare#(#0(),#neg(@y)) -> c_26():17
             -->_2 #compare#(#0(),#0()) -> c_25():16
             -->_1 #cklt#(#LT()) -> c_24():15
             -->_1 #cklt#(#GT()) -> c_23():14
             -->_1 #cklt#(#EQ()) -> c_22():13
          
          46:W:#or#(#false(),#false()) -> c_53()
             
          
          47:W:#or#(#false(),#true()) -> c_54()
             
          
          48:W:#or#(#true(),#false()) -> c_55()
             
          
          49:W:#or#(#true(),#true()) -> c_56()
             
          
          50:W:and#(@x,@y) -> c_3(#and#(@x,@y))
             -->_1 #and#(#true(),#true()) -> c_21():12
             -->_1 #and#(#true(),#false()) -> c_20():11
             -->_1 #and#(#false(),#true()) -> c_19():10
             -->_1 #and#(#false(),#false()) -> c_18():9
          
          51:W:insert#1#(nil(),@x) -> c_6()
             
          
          52:W:insert#2#(#true(),@x,@y,@ys) -> c_8()
             
          
          53:W:isortlist#1#(nil()) -> c_11()
             
          
          54:W:leq#1#(nil(),@l2) -> c_14()
             
          
          55:W:leq#2#(nil(),@x,@xs) -> c_16()
             
          
          56:W:or#(@x,@y) -> c_17(#or#(@x,@y))
             -->_1 #or#(#true(),#true()) -> c_56():49
             -->_1 #or#(#true(),#false()) -> c_55():48
             -->_1 #or#(#false(),#true()) -> c_54():47
             -->_1 #or#(#false(),#false()) -> c_53():46
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          53: isortlist#1#(nil()) -> c_11()
          51: insert#1#(nil(),@x) -> c_6()
          52: insert#2#(#true(),@x,@y,@ys) -> c_8()
          54: leq#1#(nil(),@l2) -> c_14()
          55: leq#2#(nil(),@x,@xs) -> c_16()
          44: #equal#(@x,@y) -> c_1(#eq#(@x,@y))
          40: #eq#(::(@x_1,@x_2),::(@y_1,@y_2)) -> c_49(#and#(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
                                                       ,#eq#(@x_1,@y_1)
                                                       ,#eq#(@x_2,@y_2))
          39: #eq#(#s(@x),#s(@y)) -> c_48(#eq#(@x,@y))
          37: #eq#(#pos(@x),#pos(@y)) -> c_46(#eq#(@x,@y))
          33: #eq#(#neg(@x),#neg(@y)) -> c_42(#eq#(@x,@y))
          28: #eq#(#0(),#0()) -> c_37()
          29: #eq#(#0(),#neg(@y)) -> c_38()
          30: #eq#(#0(),#pos(@y)) -> c_39()
          31: #eq#(#0(),#s(@y)) -> c_40()
          32: #eq#(#neg(@x),#0()) -> c_41()
          34: #eq#(#neg(@x),#pos(@y)) -> c_43()
          35: #eq#(#pos(@x),#0()) -> c_44()
          36: #eq#(#pos(@x),#neg(@y)) -> c_45()
          38: #eq#(#s(@x),#0()) -> c_47()
          41: #eq#(::(@x_1,@x_2),nil()) -> c_50()
          42: #eq#(nil(),::(@y_1,@y_2)) -> c_51()
          43: #eq#(nil(),nil()) -> c_52()
          45: #less#(@x,@y) -> c_2(#cklt#(#compare(@x,@y)),#compare#(@x,@y))
          13: #cklt#(#EQ()) -> c_22()
          14: #cklt#(#GT()) -> c_23()
          15: #cklt#(#LT()) -> c_24()
          27: #compare#(#s(@x),#s(@y)) -> c_36(#compare#(@x,@y))
          25: #compare#(#pos(@x),#pos(@y)) -> c_34(#compare#(@x,@y))
          21: #compare#(#neg(@x),#neg(@y)) -> c_30(#compare#(@y,@x))
          16: #compare#(#0(),#0()) -> c_25()
          17: #compare#(#0(),#neg(@y)) -> c_26()
          18: #compare#(#0(),#pos(@y)) -> c_27()
          19: #compare#(#0(),#s(@y)) -> c_28()
          20: #compare#(#neg(@x),#0()) -> c_29()
          22: #compare#(#neg(@x),#pos(@y)) -> c_31()
          23: #compare#(#pos(@x),#0()) -> c_32()
          24: #compare#(#pos(@x),#neg(@y)) -> c_33()
          26: #compare#(#s(@x),#0()) -> c_35()
          50: and#(@x,@y) -> c_3(#and#(@x,@y))
          9: #and#(#false(),#false()) -> c_18()
          10: #and#(#false(),#true()) -> c_19()
          11: #and#(#true(),#false()) -> c_20()
          12: #and#(#true(),#true()) -> c_21()
          56: or#(@x,@y) -> c_17(#or#(@x,@y))
          46: #or#(#false(),#false()) -> c_53()
          47: #or#(#false(),#true()) -> c_54()
          48: #or#(#true(),#false()) -> c_55()
          49: #or#(#true(),#true()) -> c_56()
* Step 5: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            insert#(@x,@l) -> c_4(insert#1#(@l,@x))
            insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y))
            insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
            leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2))
            leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs))
            leq#2#(::(@y,@ys),@x,@xs) -> c_15(or#(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
                                             ,#less#(@x,@y)
                                             ,and#(#equal(@x,@y),leq(@xs,@ys))
                                             ,#equal#(@x,@y)
                                             ,leq#(@xs,@ys))
        - Weak TRS:
            #and(#false(),#false()) -> #false()
            #and(#false(),#true()) -> #false()
            #and(#true(),#false()) -> #false()
            #and(#true(),#true()) -> #true()
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #eq(#0(),#0()) -> #true()
            #eq(#0(),#neg(@y)) -> #false()
            #eq(#0(),#pos(@y)) -> #false()
            #eq(#0(),#s(@y)) -> #false()
            #eq(#neg(@x),#0()) -> #false()
            #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
            #eq(#neg(@x),#pos(@y)) -> #false()
            #eq(#pos(@x),#0()) -> #false()
            #eq(#pos(@x),#neg(@y)) -> #false()
            #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
            #eq(#s(@x),#0()) -> #false()
            #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
            #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
            #eq(::(@x_1,@x_2),nil()) -> #false()
            #eq(nil(),::(@y_1,@y_2)) -> #false()
            #eq(nil(),nil()) -> #true()
            #equal(@x,@y) -> #eq(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            #or(#false(),#false()) -> #false()
            #or(#false(),#true()) -> #true()
            #or(#true(),#false()) -> #true()
            #or(#true(),#true()) -> #true()
            and(@x,@y) -> #and(@x,@y)
            insert(@x,@l) -> insert#1(@l,@x)
            insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
            insert#1(nil(),@x) -> ::(@x,nil())
            insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
            insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
            isortlist(@l) -> isortlist#1(@l)
            isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
            isortlist#1(nil()) -> nil()
            leq(@l1,@l2) -> leq#1(@l1,@l2)
            leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
            leq#1(nil(),@l2) -> #true()
            leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
            leq#2(nil(),@x,@xs) -> #false()
            or(@x,@y) -> #or(@x,@y)
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/2,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2,c_11/0,c_12/1,c_13/1,c_14/0,c_15/5,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:insert#(@x,@l) -> c_4(insert#1#(@l,@x))
             -->_1 insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y)):2
          
          2:S:insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y))
             -->_2 leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2)):6
             -->_1 insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys)):3
          
          3:S:insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
             -->_1 insert#(@x,@l) -> c_4(insert#1#(@l,@x)):1
          
          4:S:isortlist#(@l) -> c_9(isortlist#1#(@l))
             -->_1 isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs)):5
          
          5:S:isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
             -->_2 isortlist#(@l) -> c_9(isortlist#1#(@l)):4
             -->_1 insert#(@x,@l) -> c_4(insert#1#(@l,@x)):1
          
          6:S:leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2))
             -->_1 leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs)):7
          
          7:S:leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs))
             -->_1 leq#2#(::(@y,@ys),@x,@xs) -> c_15(or#(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
                                                    ,#less#(@x,@y)
                                                    ,and#(#equal(@x,@y),leq(@xs,@ys))
                                                    ,#equal#(@x,@y)
                                                    ,leq#(@xs,@ys)):8
          
          8:S:leq#2#(::(@y,@ys),@x,@xs) -> c_15(or#(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
                                               ,#less#(@x,@y)
                                               ,and#(#equal(@x,@y),leq(@xs,@ys))
                                               ,#equal#(@x,@y)
                                               ,leq#(@xs,@ys))
             -->_5 leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2)):6
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          leq#2#(::(@y,@ys),@x,@xs) -> c_15(leq#(@xs,@ys))
* Step 6: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            insert#(@x,@l) -> c_4(insert#1#(@l,@x))
            insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y))
            insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
            leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2))
            leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs))
            leq#2#(::(@y,@ys),@x,@xs) -> c_15(leq#(@xs,@ys))
        - Weak TRS:
            #and(#false(),#false()) -> #false()
            #and(#false(),#true()) -> #false()
            #and(#true(),#false()) -> #false()
            #and(#true(),#true()) -> #true()
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #eq(#0(),#0()) -> #true()
            #eq(#0(),#neg(@y)) -> #false()
            #eq(#0(),#pos(@y)) -> #false()
            #eq(#0(),#s(@y)) -> #false()
            #eq(#neg(@x),#0()) -> #false()
            #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
            #eq(#neg(@x),#pos(@y)) -> #false()
            #eq(#pos(@x),#0()) -> #false()
            #eq(#pos(@x),#neg(@y)) -> #false()
            #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
            #eq(#s(@x),#0()) -> #false()
            #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
            #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
            #eq(::(@x_1,@x_2),nil()) -> #false()
            #eq(nil(),::(@y_1,@y_2)) -> #false()
            #eq(nil(),nil()) -> #true()
            #equal(@x,@y) -> #eq(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            #or(#false(),#false()) -> #false()
            #or(#false(),#true()) -> #true()
            #or(#true(),#false()) -> #true()
            #or(#true(),#true()) -> #true()
            and(@x,@y) -> #and(@x,@y)
            insert(@x,@l) -> insert#1(@l,@x)
            insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
            insert#1(nil(),@x) -> ::(@x,nil())
            insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
            insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
            isortlist(@l) -> isortlist#1(@l)
            isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
            isortlist#1(nil()) -> nil()
            leq(@l1,@l2) -> leq#1(@l1,@l2)
            leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
            leq#1(nil(),@l2) -> #true()
            leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
            leq#2(nil(),@x,@xs) -> #false()
            or(@x,@y) -> #or(@x,@y)
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/2,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              insert#(@x,@l) -> c_4(insert#1#(@l,@x))
              insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y))
              insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
              leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2))
              leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs))
              leq#2#(::(@y,@ys),@x,@xs) -> c_15(leq#(@xs,@ys))
          - Weak DPs:
              isortlist#(@l) -> c_9(isortlist#1#(@l))
              isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
          - Weak TRS:
              #and(#false(),#false()) -> #false()
              #and(#false(),#true()) -> #false()
              #and(#true(),#false()) -> #false()
              #and(#true(),#true()) -> #true()
              #cklt(#EQ()) -> #false()
              #cklt(#GT()) -> #false()
              #cklt(#LT()) -> #true()
              #compare(#0(),#0()) -> #EQ()
              #compare(#0(),#neg(@y)) -> #GT()
              #compare(#0(),#pos(@y)) -> #LT()
              #compare(#0(),#s(@y)) -> #LT()
              #compare(#neg(@x),#0()) -> #LT()
              #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
              #compare(#neg(@x),#pos(@y)) -> #LT()
              #compare(#pos(@x),#0()) -> #GT()
              #compare(#pos(@x),#neg(@y)) -> #GT()
              #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
              #compare(#s(@x),#0()) -> #GT()
              #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
              #eq(#0(),#0()) -> #true()
              #eq(#0(),#neg(@y)) -> #false()
              #eq(#0(),#pos(@y)) -> #false()
              #eq(#0(),#s(@y)) -> #false()
              #eq(#neg(@x),#0()) -> #false()
              #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
              #eq(#neg(@x),#pos(@y)) -> #false()
              #eq(#pos(@x),#0()) -> #false()
              #eq(#pos(@x),#neg(@y)) -> #false()
              #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
              #eq(#s(@x),#0()) -> #false()
              #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
              #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
              #eq(::(@x_1,@x_2),nil()) -> #false()
              #eq(nil(),::(@y_1,@y_2)) -> #false()
              #eq(nil(),nil()) -> #true()
              #equal(@x,@y) -> #eq(@x,@y)
              #less(@x,@y) -> #cklt(#compare(@x,@y))
              #or(#false(),#false()) -> #false()
              #or(#false(),#true()) -> #true()
              #or(#true(),#false()) -> #true()
              #or(#true(),#true()) -> #true()
              and(@x,@y) -> #and(@x,@y)
              insert(@x,@l) -> insert#1(@l,@x)
              insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
              insert#1(nil(),@x) -> ::(@x,nil())
              insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
              insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
              isortlist(@l) -> isortlist#1(@l)
              isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
              isortlist#1(nil()) -> nil()
              leq(@l1,@l2) -> leq#1(@l1,@l2)
              leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
              leq#1(nil(),@l2) -> #true()
              leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
              leq#2(nil(),@x,@xs) -> #false()
              or(@x,@y) -> #or(@x,@y)
          - Signature:
              {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
              ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
              ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
              ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
              ,c_5/2,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0
              ,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1
              ,c_35/0,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3
              ,c_50/0,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
              ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
              ,#LT,#false,#neg,#pos,#s,#true,::,nil}
        
        Problem (S)
          - Strict DPs:
              isortlist#(@l) -> c_9(isortlist#1#(@l))
              isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
          - Weak DPs:
              insert#(@x,@l) -> c_4(insert#1#(@l,@x))
              insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y))
              insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
              leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2))
              leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs))
              leq#2#(::(@y,@ys),@x,@xs) -> c_15(leq#(@xs,@ys))
          - Weak TRS:
              #and(#false(),#false()) -> #false()
              #and(#false(),#true()) -> #false()
              #and(#true(),#false()) -> #false()
              #and(#true(),#true()) -> #true()
              #cklt(#EQ()) -> #false()
              #cklt(#GT()) -> #false()
              #cklt(#LT()) -> #true()
              #compare(#0(),#0()) -> #EQ()
              #compare(#0(),#neg(@y)) -> #GT()
              #compare(#0(),#pos(@y)) -> #LT()
              #compare(#0(),#s(@y)) -> #LT()
              #compare(#neg(@x),#0()) -> #LT()
              #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
              #compare(#neg(@x),#pos(@y)) -> #LT()
              #compare(#pos(@x),#0()) -> #GT()
              #compare(#pos(@x),#neg(@y)) -> #GT()
              #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
              #compare(#s(@x),#0()) -> #GT()
              #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
              #eq(#0(),#0()) -> #true()
              #eq(#0(),#neg(@y)) -> #false()
              #eq(#0(),#pos(@y)) -> #false()
              #eq(#0(),#s(@y)) -> #false()
              #eq(#neg(@x),#0()) -> #false()
              #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
              #eq(#neg(@x),#pos(@y)) -> #false()
              #eq(#pos(@x),#0()) -> #false()
              #eq(#pos(@x),#neg(@y)) -> #false()
              #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
              #eq(#s(@x),#0()) -> #false()
              #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
              #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
              #eq(::(@x_1,@x_2),nil()) -> #false()
              #eq(nil(),::(@y_1,@y_2)) -> #false()
              #eq(nil(),nil()) -> #true()
              #equal(@x,@y) -> #eq(@x,@y)
              #less(@x,@y) -> #cklt(#compare(@x,@y))
              #or(#false(),#false()) -> #false()
              #or(#false(),#true()) -> #true()
              #or(#true(),#false()) -> #true()
              #or(#true(),#true()) -> #true()
              and(@x,@y) -> #and(@x,@y)
              insert(@x,@l) -> insert#1(@l,@x)
              insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
              insert#1(nil(),@x) -> ::(@x,nil())
              insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
              insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
              isortlist(@l) -> isortlist#1(@l)
              isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
              isortlist#1(nil()) -> nil()
              leq(@l1,@l2) -> leq#1(@l1,@l2)
              leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
              leq#1(nil(),@l2) -> #true()
              leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
              leq#2(nil(),@x,@xs) -> #false()
              or(@x,@y) -> #or(@x,@y)
          - Signature:
              {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
              ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
              ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
              ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
              ,c_5/2,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0
              ,c_20/0,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1
              ,c_35/0,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3
              ,c_50/0,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
              ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
              ,#LT,#false,#neg,#pos,#s,#true,::,nil}
** Step 6.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            insert#(@x,@l) -> c_4(insert#1#(@l,@x))
            insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y))
            insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
            leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2))
            leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs))
            leq#2#(::(@y,@ys),@x,@xs) -> c_15(leq#(@xs,@ys))
        - Weak DPs:
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
        - Weak TRS:
            #and(#false(),#false()) -> #false()
            #and(#false(),#true()) -> #false()
            #and(#true(),#false()) -> #false()
            #and(#true(),#true()) -> #true()
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #eq(#0(),#0()) -> #true()
            #eq(#0(),#neg(@y)) -> #false()
            #eq(#0(),#pos(@y)) -> #false()
            #eq(#0(),#s(@y)) -> #false()
            #eq(#neg(@x),#0()) -> #false()
            #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
            #eq(#neg(@x),#pos(@y)) -> #false()
            #eq(#pos(@x),#0()) -> #false()
            #eq(#pos(@x),#neg(@y)) -> #false()
            #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
            #eq(#s(@x),#0()) -> #false()
            #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
            #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
            #eq(::(@x_1,@x_2),nil()) -> #false()
            #eq(nil(),::(@y_1,@y_2)) -> #false()
            #eq(nil(),nil()) -> #true()
            #equal(@x,@y) -> #eq(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            #or(#false(),#false()) -> #false()
            #or(#false(),#true()) -> #true()
            #or(#true(),#false()) -> #true()
            #or(#true(),#true()) -> #true()
            and(@x,@y) -> #and(@x,@y)
            insert(@x,@l) -> insert#1(@l,@x)
            insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
            insert#1(nil(),@x) -> ::(@x,nil())
            insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
            insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
            isortlist(@l) -> isortlist#1(@l)
            isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
            isortlist#1(nil()) -> nil()
            leq(@l1,@l2) -> leq#1(@l1,@l2)
            leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
            leq#1(nil(),@l2) -> #true()
            leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
            leq#2(nil(),@x,@xs) -> #false()
            or(@x,@y) -> #or(@x,@y)
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/2,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          6: leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2))
          
        Consider the set of all dependency pairs
          1: insert#(@x,@l) -> c_4(insert#1#(@l,@x))
          2: insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y))
          3: insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
          4: isortlist#(@l) -> c_9(isortlist#1#(@l))
          5: isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
          6: leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2))
          7: leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs))
          8: leq#2#(::(@y,@ys),@x,@xs) -> c_15(leq#(@xs,@ys))
        Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {6}
        These cover all (indirect) predecessors of dependency pairs
          {6,7,8}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
*** Step 6.a:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            insert#(@x,@l) -> c_4(insert#1#(@l,@x))
            insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y))
            insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
            leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2))
            leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs))
            leq#2#(::(@y,@ys),@x,@xs) -> c_15(leq#(@xs,@ys))
        - Weak DPs:
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
        - Weak TRS:
            #and(#false(),#false()) -> #false()
            #and(#false(),#true()) -> #false()
            #and(#true(),#false()) -> #false()
            #and(#true(),#true()) -> #true()
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #eq(#0(),#0()) -> #true()
            #eq(#0(),#neg(@y)) -> #false()
            #eq(#0(),#pos(@y)) -> #false()
            #eq(#0(),#s(@y)) -> #false()
            #eq(#neg(@x),#0()) -> #false()
            #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
            #eq(#neg(@x),#pos(@y)) -> #false()
            #eq(#pos(@x),#0()) -> #false()
            #eq(#pos(@x),#neg(@y)) -> #false()
            #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
            #eq(#s(@x),#0()) -> #false()
            #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
            #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
            #eq(::(@x_1,@x_2),nil()) -> #false()
            #eq(nil(),::(@y_1,@y_2)) -> #false()
            #eq(nil(),nil()) -> #true()
            #equal(@x,@y) -> #eq(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            #or(#false(),#false()) -> #false()
            #or(#false(),#true()) -> #true()
            #or(#true(),#false()) -> #true()
            #or(#true(),#true()) -> #true()
            and(@x,@y) -> #and(@x,@y)
            insert(@x,@l) -> insert#1(@l,@x)
            insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
            insert#1(nil(),@x) -> ::(@x,nil())
            insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
            insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
            isortlist(@l) -> isortlist#1(@l)
            isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
            isortlist#1(nil()) -> nil()
            leq(@l1,@l2) -> leq#1(@l1,@l2)
            leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
            leq#1(nil(),@l2) -> #true()
            leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
            leq#2(nil(),@x,@xs) -> #false()
            or(@x,@y) -> #or(@x,@y)
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/2,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_4) = {1},
          uargs(c_5) = {1,2},
          uargs(c_7) = {1},
          uargs(c_9) = {1},
          uargs(c_10) = {1,2},
          uargs(c_12) = {1},
          uargs(c_13) = {1},
          uargs(c_15) = {1}
        
        Following symbols are considered usable:
          {#or,insert,insert#1,insert#2,isortlist,isortlist#1,leq,leq#1,leq#2,or,#and#,#cklt#,#compare#,#eq#,#equal#
          ,#less#,#or#,and#,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#}
        TcT has computed the following interpretation:
                    p(#0) = 0                            
                   p(#EQ) = 0                            
                   p(#GT) = 0                            
                   p(#LT) = 0                            
                  p(#and) = 0                            
                 p(#cklt) = x1                           
              p(#compare) = 1 + x2^2                     
                   p(#eq) = 1                            
                p(#equal) = 0                            
                p(#false) = 1                            
                 p(#less) = x2                           
                  p(#neg) = 0                            
                   p(#or) = 1                            
                  p(#pos) = 1                            
                    p(#s) = 0                            
                 p(#true) = 1                            
                    p(::) = 1 + x1 + x2                  
                   p(and) = 0                            
                p(insert) = 1 + x1 + x2                  
              p(insert#1) = 1 + x1 + x2                  
              p(insert#2) = 1 + x1*x2 + x1*x4 + x1^2 + x3
             p(isortlist) = x1                           
           p(isortlist#1) = x1                           
                   p(leq) = 1                            
                 p(leq#1) = 1                            
                 p(leq#2) = 1                            
                   p(nil) = 0                            
                    p(or) = 1                            
                 p(#and#) = 0                            
                p(#cklt#) = 0                            
             p(#compare#) = 0                            
                  p(#eq#) = 0                            
               p(#equal#) = 0                            
                p(#less#) = 0                            
                  p(#or#) = 0                            
                  p(and#) = 0                            
               p(insert#) = x1*x2 + x1^2 + x2            
             p(insert#1#) = x1 + x1*x2 + x2^2            
             p(insert#2#) = x2 + x2*x4 + x2^2 + x3 + x4  
            p(isortlist#) = 1 + x1^2                     
          p(isortlist#1#) = 1 + x1^2                     
                  p(leq#) = 1 + x1*x2                    
                p(leq#1#) = x1*x2                        
                p(leq#2#) = x1 + x1*x3                   
                   p(or#) = 0                            
                   p(c_1) = 0                            
                   p(c_2) = 0                            
                   p(c_3) = 0                            
                   p(c_4) = x1                           
                   p(c_5) = x1 + x2                      
                   p(c_6) = 0                            
                   p(c_7) = x1                           
                   p(c_8) = 0                            
                   p(c_9) = x1                           
                  p(c_10) = 1 + x1 + x2                  
                  p(c_11) = 0                            
                  p(c_12) = x1                           
                  p(c_13) = x1                           
                  p(c_14) = 0                            
                  p(c_15) = x1                           
                  p(c_16) = 0                            
                  p(c_17) = 0                            
                  p(c_18) = 0                            
                  p(c_19) = 0                            
                  p(c_20) = 0                            
                  p(c_21) = 0                            
                  p(c_22) = 0                            
                  p(c_23) = 0                            
                  p(c_24) = 0                            
                  p(c_25) = 0                            
                  p(c_26) = 0                            
                  p(c_27) = 0                            
                  p(c_28) = 0                            
                  p(c_29) = 0                            
                  p(c_30) = 0                            
                  p(c_31) = 0                            
                  p(c_32) = 0                            
                  p(c_33) = 0                            
                  p(c_34) = 0                            
                  p(c_35) = 0                            
                  p(c_36) = 0                            
                  p(c_37) = 0                            
                  p(c_38) = 0                            
                  p(c_39) = 0                            
                  p(c_40) = 0                            
                  p(c_41) = 0                            
                  p(c_42) = 0                            
                  p(c_43) = 0                            
                  p(c_44) = 0                            
                  p(c_45) = 0                            
                  p(c_46) = 0                            
                  p(c_47) = 0                            
                  p(c_48) = 0                            
                  p(c_49) = 0                            
                  p(c_50) = 0                            
                  p(c_51) = 0                            
                  p(c_52) = 0                            
                  p(c_53) = 0                            
                  p(c_54) = 0                            
                  p(c_55) = 0                            
                  p(c_56) = 0                            
        
        Following rules are strictly oriented:
        leq#(@l1,@l2) = 1 + @l1*@l2          
                      > @l1*@l2              
                      = c_12(leq#1#(@l1,@l2))
        
        
        Following rules are (at-least) weakly oriented:
                       insert#(@x,@l) =  @l + @l*@x + @x^2                               
                                      >= @l + @l*@x + @x^2                               
                                      =  c_4(insert#1#(@l,@x))                           
        
             insert#1#(::(@y,@ys),@x) =  1 + @x + @x*@y + @x*@ys + @x^2 + @y + @ys       
                                      >= 1 + @x + @x*@y + @x*@ys + @x^2 + @y + @ys       
                                      =  c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y))
        
        insert#2#(#false(),@x,@y,@ys) =  @x + @x*@ys + @x^2 + @y + @ys                   
                                      >= @x*@ys + @x^2 + @ys                             
                                      =  c_7(insert#(@x,@ys))                            
        
                       isortlist#(@l) =  1 + @l^2                                        
                                      >= 1 + @l^2                                        
                                      =  c_9(isortlist#1#(@l))                           
        
             isortlist#1#(::(@x,@xs)) =  2 + 2*@x + 2*@x*@xs + @x^2 + 2*@xs + @xs^2      
                                      >= 2 + @x*@xs + @x^2 + @xs + @xs^2                 
                                      =  c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
        
               leq#1#(::(@x,@xs),@l2) =  @l2 + @l2*@x + @l2*@xs                          
                                      >= @l2 + @l2*@xs                                   
                                      =  c_13(leq#2#(@l2,@x,@xs))                        
        
            leq#2#(::(@y,@ys),@x,@xs) =  1 + @xs + @xs*@y + @xs*@ys + @y + @ys           
                                      >= 1 + @xs*@ys                                     
                                      =  c_15(leq#(@xs,@ys))                             
        
               #or(#false(),#false()) =  1                                               
                                      >= 1                                               
                                      =  #false()                                        
        
                #or(#false(),#true()) =  1                                               
                                      >= 1                                               
                                      =  #true()                                         
        
                #or(#true(),#false()) =  1                                               
                                      >= 1                                               
                                      =  #true()                                         
        
                 #or(#true(),#true()) =  1                                               
                                      >= 1                                               
                                      =  #true()                                         
        
                        insert(@x,@l) =  1 + @l + @x                                     
                                      >= 1 + @l + @x                                     
                                      =  insert#1(@l,@x)                                 
        
              insert#1(::(@y,@ys),@x) =  2 + @x + @y + @ys                               
                                      >= 2 + @x + @y + @ys                               
                                      =  insert#2(leq(@x,@y),@x,@y,@ys)                  
        
                   insert#1(nil(),@x) =  1 + @x                                          
                                      >= 1 + @x                                          
                                      =  ::(@x,nil())                                    
        
         insert#2(#false(),@x,@y,@ys) =  2 + @x + @y + @ys                               
                                      >= 2 + @x + @y + @ys                               
                                      =  ::(@y,insert(@x,@ys))                           
        
          insert#2(#true(),@x,@y,@ys) =  2 + @x + @y + @ys                               
                                      >= 2 + @x + @y + @ys                               
                                      =  ::(@x,::(@y,@ys))                               
        
                        isortlist(@l) =  @l                                              
                                      >= @l                                              
                                      =  isortlist#1(@l)                                 
        
              isortlist#1(::(@x,@xs)) =  1 + @x + @xs                                    
                                      >= 1 + @x + @xs                                    
                                      =  insert(@x,isortlist(@xs))                       
        
                   isortlist#1(nil()) =  0                                               
                                      >= 0                                               
                                      =  nil()                                           
        
                         leq(@l1,@l2) =  1                                               
                                      >= 1                                               
                                      =  leq#1(@l1,@l2)                                  
        
                leq#1(::(@x,@xs),@l2) =  1                                               
                                      >= 1                                               
                                      =  leq#2(@l2,@x,@xs)                               
        
                     leq#1(nil(),@l2) =  1                                               
                                      >= 1                                               
                                      =  #true()                                         
        
             leq#2(::(@y,@ys),@x,@xs) =  1                                               
                                      >= 1                                               
                                      =  or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
        
                  leq#2(nil(),@x,@xs) =  1                                               
                                      >= 1                                               
                                      =  #false()                                        
        
                            or(@x,@y) =  1                                               
                                      >= 1                                               
                                      =  #or(@x,@y)                                      
        
*** Step 6.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            insert#(@x,@l) -> c_4(insert#1#(@l,@x))
            insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y))
            insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
            leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs))
            leq#2#(::(@y,@ys),@x,@xs) -> c_15(leq#(@xs,@ys))
        - Weak DPs:
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
            leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2))
        - Weak TRS:
            #and(#false(),#false()) -> #false()
            #and(#false(),#true()) -> #false()
            #and(#true(),#false()) -> #false()
            #and(#true(),#true()) -> #true()
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #eq(#0(),#0()) -> #true()
            #eq(#0(),#neg(@y)) -> #false()
            #eq(#0(),#pos(@y)) -> #false()
            #eq(#0(),#s(@y)) -> #false()
            #eq(#neg(@x),#0()) -> #false()
            #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
            #eq(#neg(@x),#pos(@y)) -> #false()
            #eq(#pos(@x),#0()) -> #false()
            #eq(#pos(@x),#neg(@y)) -> #false()
            #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
            #eq(#s(@x),#0()) -> #false()
            #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
            #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
            #eq(::(@x_1,@x_2),nil()) -> #false()
            #eq(nil(),::(@y_1,@y_2)) -> #false()
            #eq(nil(),nil()) -> #true()
            #equal(@x,@y) -> #eq(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            #or(#false(),#false()) -> #false()
            #or(#false(),#true()) -> #true()
            #or(#true(),#false()) -> #true()
            #or(#true(),#true()) -> #true()
            and(@x,@y) -> #and(@x,@y)
            insert(@x,@l) -> insert#1(@l,@x)
            insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
            insert#1(nil(),@x) -> ::(@x,nil())
            insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
            insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
            isortlist(@l) -> isortlist#1(@l)
            isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
            isortlist#1(nil()) -> nil()
            leq(@l1,@l2) -> leq#1(@l1,@l2)
            leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
            leq#1(nil(),@l2) -> #true()
            leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
            leq#2(nil(),@x,@xs) -> #false()
            or(@x,@y) -> #or(@x,@y)
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/2,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

*** Step 6.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            insert#(@x,@l) -> c_4(insert#1#(@l,@x))
            insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y))
            insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
        - Weak DPs:
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
            leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2))
            leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs))
            leq#2#(::(@y,@ys),@x,@xs) -> c_15(leq#(@xs,@ys))
        - Weak TRS:
            #and(#false(),#false()) -> #false()
            #and(#false(),#true()) -> #false()
            #and(#true(),#false()) -> #false()
            #and(#true(),#true()) -> #true()
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #eq(#0(),#0()) -> #true()
            #eq(#0(),#neg(@y)) -> #false()
            #eq(#0(),#pos(@y)) -> #false()
            #eq(#0(),#s(@y)) -> #false()
            #eq(#neg(@x),#0()) -> #false()
            #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
            #eq(#neg(@x),#pos(@y)) -> #false()
            #eq(#pos(@x),#0()) -> #false()
            #eq(#pos(@x),#neg(@y)) -> #false()
            #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
            #eq(#s(@x),#0()) -> #false()
            #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
            #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
            #eq(::(@x_1,@x_2),nil()) -> #false()
            #eq(nil(),::(@y_1,@y_2)) -> #false()
            #eq(nil(),nil()) -> #true()
            #equal(@x,@y) -> #eq(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            #or(#false(),#false()) -> #false()
            #or(#false(),#true()) -> #true()
            #or(#true(),#false()) -> #true()
            #or(#true(),#true()) -> #true()
            and(@x,@y) -> #and(@x,@y)
            insert(@x,@l) -> insert#1(@l,@x)
            insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
            insert#1(nil(),@x) -> ::(@x,nil())
            insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
            insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
            isortlist(@l) -> isortlist#1(@l)
            isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
            isortlist#1(nil()) -> nil()
            leq(@l1,@l2) -> leq#1(@l1,@l2)
            leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
            leq#1(nil(),@l2) -> #true()
            leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
            leq#2(nil(),@x,@xs) -> #false()
            or(@x,@y) -> #or(@x,@y)
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/2,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:insert#(@x,@l) -> c_4(insert#1#(@l,@x))
             -->_1 insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y)):2
          
          2:S:insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y))
             -->_2 leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2)):6
             -->_1 insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys)):3
          
          3:S:insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
             -->_1 insert#(@x,@l) -> c_4(insert#1#(@l,@x)):1
          
          4:W:isortlist#(@l) -> c_9(isortlist#1#(@l))
             -->_1 isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs)):5
          
          5:W:isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
             -->_2 isortlist#(@l) -> c_9(isortlist#1#(@l)):4
             -->_1 insert#(@x,@l) -> c_4(insert#1#(@l,@x)):1
          
          6:W:leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2))
             -->_1 leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs)):7
          
          7:W:leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs))
             -->_1 leq#2#(::(@y,@ys),@x,@xs) -> c_15(leq#(@xs,@ys)):8
          
          8:W:leq#2#(::(@y,@ys),@x,@xs) -> c_15(leq#(@xs,@ys))
             -->_1 leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2)):6
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          6: leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2))
          8: leq#2#(::(@y,@ys),@x,@xs) -> c_15(leq#(@xs,@ys))
          7: leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs))
*** Step 6.a:1.b:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            insert#(@x,@l) -> c_4(insert#1#(@l,@x))
            insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y))
            insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
        - Weak DPs:
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
        - Weak TRS:
            #and(#false(),#false()) -> #false()
            #and(#false(),#true()) -> #false()
            #and(#true(),#false()) -> #false()
            #and(#true(),#true()) -> #true()
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #eq(#0(),#0()) -> #true()
            #eq(#0(),#neg(@y)) -> #false()
            #eq(#0(),#pos(@y)) -> #false()
            #eq(#0(),#s(@y)) -> #false()
            #eq(#neg(@x),#0()) -> #false()
            #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
            #eq(#neg(@x),#pos(@y)) -> #false()
            #eq(#pos(@x),#0()) -> #false()
            #eq(#pos(@x),#neg(@y)) -> #false()
            #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
            #eq(#s(@x),#0()) -> #false()
            #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
            #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
            #eq(::(@x_1,@x_2),nil()) -> #false()
            #eq(nil(),::(@y_1,@y_2)) -> #false()
            #eq(nil(),nil()) -> #true()
            #equal(@x,@y) -> #eq(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            #or(#false(),#false()) -> #false()
            #or(#false(),#true()) -> #true()
            #or(#true(),#false()) -> #true()
            #or(#true(),#true()) -> #true()
            and(@x,@y) -> #and(@x,@y)
            insert(@x,@l) -> insert#1(@l,@x)
            insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
            insert#1(nil(),@x) -> ::(@x,nil())
            insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
            insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
            isortlist(@l) -> isortlist#1(@l)
            isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
            isortlist#1(nil()) -> nil()
            leq(@l1,@l2) -> leq#1(@l1,@l2)
            leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
            leq#1(nil(),@l2) -> #true()
            leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
            leq#2(nil(),@x,@xs) -> #false()
            or(@x,@y) -> #or(@x,@y)
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/2,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:insert#(@x,@l) -> c_4(insert#1#(@l,@x))
             -->_1 insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y)):2
          
          2:S:insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y))
             -->_1 insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys)):3
          
          3:S:insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
             -->_1 insert#(@x,@l) -> c_4(insert#1#(@l,@x)):1
          
          4:W:isortlist#(@l) -> c_9(isortlist#1#(@l))
             -->_1 isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs)):5
          
          5:W:isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
             -->_2 isortlist#(@l) -> c_9(isortlist#1#(@l)):4
             -->_1 insert#(@x,@l) -> c_4(insert#1#(@l,@x)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys))
*** Step 6.a:1.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            insert#(@x,@l) -> c_4(insert#1#(@l,@x))
            insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys))
            insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
        - Weak DPs:
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
        - Weak TRS:
            #and(#false(),#false()) -> #false()
            #and(#false(),#true()) -> #false()
            #and(#true(),#false()) -> #false()
            #and(#true(),#true()) -> #true()
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #eq(#0(),#0()) -> #true()
            #eq(#0(),#neg(@y)) -> #false()
            #eq(#0(),#pos(@y)) -> #false()
            #eq(#0(),#s(@y)) -> #false()
            #eq(#neg(@x),#0()) -> #false()
            #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
            #eq(#neg(@x),#pos(@y)) -> #false()
            #eq(#pos(@x),#0()) -> #false()
            #eq(#pos(@x),#neg(@y)) -> #false()
            #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
            #eq(#s(@x),#0()) -> #false()
            #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
            #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
            #eq(::(@x_1,@x_2),nil()) -> #false()
            #eq(nil(),::(@y_1,@y_2)) -> #false()
            #eq(nil(),nil()) -> #true()
            #equal(@x,@y) -> #eq(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            #or(#false(),#false()) -> #false()
            #or(#false(),#true()) -> #true()
            #or(#true(),#false()) -> #true()
            #or(#true(),#true()) -> #true()
            and(@x,@y) -> #and(@x,@y)
            insert(@x,@l) -> insert#1(@l,@x)
            insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
            insert#1(nil(),@x) -> ::(@x,nil())
            insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
            insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
            isortlist(@l) -> isortlist#1(@l)
            isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
            isortlist#1(nil()) -> nil()
            leq(@l1,@l2) -> leq#1(@l1,@l2)
            leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
            leq#1(nil(),@l2) -> #true()
            leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
            leq#2(nil(),@x,@xs) -> #false()
            or(@x,@y) -> #or(@x,@y)
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/1,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys))
          
        Consider the set of all dependency pairs
          1: insert#(@x,@l) -> c_4(insert#1#(@l,@x))
          2: insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys))
          3: insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
          4: isortlist#(@l) -> c_9(isortlist#1#(@l))
          5: isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
        Processor NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {2}
        These cover all (indirect) predecessors of dependency pairs
          {2,3}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
**** Step 6.a:1.b:3.a:1: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            insert#(@x,@l) -> c_4(insert#1#(@l,@x))
            insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys))
            insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
        - Weak DPs:
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
        - Weak TRS:
            #and(#false(),#false()) -> #false()
            #and(#false(),#true()) -> #false()
            #and(#true(),#false()) -> #false()
            #and(#true(),#true()) -> #true()
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #eq(#0(),#0()) -> #true()
            #eq(#0(),#neg(@y)) -> #false()
            #eq(#0(),#pos(@y)) -> #false()
            #eq(#0(),#s(@y)) -> #false()
            #eq(#neg(@x),#0()) -> #false()
            #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
            #eq(#neg(@x),#pos(@y)) -> #false()
            #eq(#pos(@x),#0()) -> #false()
            #eq(#pos(@x),#neg(@y)) -> #false()
            #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
            #eq(#s(@x),#0()) -> #false()
            #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
            #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
            #eq(::(@x_1,@x_2),nil()) -> #false()
            #eq(nil(),::(@y_1,@y_2)) -> #false()
            #eq(nil(),nil()) -> #true()
            #equal(@x,@y) -> #eq(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            #or(#false(),#false()) -> #false()
            #or(#false(),#true()) -> #true()
            #or(#true(),#false()) -> #true()
            #or(#true(),#true()) -> #true()
            and(@x,@y) -> #and(@x,@y)
            insert(@x,@l) -> insert#1(@l,@x)
            insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
            insert#1(nil(),@x) -> ::(@x,nil())
            insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
            insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
            isortlist(@l) -> isortlist#1(@l)
            isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
            isortlist#1(nil()) -> nil()
            leq(@l1,@l2) -> leq#1(@l1,@l2)
            leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
            leq#1(nil(),@l2) -> #true()
            leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
            leq#2(nil(),@x,@xs) -> #false()
            or(@x,@y) -> #or(@x,@y)
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/1,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_4) = {1},
          uargs(c_5) = {1},
          uargs(c_7) = {1},
          uargs(c_9) = {1},
          uargs(c_10) = {1,2}
        
        Following symbols are considered usable:
          {insert,insert#1,insert#2,isortlist,isortlist#1,#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
          ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#}
        TcT has computed the following interpretation:
                    p(#0) = [1]                      
                            [1]                      
                   p(#EQ) = [3]                      
                            [1]                      
                   p(#GT) = [1]                      
                            [2]                      
                   p(#LT) = [0]                      
                            [1]                      
                  p(#and) = [0 0] x1 + [2 0] x2 + [0]
                            [1 1]      [1 0]      [2]
                 p(#cklt) = [0 2] x1 + [0]           
                            [1 0]      [1]           
              p(#compare) = [1 0] x1 + [1]           
                            [1 1]      [1]           
                   p(#eq) = [0 2] x1 + [1 0] x2 + [2]
                            [0 0]      [0 3]      [0]
                p(#equal) = [1 3] x1 + [1 0] x2 + [1]
                            [0 1]      [3 0]      [1]
                p(#false) = [0]                      
                            [0]                      
                 p(#less) = [2 0] x1 + [1 1] x2 + [0]
                            [1 2]      [1 2]      [0]
                  p(#neg) = [1 0] x1 + [0]           
                            [0 0]      [0]           
                   p(#or) = [0 0] x1 + [2]           
                            [1 0]      [0]           
                  p(#pos) = [1]                      
                            [0]                      
                    p(#s) = [1 0] x1 + [0]           
                            [0 1]      [0]           
                 p(#true) = [0]                      
                            [0]                      
                    p(::) = [1 1] x2 + [0]           
                            [0 1]      [1]           
                   p(and) = [1 1] x1 + [2]           
                            [1 1]      [3]           
                p(insert) = [1 1] x2 + [0]           
                            [0 1]      [1]           
              p(insert#1) = [1 1] x1 + [0]           
                            [0 1]      [1]           
              p(insert#2) = [1 2] x4 + [1]           
                            [0 1]      [2]           
             p(isortlist) = [1 0] x1 + [0]           
                            [0 1]      [0]           
           p(isortlist#1) = [1 0] x1 + [0]           
                            [0 1]      [0]           
                   p(leq) = [0]                      
                            [0]                      
                 p(leq#1) = [0]                      
                            [0]                      
                 p(leq#2) = [2 1] x3 + [1]           
                            [0 0]      [0]           
                   p(nil) = [0]                      
                            [0]                      
                    p(or) = [0 3] x1 + [0 0] x2 + [3]
                            [2 1]      [1 0]      [2]
                 p(#and#) = [2 0] x1 + [0]           
                            [1 0]      [0]           
                p(#cklt#) = [0 0] x1 + [0]           
                            [0 1]      [2]           
             p(#compare#) = [0 0] x1 + [2 2] x2 + [1]
                            [0 1]      [0 0]      [0]
                  p(#eq#) = [1 0] x2 + [0]           
                            [0 0]      [1]           
               p(#equal#) = [0 0] x2 + [2]           
                            [0 1]      [2]           
                p(#less#) = [1 0] x2 + [1]           
                            [0 0]      [0]           
                  p(#or#) = [1]                      
                            [2]                      
                  p(and#) = [1]                      
                            [0]                      
               p(insert#) = [0 2] x2 + [0]           
                            [1 0]      [0]           
             p(insert#1#) = [0 2] x1 + [0 0] x2 + [0]
                            [2 2]      [0 2]      [0]
             p(insert#2#) = [0 2] x4 + [0]           
                            [0 0]      [1]           
            p(isortlist#) = [2 0] x1 + [0]           
                            [0 2]      [0]           
          p(isortlist#1#) = [2 0] x1 + [0]           
                            [1 3]      [0]           
                  p(leq#) = [0]                      
                            [1]                      
                p(leq#1#) = [1]                      
                            [1]                      
                p(leq#2#) = [2 1] x3 + [1]           
                            [1 0]      [1]           
                   p(or#) = [0 1] x2 + [0]           
                            [0 0]      [1]           
                   p(c_1) = [2]                      
                            [0]                      
                   p(c_2) = [0]                      
                            [0]                      
                   p(c_3) = [0 1] x1 + [0]           
                            [0 0]      [2]           
                   p(c_4) = [1 0] x1 + [0]           
                            [0 0]      [0]           
                   p(c_5) = [1 1] x1 + [0]           
                            [1 1]      [1]           
                   p(c_6) = [1]                      
                            [1]                      
                   p(c_7) = [1 0] x1 + [0]           
                            [0 0]      [1]           
                   p(c_8) = [2]                      
                            [1]                      
                   p(c_9) = [1 0] x1 + [0]           
                            [0 0]      [0]           
                  p(c_10) = [1 0] x1 + [1 0] x2 + [0]
                            [0 1]      [0 2]      [0]
                  p(c_11) = [0]                      
                            [1]                      
                  p(c_12) = [1 1] x1 + [0]           
                            [1 0]      [0]           
                  p(c_13) = [0]                      
                            [0]                      
                  p(c_14) = [0]                      
                            [2]                      
                  p(c_15) = [0 0] x1 + [1]           
                            [2 0]      [2]           
                  p(c_16) = [0]                      
                            [0]                      
                  p(c_17) = [2]                      
                            [0]                      
                  p(c_18) = [0]                      
                            [2]                      
                  p(c_19) = [0]                      
                            [0]                      
                  p(c_20) = [1]                      
                            [0]                      
                  p(c_21) = [2]                      
                            [1]                      
                  p(c_22) = [2]                      
                            [1]                      
                  p(c_23) = [1]                      
                            [0]                      
                  p(c_24) = [1]                      
                            [0]                      
                  p(c_25) = [0]                      
                            [2]                      
                  p(c_26) = [1]                      
                            [1]                      
                  p(c_27) = [1]                      
                            [0]                      
                  p(c_28) = [1]                      
                            [0]                      
                  p(c_29) = [1]                      
                            [2]                      
                  p(c_30) = [2 2] x1 + [1]           
                            [0 0]      [0]           
                  p(c_31) = [1]                      
                            [2]                      
                  p(c_32) = [0]                      
                            [0]                      
                  p(c_33) = [0]                      
                            [0]                      
                  p(c_34) = [0 0] x1 + [1]           
                            [0 2]      [0]           
                  p(c_35) = [0]                      
                            [0]                      
                  p(c_36) = [0 2] x1 + [0]           
                            [0 0]      [0]           
                  p(c_37) = [0]                      
                            [0]                      
                  p(c_38) = [2]                      
                            [1]                      
                  p(c_39) = [2]                      
                            [0]                      
                  p(c_40) = [0]                      
                            [0]                      
                  p(c_41) = [2]                      
                            [2]                      
                  p(c_42) = [0]                      
                            [0]                      
                  p(c_43) = [2]                      
                            [0]                      
                  p(c_44) = [1]                      
                            [1]                      
                  p(c_45) = [0]                      
                            [1]                      
                  p(c_46) = [1]                      
                            [1]                      
                  p(c_47) = [0]                      
                            [2]                      
                  p(c_48) = [1 0] x1 + [2]           
                            [0 0]      [2]           
                  p(c_49) = [0 1] x1 + [1 0] x3 + [0]
                            [0 2]      [0 0]      [0]
                  p(c_50) = [2]                      
                            [2]                      
                  p(c_51) = [2]                      
                            [2]                      
                  p(c_52) = [0]                      
                            [0]                      
                  p(c_53) = [1]                      
                            [1]                      
                  p(c_54) = [2]                      
                            [0]                      
                  p(c_55) = [0]                      
                            [0]                      
                  p(c_56) = [2]                      
                            [0]                      
        
        Following rules are strictly oriented:
        insert#1#(::(@y,@ys),@x) = [0 0] @x + [0 2] @ys + [2]          
                                   [0 2]      [2 4]       [2]          
                                 > [0 2] @ys + [1]                     
                                   [0 2]       [2]                     
                                 = c_5(insert#2#(leq(@x,@y),@x,@y,@ys))
        
        
        Following rules are (at-least) weakly oriented:
                       insert#(@x,@l) =  [0 2] @l + [0]                                  
                                         [1 0]      [0]                                  
                                      >= [0 2] @l + [0]                                  
                                         [0 0]      [0]                                  
                                      =  c_4(insert#1#(@l,@x))                           
        
        insert#2#(#false(),@x,@y,@ys) =  [0 2] @ys + [0]                                 
                                         [0 0]       [1]                                 
                                      >= [0 2] @ys + [0]                                 
                                         [0 0]       [1]                                 
                                      =  c_7(insert#(@x,@ys))                            
        
                       isortlist#(@l) =  [2 0] @l + [0]                                  
                                         [0 2]      [0]                                  
                                      >= [2 0] @l + [0]                                  
                                         [0 0]      [0]                                  
                                      =  c_9(isortlist#1#(@l))                           
        
             isortlist#1#(::(@x,@xs)) =  [2 2] @xs + [0]                                 
                                         [1 4]       [3]                                 
                                      >= [2 2] @xs + [0]                                 
                                         [1 4]       [0]                                 
                                      =  c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
        
                        insert(@x,@l) =  [1 1] @l + [0]                                  
                                         [0 1]      [1]                                  
                                      >= [1 1] @l + [0]                                  
                                         [0 1]      [1]                                  
                                      =  insert#1(@l,@x)                                 
        
              insert#1(::(@y,@ys),@x) =  [1 2] @ys + [1]                                 
                                         [0 1]       [2]                                 
                                      >= [1 2] @ys + [1]                                 
                                         [0 1]       [2]                                 
                                      =  insert#2(leq(@x,@y),@x,@y,@ys)                  
        
                   insert#1(nil(),@x) =  [0]                                             
                                         [1]                                             
                                      >= [0]                                             
                                         [1]                                             
                                      =  ::(@x,nil())                                    
        
         insert#2(#false(),@x,@y,@ys) =  [1 2] @ys + [1]                                 
                                         [0 1]       [2]                                 
                                      >= [1 2] @ys + [1]                                 
                                         [0 1]       [2]                                 
                                      =  ::(@y,insert(@x,@ys))                           
        
          insert#2(#true(),@x,@y,@ys) =  [1 2] @ys + [1]                                 
                                         [0 1]       [2]                                 
                                      >= [1 2] @ys + [1]                                 
                                         [0 1]       [2]                                 
                                      =  ::(@x,::(@y,@ys))                               
        
                        isortlist(@l) =  [1 0] @l + [0]                                  
                                         [0 1]      [0]                                  
                                      >= [1 0] @l + [0]                                  
                                         [0 1]      [0]                                  
                                      =  isortlist#1(@l)                                 
        
              isortlist#1(::(@x,@xs)) =  [1 1] @xs + [0]                                 
                                         [0 1]       [1]                                 
                                      >= [1 1] @xs + [0]                                 
                                         [0 1]       [1]                                 
                                      =  insert(@x,isortlist(@xs))                       
        
                   isortlist#1(nil()) =  [0]                                             
                                         [0]                                             
                                      >= [0]                                             
                                         [0]                                             
                                      =  nil()                                           
        
**** Step 6.a:1.b:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            insert#(@x,@l) -> c_4(insert#1#(@l,@x))
            insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
        - Weak DPs:
            insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys))
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
        - Weak TRS:
            #and(#false(),#false()) -> #false()
            #and(#false(),#true()) -> #false()
            #and(#true(),#false()) -> #false()
            #and(#true(),#true()) -> #true()
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #eq(#0(),#0()) -> #true()
            #eq(#0(),#neg(@y)) -> #false()
            #eq(#0(),#pos(@y)) -> #false()
            #eq(#0(),#s(@y)) -> #false()
            #eq(#neg(@x),#0()) -> #false()
            #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
            #eq(#neg(@x),#pos(@y)) -> #false()
            #eq(#pos(@x),#0()) -> #false()
            #eq(#pos(@x),#neg(@y)) -> #false()
            #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
            #eq(#s(@x),#0()) -> #false()
            #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
            #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
            #eq(::(@x_1,@x_2),nil()) -> #false()
            #eq(nil(),::(@y_1,@y_2)) -> #false()
            #eq(nil(),nil()) -> #true()
            #equal(@x,@y) -> #eq(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            #or(#false(),#false()) -> #false()
            #or(#false(),#true()) -> #true()
            #or(#true(),#false()) -> #true()
            #or(#true(),#true()) -> #true()
            and(@x,@y) -> #and(@x,@y)
            insert(@x,@l) -> insert#1(@l,@x)
            insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
            insert#1(nil(),@x) -> ::(@x,nil())
            insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
            insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
            isortlist(@l) -> isortlist#1(@l)
            isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
            isortlist#1(nil()) -> nil()
            leq(@l1,@l2) -> leq#1(@l1,@l2)
            leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
            leq#1(nil(),@l2) -> #true()
            leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
            leq#2(nil(),@x,@xs) -> #false()
            or(@x,@y) -> #or(@x,@y)
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/1,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 6.a:1.b:3.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            insert#(@x,@l) -> c_4(insert#1#(@l,@x))
        - Weak DPs:
            insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys))
            insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
        - Weak TRS:
            #and(#false(),#false()) -> #false()
            #and(#false(),#true()) -> #false()
            #and(#true(),#false()) -> #false()
            #and(#true(),#true()) -> #true()
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #eq(#0(),#0()) -> #true()
            #eq(#0(),#neg(@y)) -> #false()
            #eq(#0(),#pos(@y)) -> #false()
            #eq(#0(),#s(@y)) -> #false()
            #eq(#neg(@x),#0()) -> #false()
            #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
            #eq(#neg(@x),#pos(@y)) -> #false()
            #eq(#pos(@x),#0()) -> #false()
            #eq(#pos(@x),#neg(@y)) -> #false()
            #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
            #eq(#s(@x),#0()) -> #false()
            #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
            #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
            #eq(::(@x_1,@x_2),nil()) -> #false()
            #eq(nil(),::(@y_1,@y_2)) -> #false()
            #eq(nil(),nil()) -> #true()
            #equal(@x,@y) -> #eq(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            #or(#false(),#false()) -> #false()
            #or(#false(),#true()) -> #true()
            #or(#true(),#false()) -> #true()
            #or(#true(),#true()) -> #true()
            and(@x,@y) -> #and(@x,@y)
            insert(@x,@l) -> insert#1(@l,@x)
            insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
            insert#1(nil(),@x) -> ::(@x,nil())
            insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
            insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
            isortlist(@l) -> isortlist#1(@l)
            isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
            isortlist#1(nil()) -> nil()
            leq(@l1,@l2) -> leq#1(@l1,@l2)
            leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
            leq#1(nil(),@l2) -> #true()
            leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
            leq#2(nil(),@x,@xs) -> #false()
            or(@x,@y) -> #or(@x,@y)
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/1,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: insert#(@x,@l) -> c_4(insert#1#(@l,@x))
          
        Consider the set of all dependency pairs
          1: insert#(@x,@l) -> c_4(insert#1#(@l,@x))
          2: insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys))
          3: insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
          4: isortlist#(@l) -> c_9(isortlist#1#(@l))
          5: isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
        Processor NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,2,3}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
***** Step 6.a:1.b:3.b:1.a:1: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            insert#(@x,@l) -> c_4(insert#1#(@l,@x))
        - Weak DPs:
            insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys))
            insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
        - Weak TRS:
            #and(#false(),#false()) -> #false()
            #and(#false(),#true()) -> #false()
            #and(#true(),#false()) -> #false()
            #and(#true(),#true()) -> #true()
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #eq(#0(),#0()) -> #true()
            #eq(#0(),#neg(@y)) -> #false()
            #eq(#0(),#pos(@y)) -> #false()
            #eq(#0(),#s(@y)) -> #false()
            #eq(#neg(@x),#0()) -> #false()
            #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
            #eq(#neg(@x),#pos(@y)) -> #false()
            #eq(#pos(@x),#0()) -> #false()
            #eq(#pos(@x),#neg(@y)) -> #false()
            #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
            #eq(#s(@x),#0()) -> #false()
            #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
            #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
            #eq(::(@x_1,@x_2),nil()) -> #false()
            #eq(nil(),::(@y_1,@y_2)) -> #false()
            #eq(nil(),nil()) -> #true()
            #equal(@x,@y) -> #eq(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            #or(#false(),#false()) -> #false()
            #or(#false(),#true()) -> #true()
            #or(#true(),#false()) -> #true()
            #or(#true(),#true()) -> #true()
            and(@x,@y) -> #and(@x,@y)
            insert(@x,@l) -> insert#1(@l,@x)
            insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
            insert#1(nil(),@x) -> ::(@x,nil())
            insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
            insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
            isortlist(@l) -> isortlist#1(@l)
            isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
            isortlist#1(nil()) -> nil()
            leq(@l1,@l2) -> leq#1(@l1,@l2)
            leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
            leq#1(nil(),@l2) -> #true()
            leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
            leq#2(nil(),@x,@xs) -> #false()
            or(@x,@y) -> #or(@x,@y)
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/1,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_4) = {1},
          uargs(c_5) = {1},
          uargs(c_7) = {1},
          uargs(c_9) = {1},
          uargs(c_10) = {1,2}
        
        Following symbols are considered usable:
          {insert,insert#1,insert#2,isortlist,isortlist#1,#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
          ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#}
        TcT has computed the following interpretation:
                    p(#0) = [0]                      
                            [3]                      
                   p(#EQ) = [0]                      
                            [0]                      
                   p(#GT) = [0]                      
                            [0]                      
                   p(#LT) = [0]                      
                            [0]                      
                  p(#and) = [0 1] x1 + [0 1] x2 + [3]
                            [0 0]      [0 0]      [0]
                 p(#cklt) = [0]                      
                            [0]                      
              p(#compare) = [0 1] x1 + [0 0] x2 + [1]
                            [0 1]      [1 0]      [1]
                   p(#eq) = [0 0] x1 + [0 2] x2 + [0]
                            [3 0]      [0 0]      [0]
                p(#equal) = [0 0] x1 + [0 0] x2 + [0]
                            [0 3]      [1 0]      [1]
                p(#false) = [0]                      
                            [0]                      
                 p(#less) = [0 1] x2 + [0]           
                            [0 0]      [0]           
                  p(#neg) = [0 1] x1 + [2]           
                            [0 0]      [2]           
                   p(#or) = [1]                      
                            [0]                      
                  p(#pos) = [0 2] x1 + [0]           
                            [0 1]      [3]           
                    p(#s) = [0 2] x1 + [0]           
                            [0 0]      [0]           
                 p(#true) = [0]                      
                            [0]                      
                    p(::) = [1 1] x2 + [0]           
                            [0 1]      [1]           
                   p(and) = [0 0] x1 + [1]           
                            [0 1]      [3]           
                p(insert) = [1 2] x2 + [0]           
                            [0 1]      [1]           
              p(insert#1) = [1 2] x1 + [0]           
                            [0 1]      [1]           
              p(insert#2) = [1 3] x4 + [2]           
                            [0 1]      [2]           
             p(isortlist) = [2 0] x1 + [0]           
                            [0 1]      [0]           
           p(isortlist#1) = [2 0] x1 + [0]           
                            [0 1]      [0]           
                   p(leq) = [0]                      
                            [0]                      
                 p(leq#1) = [0]                      
                            [0]                      
                 p(leq#2) = [0]                      
                            [0]                      
                   p(nil) = [0]                      
                            [0]                      
                    p(or) = [1 1] x2 + [2]           
                            [1 1]      [0]           
                 p(#and#) = [0 1] x2 + [2]           
                            [1 0]      [1]           
                p(#cklt#) = [0]                      
                            [0]                      
             p(#compare#) = [0 0] x2 + [0]           
                            [0 1]      [0]           
                  p(#eq#) = [0 2] x1 + [2 2] x2 + [0]
                            [0 0]      [1 2]      [0]
               p(#equal#) = [0 0] x1 + [0]           
                            [0 2]      [0]           
                p(#less#) = [1 2] x1 + [2 1] x2 + [1]
                            [2 0]      [0 0]      [0]
                  p(#or#) = [1 0] x1 + [0]           
                            [0 0]      [0]           
                  p(and#) = [0 0] x2 + [2]           
                            [1 1]      [0]           
               p(insert#) = [0 1] x2 + [1]           
                            [0 0]      [1]           
             p(insert#1#) = [0 1] x1 + [0 0] x2 + [0]
                            [2 3]      [2 2]      [1]
             p(insert#2#) = [0 1] x4 + [1]           
                            [0 1]      [0]           
            p(isortlist#) = [1 1] x1 + [1]           
                            [2 3]      [2]           
          p(isortlist#1#) = [1 1] x1 + [1]           
                            [2 3]      [2]           
                  p(leq#) = [0 0] x1 + [0 0] x2 + [0]
                            [2 0]      [1 0]      [0]
                p(leq#1#) = [2 2] x1 + [2 1] x2 + [0]
                            [0 1]      [1 1]      [0]
                p(leq#2#) = [0 1] x2 + [1 0] x3 + [0]
                            [1 1]      [0 0]      [0]
                   p(or#) = [2 2] x2 + [0]           
                            [2 0]      [0]           
                   p(c_1) = [0]                      
                            [0]                      
                   p(c_2) = [0 0] x1 + [2]           
                            [1 1]      [1]           
                   p(c_3) = [0]                      
                            [1]                      
                   p(c_4) = [1 0] x1 + [0]           
                            [0 0]      [1]           
                   p(c_5) = [1 0] x1 + [0]           
                            [2 3]      [2]           
                   p(c_6) = [0]                      
                            [0]                      
                   p(c_7) = [1 0] x1 + [0]           
                            [0 0]      [0]           
                   p(c_8) = [1]                      
                            [1]                      
                   p(c_9) = [1 0] x1 + [0]           
                            [2 0]      [0]           
                  p(c_10) = [1 0] x1 + [1 0] x2 + [0]
                            [0 1]      [0 0]      [1]
                  p(c_11) = [2]                      
                            [0]                      
                  p(c_12) = [0 2] x1 + [0]           
                            [1 1]      [0]           
                  p(c_13) = [2 2] x1 + [0]           
                            [0 1]      [0]           
                  p(c_14) = [1]                      
                            [0]                      
                  p(c_15) = [0 0] x1 + [0]           
                            [1 0]      [0]           
                  p(c_16) = [0]                      
                            [0]                      
                  p(c_17) = [1 1] x1 + [2]           
                            [2 0]      [1]           
                  p(c_18) = [0]                      
                            [0]                      
                  p(c_19) = [1]                      
                            [0]                      
                  p(c_20) = [0]                      
                            [1]                      
                  p(c_21) = [2]                      
                            [0]                      
                  p(c_22) = [0]                      
                            [0]                      
                  p(c_23) = [2]                      
                            [0]                      
                  p(c_24) = [0]                      
                            [0]                      
                  p(c_25) = [0]                      
                            [1]                      
                  p(c_26) = [0]                      
                            [1]                      
                  p(c_27) = [0]                      
                            [0]                      
                  p(c_28) = [0]                      
                            [0]                      
                  p(c_29) = [0]                      
                            [2]                      
                  p(c_30) = [0]                      
                            [1]                      
                  p(c_31) = [1]                      
                            [0]                      
                  p(c_32) = [0]                      
                            [0]                      
                  p(c_33) = [2]                      
                            [2]                      
                  p(c_34) = [1]                      
                            [0]                      
                  p(c_35) = [0]                      
                            [2]                      
                  p(c_36) = [0]                      
                            [0]                      
                  p(c_37) = [0]                      
                            [0]                      
                  p(c_38) = [0]                      
                            [2]                      
                  p(c_39) = [0]                      
                            [0]                      
                  p(c_40) = [0]                      
                            [1]                      
                  p(c_41) = [0]                      
                            [0]                      
                  p(c_42) = [0]                      
                            [0]                      
                  p(c_43) = [2]                      
                            [0]                      
                  p(c_44) = [2]                      
                            [0]                      
                  p(c_45) = [1]                      
                            [0]                      
                  p(c_46) = [2 1] x1 + [0]           
                            [1 0]      [0]           
                  p(c_47) = [0]                      
                            [2]                      
                  p(c_48) = [0 0] x1 + [2]           
                            [2 0]      [2]           
                  p(c_49) = [0 2] x1 + [0 0] x3 + [0]
                            [1 0]      [1 2]      [1]
                  p(c_50) = [2]                      
                            [0]                      
                  p(c_51) = [0]                      
                            [0]                      
                  p(c_52) = [0]                      
                            [0]                      
                  p(c_53) = [0]                      
                            [0]                      
                  p(c_54) = [0]                      
                            [2]                      
                  p(c_55) = [2]                      
                            [0]                      
                  p(c_56) = [0]                      
                            [2]                      
        
        Following rules are strictly oriented:
        insert#(@x,@l) = [0 1] @l + [1]       
                         [0 0]      [1]       
                       > [0 1] @l + [0]       
                         [0 0]      [1]       
                       = c_4(insert#1#(@l,@x))
        
        
        Following rules are (at-least) weakly oriented:
             insert#1#(::(@y,@ys),@x) =  [0 0] @x + [0 1] @ys + [1]                      
                                         [2 2]      [2 5]       [4]                      
                                      >= [0 1] @ys + [1]                                 
                                         [0 5]       [4]                                 
                                      =  c_5(insert#2#(leq(@x,@y),@x,@y,@ys))            
        
        insert#2#(#false(),@x,@y,@ys) =  [0 1] @ys + [1]                                 
                                         [0 1]       [0]                                 
                                      >= [0 1] @ys + [1]                                 
                                         [0 0]       [0]                                 
                                      =  c_7(insert#(@x,@ys))                            
        
                       isortlist#(@l) =  [1 1] @l + [1]                                  
                                         [2 3]      [2]                                  
                                      >= [1 1] @l + [1]                                  
                                         [2 2]      [2]                                  
                                      =  c_9(isortlist#1#(@l))                           
        
             isortlist#1#(::(@x,@xs)) =  [1 2] @xs + [2]                                 
                                         [2 5]       [5]                                 
                                      >= [1 2] @xs + [2]                                 
                                         [0 0]       [2]                                 
                                      =  c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
        
                        insert(@x,@l) =  [1 2] @l + [0]                                  
                                         [0 1]      [1]                                  
                                      >= [1 2] @l + [0]                                  
                                         [0 1]      [1]                                  
                                      =  insert#1(@l,@x)                                 
        
              insert#1(::(@y,@ys),@x) =  [1 3] @ys + [2]                                 
                                         [0 1]       [2]                                 
                                      >= [1 3] @ys + [2]                                 
                                         [0 1]       [2]                                 
                                      =  insert#2(leq(@x,@y),@x,@y,@ys)                  
        
                   insert#1(nil(),@x) =  [0]                                             
                                         [1]                                             
                                      >= [0]                                             
                                         [1]                                             
                                      =  ::(@x,nil())                                    
        
         insert#2(#false(),@x,@y,@ys) =  [1 3] @ys + [2]                                 
                                         [0 1]       [2]                                 
                                      >= [1 3] @ys + [1]                                 
                                         [0 1]       [2]                                 
                                      =  ::(@y,insert(@x,@ys))                           
        
          insert#2(#true(),@x,@y,@ys) =  [1 3] @ys + [2]                                 
                                         [0 1]       [2]                                 
                                      >= [1 2] @ys + [1]                                 
                                         [0 1]       [2]                                 
                                      =  ::(@x,::(@y,@ys))                               
        
                        isortlist(@l) =  [2 0] @l + [0]                                  
                                         [0 1]      [0]                                  
                                      >= [2 0] @l + [0]                                  
                                         [0 1]      [0]                                  
                                      =  isortlist#1(@l)                                 
        
              isortlist#1(::(@x,@xs)) =  [2 2] @xs + [0]                                 
                                         [0 1]       [1]                                 
                                      >= [2 2] @xs + [0]                                 
                                         [0 1]       [1]                                 
                                      =  insert(@x,isortlist(@xs))                       
        
                   isortlist#1(nil()) =  [0]                                             
                                         [0]                                             
                                      >= [0]                                             
                                         [0]                                             
                                      =  nil()                                           
        
***** Step 6.a:1.b:3.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            insert#(@x,@l) -> c_4(insert#1#(@l,@x))
            insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys))
            insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
        - Weak TRS:
            #and(#false(),#false()) -> #false()
            #and(#false(),#true()) -> #false()
            #and(#true(),#false()) -> #false()
            #and(#true(),#true()) -> #true()
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #eq(#0(),#0()) -> #true()
            #eq(#0(),#neg(@y)) -> #false()
            #eq(#0(),#pos(@y)) -> #false()
            #eq(#0(),#s(@y)) -> #false()
            #eq(#neg(@x),#0()) -> #false()
            #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
            #eq(#neg(@x),#pos(@y)) -> #false()
            #eq(#pos(@x),#0()) -> #false()
            #eq(#pos(@x),#neg(@y)) -> #false()
            #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
            #eq(#s(@x),#0()) -> #false()
            #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
            #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
            #eq(::(@x_1,@x_2),nil()) -> #false()
            #eq(nil(),::(@y_1,@y_2)) -> #false()
            #eq(nil(),nil()) -> #true()
            #equal(@x,@y) -> #eq(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            #or(#false(),#false()) -> #false()
            #or(#false(),#true()) -> #true()
            #or(#true(),#false()) -> #true()
            #or(#true(),#true()) -> #true()
            and(@x,@y) -> #and(@x,@y)
            insert(@x,@l) -> insert#1(@l,@x)
            insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
            insert#1(nil(),@x) -> ::(@x,nil())
            insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
            insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
            isortlist(@l) -> isortlist#1(@l)
            isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
            isortlist#1(nil()) -> nil()
            leq(@l1,@l2) -> leq#1(@l1,@l2)
            leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
            leq#1(nil(),@l2) -> #true()
            leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
            leq#2(nil(),@x,@xs) -> #false()
            or(@x,@y) -> #or(@x,@y)
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/1,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 6.a:1.b:3.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            insert#(@x,@l) -> c_4(insert#1#(@l,@x))
            insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys))
            insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
        - Weak TRS:
            #and(#false(),#false()) -> #false()
            #and(#false(),#true()) -> #false()
            #and(#true(),#false()) -> #false()
            #and(#true(),#true()) -> #true()
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #eq(#0(),#0()) -> #true()
            #eq(#0(),#neg(@y)) -> #false()
            #eq(#0(),#pos(@y)) -> #false()
            #eq(#0(),#s(@y)) -> #false()
            #eq(#neg(@x),#0()) -> #false()
            #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
            #eq(#neg(@x),#pos(@y)) -> #false()
            #eq(#pos(@x),#0()) -> #false()
            #eq(#pos(@x),#neg(@y)) -> #false()
            #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
            #eq(#s(@x),#0()) -> #false()
            #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
            #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
            #eq(::(@x_1,@x_2),nil()) -> #false()
            #eq(nil(),::(@y_1,@y_2)) -> #false()
            #eq(nil(),nil()) -> #true()
            #equal(@x,@y) -> #eq(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            #or(#false(),#false()) -> #false()
            #or(#false(),#true()) -> #true()
            #or(#true(),#false()) -> #true()
            #or(#true(),#true()) -> #true()
            and(@x,@y) -> #and(@x,@y)
            insert(@x,@l) -> insert#1(@l,@x)
            insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
            insert#1(nil(),@x) -> ::(@x,nil())
            insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
            insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
            isortlist(@l) -> isortlist#1(@l)
            isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
            isortlist#1(nil()) -> nil()
            leq(@l1,@l2) -> leq#1(@l1,@l2)
            leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
            leq#1(nil(),@l2) -> #true()
            leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
            leq#2(nil(),@x,@xs) -> #false()
            or(@x,@y) -> #or(@x,@y)
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/1,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:insert#(@x,@l) -> c_4(insert#1#(@l,@x))
             -->_1 insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys)):2
          
          2:W:insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys))
             -->_1 insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys)):3
          
          3:W:insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
             -->_1 insert#(@x,@l) -> c_4(insert#1#(@l,@x)):1
          
          4:W:isortlist#(@l) -> c_9(isortlist#1#(@l))
             -->_1 isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs)):5
          
          5:W:isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
             -->_2 isortlist#(@l) -> c_9(isortlist#1#(@l)):4
             -->_1 insert#(@x,@l) -> c_4(insert#1#(@l,@x)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          4: isortlist#(@l) -> c_9(isortlist#1#(@l))
          5: isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
          1: insert#(@x,@l) -> c_4(insert#1#(@l,@x))
          3: insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
          2: insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys))
***** Step 6.a:1.b:3.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            #and(#false(),#false()) -> #false()
            #and(#false(),#true()) -> #false()
            #and(#true(),#false()) -> #false()
            #and(#true(),#true()) -> #true()
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #eq(#0(),#0()) -> #true()
            #eq(#0(),#neg(@y)) -> #false()
            #eq(#0(),#pos(@y)) -> #false()
            #eq(#0(),#s(@y)) -> #false()
            #eq(#neg(@x),#0()) -> #false()
            #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
            #eq(#neg(@x),#pos(@y)) -> #false()
            #eq(#pos(@x),#0()) -> #false()
            #eq(#pos(@x),#neg(@y)) -> #false()
            #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
            #eq(#s(@x),#0()) -> #false()
            #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
            #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
            #eq(::(@x_1,@x_2),nil()) -> #false()
            #eq(nil(),::(@y_1,@y_2)) -> #false()
            #eq(nil(),nil()) -> #true()
            #equal(@x,@y) -> #eq(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            #or(#false(),#false()) -> #false()
            #or(#false(),#true()) -> #true()
            #or(#true(),#false()) -> #true()
            #or(#true(),#true()) -> #true()
            and(@x,@y) -> #and(@x,@y)
            insert(@x,@l) -> insert#1(@l,@x)
            insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
            insert#1(nil(),@x) -> ::(@x,nil())
            insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
            insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
            isortlist(@l) -> isortlist#1(@l)
            isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
            isortlist#1(nil()) -> nil()
            leq(@l1,@l2) -> leq#1(@l1,@l2)
            leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
            leq#1(nil(),@l2) -> #true()
            leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
            leq#2(nil(),@x,@xs) -> #false()
            or(@x,@y) -> #or(@x,@y)
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/1,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

** Step 6.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
        - Weak DPs:
            insert#(@x,@l) -> c_4(insert#1#(@l,@x))
            insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y))
            insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
            leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2))
            leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs))
            leq#2#(::(@y,@ys),@x,@xs) -> c_15(leq#(@xs,@ys))
        - Weak TRS:
            #and(#false(),#false()) -> #false()
            #and(#false(),#true()) -> #false()
            #and(#true(),#false()) -> #false()
            #and(#true(),#true()) -> #true()
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #eq(#0(),#0()) -> #true()
            #eq(#0(),#neg(@y)) -> #false()
            #eq(#0(),#pos(@y)) -> #false()
            #eq(#0(),#s(@y)) -> #false()
            #eq(#neg(@x),#0()) -> #false()
            #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
            #eq(#neg(@x),#pos(@y)) -> #false()
            #eq(#pos(@x),#0()) -> #false()
            #eq(#pos(@x),#neg(@y)) -> #false()
            #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
            #eq(#s(@x),#0()) -> #false()
            #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
            #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
            #eq(::(@x_1,@x_2),nil()) -> #false()
            #eq(nil(),::(@y_1,@y_2)) -> #false()
            #eq(nil(),nil()) -> #true()
            #equal(@x,@y) -> #eq(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            #or(#false(),#false()) -> #false()
            #or(#false(),#true()) -> #true()
            #or(#true(),#false()) -> #true()
            #or(#true(),#true()) -> #true()
            and(@x,@y) -> #and(@x,@y)
            insert(@x,@l) -> insert#1(@l,@x)
            insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
            insert#1(nil(),@x) -> ::(@x,nil())
            insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
            insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
            isortlist(@l) -> isortlist#1(@l)
            isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
            isortlist#1(nil()) -> nil()
            leq(@l1,@l2) -> leq#1(@l1,@l2)
            leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
            leq#1(nil(),@l2) -> #true()
            leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
            leq#2(nil(),@x,@xs) -> #false()
            or(@x,@y) -> #or(@x,@y)
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/2,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:isortlist#(@l) -> c_9(isortlist#1#(@l))
             -->_1 isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs)):2
          
          2:S:isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
             -->_1 insert#(@x,@l) -> c_4(insert#1#(@l,@x)):3
             -->_2 isortlist#(@l) -> c_9(isortlist#1#(@l)):1
          
          3:W:insert#(@x,@l) -> c_4(insert#1#(@l,@x))
             -->_1 insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y)):4
          
          4:W:insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y))
             -->_2 leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2)):6
             -->_1 insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys)):5
          
          5:W:insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
             -->_1 insert#(@x,@l) -> c_4(insert#1#(@l,@x)):3
          
          6:W:leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2))
             -->_1 leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs)):7
          
          7:W:leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs))
             -->_1 leq#2#(::(@y,@ys),@x,@xs) -> c_15(leq#(@xs,@ys)):8
          
          8:W:leq#2#(::(@y,@ys),@x,@xs) -> c_15(leq#(@xs,@ys))
             -->_1 leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2)):6
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: insert#(@x,@l) -> c_4(insert#1#(@l,@x))
          5: insert#2#(#false(),@x,@y,@ys) -> c_7(insert#(@x,@ys))
          4: insert#1#(::(@y,@ys),@x) -> c_5(insert#2#(leq(@x,@y),@x,@y,@ys),leq#(@x,@y))
          6: leq#(@l1,@l2) -> c_12(leq#1#(@l1,@l2))
          8: leq#2#(::(@y,@ys),@x,@xs) -> c_15(leq#(@xs,@ys))
          7: leq#1#(::(@x,@xs),@l2) -> c_13(leq#2#(@l2,@x,@xs))
** Step 6.b:2: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
        - Weak TRS:
            #and(#false(),#false()) -> #false()
            #and(#false(),#true()) -> #false()
            #and(#true(),#false()) -> #false()
            #and(#true(),#true()) -> #true()
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #eq(#0(),#0()) -> #true()
            #eq(#0(),#neg(@y)) -> #false()
            #eq(#0(),#pos(@y)) -> #false()
            #eq(#0(),#s(@y)) -> #false()
            #eq(#neg(@x),#0()) -> #false()
            #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
            #eq(#neg(@x),#pos(@y)) -> #false()
            #eq(#pos(@x),#0()) -> #false()
            #eq(#pos(@x),#neg(@y)) -> #false()
            #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
            #eq(#s(@x),#0()) -> #false()
            #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
            #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
            #eq(::(@x_1,@x_2),nil()) -> #false()
            #eq(nil(),::(@y_1,@y_2)) -> #false()
            #eq(nil(),nil()) -> #true()
            #equal(@x,@y) -> #eq(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            #or(#false(),#false()) -> #false()
            #or(#false(),#true()) -> #true()
            #or(#true(),#false()) -> #true()
            #or(#true(),#true()) -> #true()
            and(@x,@y) -> #and(@x,@y)
            insert(@x,@l) -> insert#1(@l,@x)
            insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
            insert#1(nil(),@x) -> ::(@x,nil())
            insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
            insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
            isortlist(@l) -> isortlist#1(@l)
            isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
            isortlist#1(nil()) -> nil()
            leq(@l1,@l2) -> leq#1(@l1,@l2)
            leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
            leq#1(nil(),@l2) -> #true()
            leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
            leq#2(nil(),@x,@xs) -> #false()
            or(@x,@y) -> #or(@x,@y)
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/2,c_6/0,c_7/1,c_8/0,c_9/1,c_10/2,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:isortlist#(@l) -> c_9(isortlist#1#(@l))
             -->_1 isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs)):2
          
          2:S:isortlist#1#(::(@x,@xs)) -> c_10(insert#(@x,isortlist(@xs)),isortlist#(@xs))
             -->_2 isortlist#(@l) -> c_9(isortlist#1#(@l)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          isortlist#1#(::(@x,@xs)) -> c_10(isortlist#(@xs))
** Step 6.b:3: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(isortlist#(@xs))
        - Weak TRS:
            #and(#false(),#false()) -> #false()
            #and(#false(),#true()) -> #false()
            #and(#true(),#false()) -> #false()
            #and(#true(),#true()) -> #true()
            #cklt(#EQ()) -> #false()
            #cklt(#GT()) -> #false()
            #cklt(#LT()) -> #true()
            #compare(#0(),#0()) -> #EQ()
            #compare(#0(),#neg(@y)) -> #GT()
            #compare(#0(),#pos(@y)) -> #LT()
            #compare(#0(),#s(@y)) -> #LT()
            #compare(#neg(@x),#0()) -> #LT()
            #compare(#neg(@x),#neg(@y)) -> #compare(@y,@x)
            #compare(#neg(@x),#pos(@y)) -> #LT()
            #compare(#pos(@x),#0()) -> #GT()
            #compare(#pos(@x),#neg(@y)) -> #GT()
            #compare(#pos(@x),#pos(@y)) -> #compare(@x,@y)
            #compare(#s(@x),#0()) -> #GT()
            #compare(#s(@x),#s(@y)) -> #compare(@x,@y)
            #eq(#0(),#0()) -> #true()
            #eq(#0(),#neg(@y)) -> #false()
            #eq(#0(),#pos(@y)) -> #false()
            #eq(#0(),#s(@y)) -> #false()
            #eq(#neg(@x),#0()) -> #false()
            #eq(#neg(@x),#neg(@y)) -> #eq(@x,@y)
            #eq(#neg(@x),#pos(@y)) -> #false()
            #eq(#pos(@x),#0()) -> #false()
            #eq(#pos(@x),#neg(@y)) -> #false()
            #eq(#pos(@x),#pos(@y)) -> #eq(@x,@y)
            #eq(#s(@x),#0()) -> #false()
            #eq(#s(@x),#s(@y)) -> #eq(@x,@y)
            #eq(::(@x_1,@x_2),::(@y_1,@y_2)) -> #and(#eq(@x_1,@y_1),#eq(@x_2,@y_2))
            #eq(::(@x_1,@x_2),nil()) -> #false()
            #eq(nil(),::(@y_1,@y_2)) -> #false()
            #eq(nil(),nil()) -> #true()
            #equal(@x,@y) -> #eq(@x,@y)
            #less(@x,@y) -> #cklt(#compare(@x,@y))
            #or(#false(),#false()) -> #false()
            #or(#false(),#true()) -> #true()
            #or(#true(),#false()) -> #true()
            #or(#true(),#true()) -> #true()
            and(@x,@y) -> #and(@x,@y)
            insert(@x,@l) -> insert#1(@l,@x)
            insert#1(::(@y,@ys),@x) -> insert#2(leq(@x,@y),@x,@y,@ys)
            insert#1(nil(),@x) -> ::(@x,nil())
            insert#2(#false(),@x,@y,@ys) -> ::(@y,insert(@x,@ys))
            insert#2(#true(),@x,@y,@ys) -> ::(@x,::(@y,@ys))
            isortlist(@l) -> isortlist#1(@l)
            isortlist#1(::(@x,@xs)) -> insert(@x,isortlist(@xs))
            isortlist#1(nil()) -> nil()
            leq(@l1,@l2) -> leq#1(@l1,@l2)
            leq#1(::(@x,@xs),@l2) -> leq#2(@l2,@x,@xs)
            leq#1(nil(),@l2) -> #true()
            leq#2(::(@y,@ys),@x,@xs) -> or(#less(@x,@y),and(#equal(@x,@y),leq(@xs,@ys)))
            leq#2(nil(),@x,@xs) -> #false()
            or(@x,@y) -> #or(@x,@y)
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/2,c_6/0,c_7/1,c_8/0,c_9/1,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          isortlist#(@l) -> c_9(isortlist#1#(@l))
          isortlist#1#(::(@x,@xs)) -> c_10(isortlist#(@xs))
** Step 6.b:4: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(isortlist#(@xs))
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/2,c_6/0,c_7/1,c_8/0,c_9/1,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: isortlist#(@l) -> c_9(isortlist#1#(@l))
          2: isortlist#1#(::(@x,@xs)) -> c_10(isortlist#(@xs))
          
        The strictly oriented rules are moved into the weak component.
*** Step 6.b:4.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(isortlist#(@xs))
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/2,c_6/0,c_7/1,c_8/0,c_9/1,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_9) = {1},
          uargs(c_10) = {1}
        
        Following symbols are considered usable:
          {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#
          ,leq#,leq#1#,leq#2#,or#}
        TcT has computed the following interpretation:
                    p(#0) = [0]                  
                   p(#EQ) = [0]                  
                   p(#GT) = [0]                  
                   p(#LT) = [0]                  
                  p(#and) = [0]                  
                 p(#cklt) = [0]                  
              p(#compare) = [0]                  
                   p(#eq) = [1] x1 + [1] x2 + [0]
                p(#equal) = [2]                  
                p(#false) = [0]                  
                 p(#less) = [0]                  
                  p(#neg) = [0]                  
                   p(#or) = [0]                  
                  p(#pos) = [1]                  
                    p(#s) = [4]                  
                 p(#true) = [2]                  
                    p(::) = [1] x2 + [2]         
                   p(and) = [1] x1 + [8] x2 + [4]
                p(insert) = [8] x1 + [1]         
              p(insert#1) = [8] x1 + [0]         
              p(insert#2) = [2] x4 + [1]         
             p(isortlist) = [8] x1 + [1]         
           p(isortlist#1) = [2] x1 + [2]         
                   p(leq) = [1] x1 + [2] x2 + [1]
                 p(leq#1) = [1]                  
                 p(leq#2) = [0]                  
                   p(nil) = [0]                  
                    p(or) = [0]                  
                 p(#and#) = [0]                  
                p(#cklt#) = [0]                  
             p(#compare#) = [0]                  
                  p(#eq#) = [0]                  
               p(#equal#) = [0]                  
                p(#less#) = [0]                  
                  p(#or#) = [0]                  
                  p(and#) = [0]                  
               p(insert#) = [0]                  
             p(insert#1#) = [0]                  
             p(insert#2#) = [0]                  
            p(isortlist#) = [4] x1 + [3]         
          p(isortlist#1#) = [4] x1 + [0]         
                  p(leq#) = [0]                  
                p(leq#1#) = [0]                  
                p(leq#2#) = [0]                  
                   p(or#) = [0]                  
                   p(c_1) = [0]                  
                   p(c_2) = [0]                  
                   p(c_3) = [1] x1 + [4]         
                   p(c_4) = [2] x1 + [0]         
                   p(c_5) = [8] x1 + [1] x2 + [1]
                   p(c_6) = [1]                  
                   p(c_7) = [2]                  
                   p(c_8) = [4]                  
                   p(c_9) = [1] x1 + [2]         
                  p(c_10) = [1] x1 + [0]         
                  p(c_11) = [4]                  
                  p(c_12) = [1] x1 + [0]         
                  p(c_13) = [0]                  
                  p(c_14) = [0]                  
                  p(c_15) = [2] x1 + [0]         
                  p(c_16) = [1]                  
                  p(c_17) = [1]                  
                  p(c_18) = [2]                  
                  p(c_19) = [1]                  
                  p(c_20) = [1]                  
                  p(c_21) = [8]                  
                  p(c_22) = [2]                  
                  p(c_23) = [0]                  
                  p(c_24) = [0]                  
                  p(c_25) = [2]                  
                  p(c_26) = [0]                  
                  p(c_27) = [1]                  
                  p(c_28) = [1]                  
                  p(c_29) = [1]                  
                  p(c_30) = [2]                  
                  p(c_31) = [1]                  
                  p(c_32) = [1]                  
                  p(c_33) = [1]                  
                  p(c_34) = [2]                  
                  p(c_35) = [0]                  
                  p(c_36) = [1] x1 + [0]         
                  p(c_37) = [1]                  
                  p(c_38) = [4]                  
                  p(c_39) = [2]                  
                  p(c_40) = [1]                  
                  p(c_41) = [0]                  
                  p(c_42) = [0]                  
                  p(c_43) = [1]                  
                  p(c_44) = [4]                  
                  p(c_45) = [1]                  
                  p(c_46) = [1]                  
                  p(c_47) = [2]                  
                  p(c_48) = [2] x1 + [1]         
                  p(c_49) = [1] x2 + [1] x3 + [1]
                  p(c_50) = [1]                  
                  p(c_51) = [1]                  
                  p(c_52) = [0]                  
                  p(c_53) = [0]                  
                  p(c_54) = [0]                  
                  p(c_55) = [0]                  
                  p(c_56) = [0]                  
        
        Following rules are strictly oriented:
                  isortlist#(@l) = [4] @l + [3]         
                                 > [4] @l + [2]         
                                 = c_9(isortlist#1#(@l))
        
        isortlist#1#(::(@x,@xs)) = [4] @xs + [8]        
                                 > [4] @xs + [3]        
                                 = c_10(isortlist#(@xs))
        
        
        Following rules are (at-least) weakly oriented:
        
*** Step 6.b:4.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(isortlist#(@xs))
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/2,c_6/0,c_7/1,c_8/0,c_9/1,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

*** Step 6.b:4.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            isortlist#(@l) -> c_9(isortlist#1#(@l))
            isortlist#1#(::(@x,@xs)) -> c_10(isortlist#(@xs))
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/2,c_6/0,c_7/1,c_8/0,c_9/1,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:isortlist#(@l) -> c_9(isortlist#1#(@l))
             -->_1 isortlist#1#(::(@x,@xs)) -> c_10(isortlist#(@xs)):2
          
          2:W:isortlist#1#(::(@x,@xs)) -> c_10(isortlist#(@xs))
             -->_1 isortlist#(@l) -> c_9(isortlist#1#(@l)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: isortlist#(@l) -> c_9(isortlist#1#(@l))
          2: isortlist#1#(::(@x,@xs)) -> c_10(isortlist#(@xs))
*** Step 6.b:4.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {#and/2,#cklt/1,#compare/2,#eq/2,#equal/2,#less/2,#or/2,and/2,insert/2,insert#1/2,insert#2/4,isortlist/1
            ,isortlist#1/1,leq/2,leq#1/2,leq#2/3,or/2,#and#/2,#cklt#/1,#compare#/2,#eq#/2,#equal#/2,#less#/2,#or#/2
            ,and#/2,insert#/2,insert#1#/2,insert#2#/4,isortlist#/1,isortlist#1#/1,leq#/2,leq#1#/2,leq#2#/3
            ,or#/2} / {#0/0,#EQ/0,#GT/0,#LT/0,#false/0,#neg/1,#pos/1,#s/1,#true/0,::/2,nil/0,c_1/1,c_2/2,c_3/1,c_4/1
            ,c_5/2,c_6/0,c_7/1,c_8/0,c_9/1,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/0,c_17/1,c_18/0,c_19/0,c_20/0
            ,c_21/0,c_22/0,c_23/0,c_24/0,c_25/0,c_26/0,c_27/0,c_28/0,c_29/0,c_30/1,c_31/0,c_32/0,c_33/0,c_34/1,c_35/0
            ,c_36/1,c_37/0,c_38/0,c_39/0,c_40/0,c_41/0,c_42/1,c_43/0,c_44/0,c_45/0,c_46/1,c_47/0,c_48/1,c_49/3,c_50/0
            ,c_51/0,c_52/0,c_53/0,c_54/0,c_55/0,c_56/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {#and#,#cklt#,#compare#,#eq#,#equal#,#less#,#or#,and#
            ,insert#,insert#1#,insert#2#,isortlist#,isortlist#1#,leq#,leq#1#,leq#2#,or#} and constructors {#0,#EQ,#GT
            ,#LT,#false,#neg,#pos,#s,#true,::,nil}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^2))