* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            foldr#3(Cons(x16,x6)) -> step_x_f(rev_l(),x16,foldr#3(x6))
            foldr#3(Nil()) -> fleft_op_e_xs_1()
            main(Cons(x8,x9)) -> step_x_f#1(rev_l(),x8,foldr#3(x9),Nil())
            main(Nil()) -> Nil()
            rev_l#2(x8,x10) -> Cons(x10,x8)
            step_x_f#1(rev_l(),x5,fleft_op_e_xs_1(),x3) -> rev_l#2(x3,x5)
            step_x_f#1(rev_l(),x5,step_x_f(x2,x3,x4),x1) -> step_x_f#1(x2,x3,x4,rev_l#2(x1,x5))
        - Signature:
            {foldr#3/1,main/1,rev_l#2/2,step_x_f#1/4} / {Cons/2,Nil/0,fleft_op_e_xs_1/0,rev_l/0,step_x_f/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {foldr#3,main,rev_l#2,step_x_f#1} and constructors {Cons
            ,Nil,fleft_op_e_xs_1,rev_l,step_x_f}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            foldr#3(Cons(x16,x6)) -> step_x_f(rev_l(),x16,foldr#3(x6))
            foldr#3(Nil()) -> fleft_op_e_xs_1()
            main(Cons(x8,x9)) -> step_x_f#1(rev_l(),x8,foldr#3(x9),Nil())
            main(Nil()) -> Nil()
            rev_l#2(x8,x10) -> Cons(x10,x8)
            step_x_f#1(rev_l(),x5,fleft_op_e_xs_1(),x3) -> rev_l#2(x3,x5)
            step_x_f#1(rev_l(),x5,step_x_f(x2,x3,x4),x1) -> step_x_f#1(x2,x3,x4,rev_l#2(x1,x5))
        - Signature:
            {foldr#3/1,main/1,rev_l#2/2,step_x_f#1/4} / {Cons/2,Nil/0,fleft_op_e_xs_1/0,rev_l/0,step_x_f/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {foldr#3,main,rev_l#2,step_x_f#1} and constructors {Cons
            ,Nil,fleft_op_e_xs_1,rev_l,step_x_f}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          foldr#3(y){y -> Cons(x,y)} =
            foldr#3(Cons(x,y)) ->^+ step_x_f(rev_l(),x,foldr#3(y))
              = C[foldr#3(y) = foldr#3(y){}]

** Step 1.b:1: Bounds WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            foldr#3(Cons(x16,x6)) -> step_x_f(rev_l(),x16,foldr#3(x6))
            foldr#3(Nil()) -> fleft_op_e_xs_1()
            main(Cons(x8,x9)) -> step_x_f#1(rev_l(),x8,foldr#3(x9),Nil())
            main(Nil()) -> Nil()
            rev_l#2(x8,x10) -> Cons(x10,x8)
            step_x_f#1(rev_l(),x5,fleft_op_e_xs_1(),x3) -> rev_l#2(x3,x5)
            step_x_f#1(rev_l(),x5,step_x_f(x2,x3,x4),x1) -> step_x_f#1(x2,x3,x4,rev_l#2(x1,x5))
        - Signature:
            {foldr#3/1,main/1,rev_l#2/2,step_x_f#1/4} / {Cons/2,Nil/0,fleft_op_e_xs_1/0,rev_l/0,step_x_f/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {foldr#3,main,rev_l#2,step_x_f#1} and constructors {Cons
            ,Nil,fleft_op_e_xs_1,rev_l,step_x_f}
    + Applied Processor:
        Bounds {initialAutomaton = minimal, enrichment = match}
    + Details:
        The problem is match-bounded by 3.
        The enriched problem is compatible with follwoing automaton.
          Cons_0(2,2) -> 2
          Cons_1(2,2) -> 1
          Cons_2(2,1) -> 1
          Cons_2(2,2) -> 1
          Cons_3(2,1) -> 1
          Cons_3(2,5) -> 1
          Nil_0() -> 2
          Nil_1() -> 1
          Nil_1() -> 5
          fleft_op_e_xs_1_0() -> 2
          fleft_op_e_xs_1_1() -> 1
          fleft_op_e_xs_1_1() -> 4
          foldr#3_0(2) -> 1
          foldr#3_1(2) -> 4
          main_0(2) -> 1
          rev_l_0() -> 2
          rev_l_1() -> 3
          rev_l#2_0(2,2) -> 1
          rev_l#2_1(1,2) -> 1
          rev_l#2_1(2,2) -> 1
          rev_l#2_2(1,2) -> 1
          rev_l#2_2(5,2) -> 1
          step_x_f_0(2,2,2) -> 2
          step_x_f_1(3,2,4) -> 1
          step_x_f_1(3,2,4) -> 4
          step_x_f#1_0(2,2,2,2) -> 1
          step_x_f#1_1(2,2,2,1) -> 1
          step_x_f#1_1(3,2,4,5) -> 1
          step_x_f#1_2(3,2,4,1) -> 1
** Step 1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            foldr#3(Cons(x16,x6)) -> step_x_f(rev_l(),x16,foldr#3(x6))
            foldr#3(Nil()) -> fleft_op_e_xs_1()
            main(Cons(x8,x9)) -> step_x_f#1(rev_l(),x8,foldr#3(x9),Nil())
            main(Nil()) -> Nil()
            rev_l#2(x8,x10) -> Cons(x10,x8)
            step_x_f#1(rev_l(),x5,fleft_op_e_xs_1(),x3) -> rev_l#2(x3,x5)
            step_x_f#1(rev_l(),x5,step_x_f(x2,x3,x4),x1) -> step_x_f#1(x2,x3,x4,rev_l#2(x1,x5))
        - Signature:
            {foldr#3/1,main/1,rev_l#2/2,step_x_f#1/4} / {Cons/2,Nil/0,fleft_op_e_xs_1/0,rev_l/0,step_x_f/3}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {foldr#3,main,rev_l#2,step_x_f#1} and constructors {Cons
            ,Nil,fleft_op_e_xs_1,rev_l,step_x_f}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))