* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2)) + Considered Problem: - Strict TRS: main(x5,x12) -> map#2(plus_x(x12),x5) map#2(plus_x(x2),Nil()) -> Nil() map#2(plus_x(x6),Cons(x4,x2)) -> Cons(plus_x#1(x6,x4),map#2(plus_x(x6),x2)) plus_x#1(0(),x8) -> x8 plus_x#1(S(x12),x14) -> S(plus_x#1(x12,x14)) - Signature: {main/2,map#2/2,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,plus_x/1} - Obligation: innermost runtime complexity wrt. defined symbols {main,map#2,plus_x#1} and constructors {0,Cons,Nil,S ,plus_x} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: main(x5,x12) -> map#2(plus_x(x12),x5) map#2(plus_x(x2),Nil()) -> Nil() map#2(plus_x(x6),Cons(x4,x2)) -> Cons(plus_x#1(x6,x4),map#2(plus_x(x6),x2)) plus_x#1(0(),x8) -> x8 plus_x#1(S(x12),x14) -> S(plus_x#1(x12,x14)) - Signature: {main/2,map#2/2,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,plus_x/1} - Obligation: innermost runtime complexity wrt. defined symbols {main,map#2,plus_x#1} and constructors {0,Cons,Nil,S ,plus_x} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: map#2(plus_x(x),z){z -> Cons(y,z)} = map#2(plus_x(x),Cons(y,z)) ->^+ Cons(plus_x#1(x,y),map#2(plus_x(x),z)) = C[map#2(plus_x(x),z) = map#2(plus_x(x),z){}] ** Step 1.b:1: WeightGap WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: main(x5,x12) -> map#2(plus_x(x12),x5) map#2(plus_x(x2),Nil()) -> Nil() map#2(plus_x(x6),Cons(x4,x2)) -> Cons(plus_x#1(x6,x4),map#2(plus_x(x6),x2)) plus_x#1(0(),x8) -> x8 plus_x#1(S(x12),x14) -> S(plus_x#1(x12,x14)) - Signature: {main/2,map#2/2,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,plus_x/1} - Obligation: innermost runtime complexity wrt. defined symbols {main,map#2,plus_x#1} and constructors {0,Cons,Nil,S ,plus_x} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(Cons) = {1,2}, uargs(S) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [1] p(Cons) = [1] x1 + [1] x2 + [6] p(Nil) = [10] p(S) = [1] x1 + [1] p(main) = [2] x1 + [13] p(map#2) = [1] x1 + [2] x2 + [5] p(plus_x) = [4] p(plus_x#1) = [2] x2 + [4] Following rules are strictly oriented: main(x5,x12) = [2] x5 + [13] > [2] x5 + [9] = map#2(plus_x(x12),x5) map#2(plus_x(x2),Nil()) = [29] > [10] = Nil() map#2(plus_x(x6),Cons(x4,x2)) = [2] x2 + [2] x4 + [21] > [2] x2 + [2] x4 + [19] = Cons(plus_x#1(x6,x4),map#2(plus_x(x6),x2)) plus_x#1(0(),x8) = [2] x8 + [4] > [1] x8 + [0] = x8 Following rules are (at-least) weakly oriented: plus_x#1(S(x12),x14) = [2] x14 + [4] >= [2] x14 + [5] = S(plus_x#1(x12,x14)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:2: NaturalPI WORST_CASE(?,O(n^2)) + Considered Problem: - Strict TRS: plus_x#1(S(x12),x14) -> S(plus_x#1(x12,x14)) - Weak TRS: main(x5,x12) -> map#2(plus_x(x12),x5) map#2(plus_x(x2),Nil()) -> Nil() map#2(plus_x(x6),Cons(x4,x2)) -> Cons(plus_x#1(x6,x4),map#2(plus_x(x6),x2)) plus_x#1(0(),x8) -> x8 - Signature: {main/2,map#2/2,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,plus_x/1} - Obligation: innermost runtime complexity wrt. defined symbols {main,map#2,plus_x#1} and constructors {0,Cons,Nil,S ,plus_x} + Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just any strict-rules} + Details: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(Cons) = {1,2}, uargs(S) = {1} Following symbols are considered usable: {main,map#2,plus_x#1} TcT has computed the following interpretation: p(0) = 0 p(Cons) = 1 + x1 + x2 p(Nil) = 0 p(S) = 1 + x1 p(main) = 2 + 5*x1 + 4*x1*x2 + 5*x1^2 + 4*x2 + x2^2 p(map#2) = 3*x1*x2 + 3*x2^2 p(plus_x) = 1 + x1 p(plus_x#1) = 3*x1 + 3*x1*x2 + x2 Following rules are strictly oriented: plus_x#1(S(x12),x14) = 3 + 3*x12 + 3*x12*x14 + 4*x14 > 1 + 3*x12 + 3*x12*x14 + x14 = S(plus_x#1(x12,x14)) Following rules are (at-least) weakly oriented: main(x5,x12) = 2 + 4*x12 + 4*x12*x5 + x12^2 + 5*x5 + 5*x5^2 >= 3*x12*x5 + 3*x5 + 3*x5^2 = map#2(plus_x(x12),x5) map#2(plus_x(x2),Nil()) = 0 >= 0 = Nil() map#2(plus_x(x6),Cons(x4,x2)) = 6 + 9*x2 + 6*x2*x4 + 3*x2*x6 + 3*x2^2 + 9*x4 + 3*x4*x6 + 3*x4^2 + 3*x6 >= 1 + 3*x2 + 3*x2*x6 + 3*x2^2 + x4 + 3*x4*x6 + 3*x6 = Cons(plus_x#1(x6,x4),map#2(plus_x(x6),x2)) plus_x#1(0(),x8) = x8 >= x8 = x8 ** Step 1.b:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: main(x5,x12) -> map#2(plus_x(x12),x5) map#2(plus_x(x2),Nil()) -> Nil() map#2(plus_x(x6),Cons(x4,x2)) -> Cons(plus_x#1(x6,x4),map#2(plus_x(x6),x2)) plus_x#1(0(),x8) -> x8 plus_x#1(S(x12),x14) -> S(plus_x#1(x12,x14)) - Signature: {main/2,map#2/2,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,plus_x/1} - Obligation: innermost runtime complexity wrt. defined symbols {main,map#2,plus_x#1} and constructors {0,Cons,Nil,S ,plus_x} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^2))