* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            comp_f_g#1(comp_f_g(x7,x9),walk_xs_3(x8),x12) -> comp_f_g#1(x7,x9,Cons(x8,x12))
            comp_f_g#1(walk_xs(),walk_xs_3(x8),x12) -> Cons(x8,x12)
            main(Cons(x4,x5)) -> comp_f_g#1(walk#1(x5),walk_xs_3(x4),Nil())
            main(Nil()) -> Nil()
            walk#1(Cons(x4,x3)) -> comp_f_g(walk#1(x3),walk_xs_3(x4))
            walk#1(Nil()) -> walk_xs()
        - Signature:
            {comp_f_g#1/3,main/1,walk#1/1} / {Cons/2,Nil/0,comp_f_g/2,walk_xs/0,walk_xs_3/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {comp_f_g#1,main,walk#1} and constructors {Cons,Nil
            ,comp_f_g,walk_xs,walk_xs_3}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            comp_f_g#1(comp_f_g(x7,x9),walk_xs_3(x8),x12) -> comp_f_g#1(x7,x9,Cons(x8,x12))
            comp_f_g#1(walk_xs(),walk_xs_3(x8),x12) -> Cons(x8,x12)
            main(Cons(x4,x5)) -> comp_f_g#1(walk#1(x5),walk_xs_3(x4),Nil())
            main(Nil()) -> Nil()
            walk#1(Cons(x4,x3)) -> comp_f_g(walk#1(x3),walk_xs_3(x4))
            walk#1(Nil()) -> walk_xs()
        - Signature:
            {comp_f_g#1/3,main/1,walk#1/1} / {Cons/2,Nil/0,comp_f_g/2,walk_xs/0,walk_xs_3/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {comp_f_g#1,main,walk#1} and constructors {Cons,Nil
            ,comp_f_g,walk_xs,walk_xs_3}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          walk#1(y){y -> Cons(x,y)} =
            walk#1(Cons(x,y)) ->^+ comp_f_g(walk#1(y),walk_xs_3(x))
              = C[walk#1(y) = walk#1(y){}]

** Step 1.b:1: Bounds WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            comp_f_g#1(comp_f_g(x7,x9),walk_xs_3(x8),x12) -> comp_f_g#1(x7,x9,Cons(x8,x12))
            comp_f_g#1(walk_xs(),walk_xs_3(x8),x12) -> Cons(x8,x12)
            main(Cons(x4,x5)) -> comp_f_g#1(walk#1(x5),walk_xs_3(x4),Nil())
            main(Nil()) -> Nil()
            walk#1(Cons(x4,x3)) -> comp_f_g(walk#1(x3),walk_xs_3(x4))
            walk#1(Nil()) -> walk_xs()
        - Signature:
            {comp_f_g#1/3,main/1,walk#1/1} / {Cons/2,Nil/0,comp_f_g/2,walk_xs/0,walk_xs_3/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {comp_f_g#1,main,walk#1} and constructors {Cons,Nil
            ,comp_f_g,walk_xs,walk_xs_3}
    + Applied Processor:
        Bounds {initialAutomaton = minimal, enrichment = match}
    + Details:
        The problem is match-bounded by 2.
        The enriched problem is compatible with follwoing automaton.
          Cons_0(2,2) -> 2
          Cons_1(2,1) -> 1
          Cons_1(2,2) -> 1
          Cons_1(2,2) -> 3
          Cons_1(2,3) -> 1
          Cons_1(2,4) -> 1
          Cons_2(2,1) -> 1
          Cons_2(2,3) -> 1
          Cons_2(2,3) -> 4
          Cons_2(2,4) -> 1
          Nil_0() -> 2
          Nil_1() -> 1
          Nil_1() -> 3
          comp_f_g_0(2,2) -> 2
          comp_f_g_1(2,2) -> 1
          comp_f_g_1(2,2) -> 2
          comp_f_g#1_0(2,2,2) -> 1
          comp_f_g#1_1(2,2,1) -> 1
          comp_f_g#1_1(2,2,3) -> 1
          comp_f_g#1_2(2,2,1) -> 1
          comp_f_g#1_2(2,2,4) -> 1
          main_0(2) -> 1
          walk#1_0(2) -> 1
          walk#1_1(2) -> 2
          walk_xs_0() -> 2
          walk_xs_1() -> 1
          walk_xs_1() -> 2
          walk_xs_3_0(2) -> 2
          walk_xs_3_1(2) -> 2
** Step 1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            comp_f_g#1(comp_f_g(x7,x9),walk_xs_3(x8),x12) -> comp_f_g#1(x7,x9,Cons(x8,x12))
            comp_f_g#1(walk_xs(),walk_xs_3(x8),x12) -> Cons(x8,x12)
            main(Cons(x4,x5)) -> comp_f_g#1(walk#1(x5),walk_xs_3(x4),Nil())
            main(Nil()) -> Nil()
            walk#1(Cons(x4,x3)) -> comp_f_g(walk#1(x3),walk_xs_3(x4))
            walk#1(Nil()) -> walk_xs()
        - Signature:
            {comp_f_g#1/3,main/1,walk#1/1} / {Cons/2,Nil/0,comp_f_g/2,walk_xs/0,walk_xs_3/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {comp_f_g#1,main,walk#1} and constructors {Cons,Nil
            ,comp_f_g,walk_xs,walk_xs_3}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))