* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
    + Considered Problem:
        - Strict TRS:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            main(x1) -> sort#2(x1)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1,insert#3,leq#2,main
            ,sort#2} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            main(x1) -> sort#2(x1)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1,insert#3,leq#2,main
            ,sort#2} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          leq#2(x,y){x -> S(x),y -> S(y)} =
            leq#2(S(x),S(y)) ->^+ leq#2(x,y)
              = C[leq#2(x,y) = leq#2(x,y){}]

** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            main(x1) -> sort#2(x1)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1,insert#3,leq#2,main
            ,sort#2} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
          cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
          insert#3#(x2,Nil()) -> c_3()
          insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
          leq#2#(0(),x8) -> c_5()
          leq#2#(S(x12),0()) -> c_6()
          leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
          main#(x1) -> c_8(sort#2#(x1))
          sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
          sort#2#(Nil()) -> c_10()
        Weak DPs
          
        
        and mark the set of starting terms.
** Step 1.b:2: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
            cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
            insert#3#(x2,Nil()) -> c_3()
            insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
            leq#2#(0(),x8) -> c_5()
            leq#2#(S(x12),0()) -> c_6()
            leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
            main#(x1) -> c_8(sort#2#(x1))
            sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
            sort#2#(Nil()) -> c_10()
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            main(x1) -> sort#2(x1)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
          cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
          insert#3(x2,Nil()) -> Cons(x2,Nil())
          insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
          leq#2(0(),x8) -> True()
          leq#2(S(x12),0()) -> False()
          leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
          sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
          sort#2(Nil()) -> Nil()
          cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
          cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
          insert#3#(x2,Nil()) -> c_3()
          insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
          leq#2#(0(),x8) -> c_5()
          leq#2#(S(x12),0()) -> c_6()
          leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
          main#(x1) -> c_8(sort#2#(x1))
          sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
          sort#2#(Nil()) -> c_10()
** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
            cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
            insert#3#(x2,Nil()) -> c_3()
            insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
            leq#2#(0(),x8) -> c_5()
            leq#2#(S(x12),0()) -> c_6()
            leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
            main#(x1) -> c_8(sort#2#(x1))
            sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
            sort#2#(Nil()) -> c_10()
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {2,3,5,6,10}
        by application of
          Pre({2,3,5,6,10}) = {1,4,7,8,9}.
        Here rules are labelled as follows:
          1: cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
          2: cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
          3: insert#3#(x2,Nil()) -> c_3()
          4: insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
          5: leq#2#(0(),x8) -> c_5()
          6: leq#2#(S(x12),0()) -> c_6()
          7: leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
          8: main#(x1) -> c_8(sort#2#(x1))
          9: sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
          10: sort#2#(Nil()) -> c_10()
** Step 1.b:4: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
            insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
            leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
            main#(x1) -> c_8(sort#2#(x1))
            sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        - Weak DPs:
            cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
            insert#3#(x2,Nil()) -> c_3()
            leq#2#(0(),x8) -> c_5()
            leq#2#(S(x12),0()) -> c_6()
            sort#2#(Nil()) -> c_10()
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
             -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):2
             -->_1 insert#3#(x2,Nil()) -> c_3():7
          
          2:S:insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
             -->_2 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):3
             -->_2 leq#2#(S(x12),0()) -> c_6():9
             -->_2 leq#2#(0(),x8) -> c_5():8
             -->_1 cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2():6
             -->_1 cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)):1
          
          3:S:leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
             -->_1 leq#2#(S(x12),0()) -> c_6():9
             -->_1 leq#2#(0(),x8) -> c_5():8
             -->_1 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):3
          
          4:S:main#(x1) -> c_8(sort#2#(x1))
             -->_1 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):5
             -->_1 sort#2#(Nil()) -> c_10():10
          
          5:S:sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
             -->_2 sort#2#(Nil()) -> c_10():10
             -->_1 insert#3#(x2,Nil()) -> c_3():7
             -->_2 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):5
             -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):2
          
          6:W:cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
             
          
          7:W:insert#3#(x2,Nil()) -> c_3()
             
          
          8:W:leq#2#(0(),x8) -> c_5()
             
          
          9:W:leq#2#(S(x12),0()) -> c_6()
             
          
          10:W:sort#2#(Nil()) -> c_10()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          10: sort#2#(Nil()) -> c_10()
          7: insert#3#(x2,Nil()) -> c_3()
          6: cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
          8: leq#2#(0(),x8) -> c_5()
          9: leq#2#(S(x12),0()) -> c_6()
** Step 1.b:5: RemoveHeads WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
            insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
            leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
            main#(x1) -> c_8(sort#2#(x1))
            sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        RemoveHeads
    + Details:
        Consider the dependency graph
        
        1:S:cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
           -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):2
        
        2:S:insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
           -->_2 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):3
           -->_1 cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)):1
        
        3:S:leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
           -->_1 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):3
        
        4:S:main#(x1) -> c_8(sort#2#(x1))
           -->_1 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):5
        
        5:S:sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
           -->_2 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):5
           -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):2
        
        
        Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
        
        [(4,main#(x1) -> c_8(sort#2#(x1)))]
** Step 1.b:6: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
            insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
            leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
            sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
              insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
              leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
          - Weak DPs:
              sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
          - Weak TRS:
              cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
              cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
              insert#3(x2,Nil()) -> Cons(x2,Nil())
              insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
              leq#2(0(),x8) -> True()
              leq#2(S(x12),0()) -> False()
              leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
              sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
              sort#2(Nil()) -> Nil()
          - Signature:
              {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2
              ,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0
              ,c_7/1,c_8/1,c_9/2,c_10/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
              ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
        
        Problem (S)
          - Strict DPs:
              sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
          - Weak DPs:
              cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
              insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
              leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
          - Weak TRS:
              cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
              cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
              insert#3(x2,Nil()) -> Cons(x2,Nil())
              insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
              leq#2(0(),x8) -> True()
              leq#2(S(x12),0()) -> False()
              leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
              sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
              sort#2(Nil()) -> Nil()
          - Signature:
              {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2
              ,leq#2#/2,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0
              ,c_7/1,c_8/1,c_9/2,c_10/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
              ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
*** Step 1.b:6.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
            insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
            leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
        - Weak DPs:
            sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          3: leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
          
        The strictly oriented rules are moved into the weak component.
**** Step 1.b:6.a:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
            insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
            leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
        - Weak DPs:
            sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_1) = {1},
          uargs(c_4) = {1,2},
          uargs(c_7) = {1},
          uargs(c_9) = {1,2}
        
        Following symbols are considered usable:
          {cond_insert_ord_x_ys_1,insert#3,sort#2,cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}
        TcT has computed the following interpretation:
                                p(0) = 0                             
                             p(Cons) = 1 + x1 + x2                   
                            p(False) = 0                             
                              p(Nil) = 0                             
                                p(S) = 1 + x1                        
                             p(True) = 0                             
           p(cond_insert_ord_x_ys_1) = 2 + x2 + x3 + x4              
                         p(insert#3) = 1 + x1 + x2                   
                            p(leq#2) = 0                             
                             p(main) = 1 + x1                        
                           p(sort#2) = x1                            
          p(cond_insert_ord_x_ys_1#) = 6 + 6*x2*x3 + 6*x2*x4 + 7*x2^2
                        p(insert#3#) = 6 + 6*x1*x2 + 7*x1^2          
                           p(leq#2#) = x1                            
                            p(main#) = 0                             
                          p(sort#2#) = 7*x1^2                        
                              p(c_1) = x1                            
                              p(c_2) = 1                             
                              p(c_3) = 1                             
                              p(c_4) = x1 + x2                       
                              p(c_5) = 0                             
                              p(c_6) = 0                             
                              p(c_7) = x1                            
                              p(c_8) = 1                             
                              p(c_9) = x1 + x2                       
                             p(c_10) = 0                             
        
        Following rules are strictly oriented:
        leq#2#(S(x4),S(x2)) = 1 + x4            
                            > x4                
                            = c_7(leq#2#(x4,x2))
        
        
        Following rules are (at-least) weakly oriented:
        cond_insert_ord_x_ys_1#(False(),x3,x2,x1) =  6 + 6*x1*x3 + 6*x2*x3 + 7*x3^2                                   
                                                  >= 6 + 6*x1*x3 + 7*x3^2                                             
                                                  =  c_1(insert#3#(x3,x1))                                            
        
                        insert#3#(x6,Cons(x4,x2)) =  6 + 6*x2*x6 + 6*x4*x6 + 6*x6 + 7*x6^2                            
                                                  >= 6 + 6*x2*x6 + 6*x4*x6 + x6 + 7*x6^2                              
                                                  =  c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
        
                             sort#2#(Cons(x4,x2)) =  7 + 14*x2 + 14*x2*x4 + 7*x2^2 + 14*x4 + 7*x4^2                   
                                                  >= 6 + 6*x2*x4 + 7*x2^2 + 7*x4^2                                    
                                                  =  c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))                        
        
         cond_insert_ord_x_ys_1(False(),x3,x2,x1) =  2 + x1 + x2 + x3                                                 
                                                  >= 2 + x1 + x2 + x3                                                 
                                                  =  Cons(x2,insert#3(x3,x1))                                         
        
          cond_insert_ord_x_ys_1(True(),x3,x2,x1) =  2 + x1 + x2 + x3                                                 
                                                  >= 2 + x1 + x2 + x3                                                 
                                                  =  Cons(x3,Cons(x2,x1))                                             
        
                               insert#3(x2,Nil()) =  1 + x2                                                           
                                                  >= 1 + x2                                                           
                                                  =  Cons(x2,Nil())                                                   
        
                         insert#3(x6,Cons(x4,x2)) =  2 + x2 + x4 + x6                                                 
                                                  >= 2 + x2 + x4 + x6                                                 
                                                  =  cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)                    
        
                              sort#2(Cons(x4,x2)) =  1 + x2 + x4                                                      
                                                  >= 1 + x2 + x4                                                      
                                                  =  insert#3(x4,sort#2(x2))                                          
        
                                    sort#2(Nil()) =  0                                                                
                                                  >= 0                                                                
                                                  =  Nil()                                                            
        
**** Step 1.b:6.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
            insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
        - Weak DPs:
            leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
            sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 1.b:6.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
            insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
        - Weak DPs:
            leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
            sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
             -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):2
          
          2:S:insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
             -->_2 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):3
             -->_1 cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)):1
          
          3:W:leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
             -->_1 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):3
          
          4:W:sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
             -->_2 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):4
             -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
**** Step 1.b:6.a:1.b:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
            insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
        - Weak DPs:
            sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
             -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):2
          
          2:S:insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
             -->_1 cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)):1
          
          4:W:sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
             -->_2 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):4
             -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):2
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2))
**** Step 1.b:6.a:1.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
            insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2))
        - Weak DPs:
            sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2))
          
        Consider the set of all dependency pairs
          1: cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
          2: insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2))
          3: sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        Processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {2}
        These cover all (indirect) predecessors of dependency pairs
          {1,2}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
***** Step 1.b:6.a:1.b:3.a:1: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
            insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2))
        - Weak DPs:
            sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 2 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_1) = {1},
          uargs(c_4) = {1},
          uargs(c_9) = {1,2}
        
        Following symbols are considered usable:
          {cond_insert_ord_x_ys_1,insert#3,leq#2,sort#2,cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}
        TcT has computed the following interpretation:
                                p(0) = [0]                                                    
                                       [0]                                                    
                                       [1]                                                    
                             p(Cons) = [1 1 0]      [1 1 0]      [0]                          
                                       [0 0 0] x1 + [0 0 1] x2 + [0]                          
                                       [0 0 0]      [0 0 1]      [1]                          
                            p(False) = [0]                                                    
                                       [0]                                                    
                                       [1]                                                    
                              p(Nil) = [0]                                                    
                                       [0]                                                    
                                       [1]                                                    
                                p(S) = [0 0 0]      [0]                                       
                                       [0 0 0] x1 + [0]                                       
                                       [0 0 1]      [0]                                       
                             p(True) = [0]                                                    
                                       [0]                                                    
                                       [1]                                                    
           p(cond_insert_ord_x_ys_1) = [0 0 0]      [1 1 0]      [1 1 0]      [1 1 1]      [0]
                                       [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 1] x4 + [1]
                                       [0 0 1]      [0 0 0]      [0 0 0]      [0 0 1]      [1]
                         p(insert#3) = [1 1 0]      [1 1 0]      [0]                          
                                       [0 0 0] x1 + [0 0 1] x2 + [0]                          
                                       [0 0 0]      [0 0 1]      [1]                          
                            p(leq#2) = [0 0 1]      [0]                                       
                                       [0 0 0] x1 + [0]                                       
                                       [0 0 0]      [1]                                       
                             p(main) = [0]                                                    
                                       [0]                                                    
                                       [0]                                                    
                           p(sort#2) = [1 0 0]      [0]                                       
                                       [0 1 0] x1 + [0]                                       
                                       [0 0 1]      [0]                                       
          p(cond_insert_ord_x_ys_1#) = [0 0 0]      [0 0 0]      [0 0 1]      [0]             
                                       [0 1 0] x2 + [0 0 0] x3 + [0 0 0] x4 + [0]             
                                       [0 0 0]      [1 1 0]      [0 1 0]      [0]             
                        p(insert#3#) = [0 0 0]      [0 0 1]      [0]                          
                                       [0 1 0] x1 + [0 0 0] x2 + [0]                          
                                       [1 1 0]      [1 1 0]      [0]                          
                           p(leq#2#) = [0]                                                    
                                       [0]                                                    
                                       [0]                                                    
                            p(main#) = [0]                                                    
                                       [0]                                                    
                                       [0]                                                    
                          p(sort#2#) = [1 1 0]      [0]                                       
                                       [1 0 0] x1 + [1]                                       
                                       [0 1 1]      [0]                                       
                              p(c_1) = [1 0 0]      [0]                                       
                                       [0 0 0] x1 + [0]                                       
                                       [0 0 0]      [0]                                       
                              p(c_2) = [0]                                                    
                                       [0]                                                    
                                       [0]                                                    
                              p(c_3) = [0]                                                    
                                       [0]                                                    
                                       [0]                                                    
                              p(c_4) = [1 0 0]      [0]                                       
                                       [0 1 0] x1 + [0]                                       
                                       [1 0 1]      [0]                                       
                              p(c_5) = [0]                                                    
                                       [0]                                                    
                                       [0]                                                    
                              p(c_6) = [0]                                                    
                                       [0]                                                    
                                       [0]                                                    
                              p(c_7) = [0]                                                    
                                       [0]                                                    
                                       [0]                                                    
                              p(c_8) = [0]                                                    
                                       [0]                                                    
                                       [0]                                                    
                              p(c_9) = [1 1 0]      [1 0 0]      [0]                          
                                       [0 0 0] x1 + [0 0 0] x2 + [1]                          
                                       [0 0 0]      [0 0 0]      [1]                          
                             p(c_10) = [0]                                                    
                                       [0]                                                    
                                       [0]                                                    
        
        Following rules are strictly oriented:
        insert#3#(x6,Cons(x4,x2)) = [0 0 1]      [0 0 0]      [0 0 0]      [1]         
                                    [0 0 0] x2 + [0 0 0] x4 + [0 1 0] x6 + [0]         
                                    [1 1 1]      [1 1 0]      [1 1 0]      [0]         
                                  > [0 0 1]      [0 0 0]      [0 0 0]      [0]         
                                    [0 0 0] x2 + [0 0 0] x4 + [0 1 0] x6 + [0]         
                                    [0 1 1]      [1 1 0]      [0 0 0]      [0]         
                                  = c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2))
        
        
        Following rules are (at-least) weakly oriented:
        cond_insert_ord_x_ys_1#(False(),x3,x2,x1) =  [0 0 1]      [0 0 0]      [0 0 0]      [0]   
                                                     [0 0 0] x1 + [0 0 0] x2 + [0 1 0] x3 + [0]   
                                                     [0 1 0]      [1 1 0]      [0 0 0]      [0]   
                                                  >= [0 0 1]      [0]                             
                                                     [0 0 0] x1 + [0]                             
                                                     [0 0 0]      [0]                             
                                                  =  c_1(insert#3#(x3,x1))                        
        
                             sort#2#(Cons(x4,x2)) =  [1 1 1]      [1 1 0]      [0]                
                                                     [1 1 0] x2 + [1 1 0] x4 + [1]                
                                                     [0 0 2]      [0 0 0]      [1]                
                                                  >= [1 1 1]      [0 1 0]      [0]                
                                                     [0 0 0] x2 + [0 0 0] x4 + [1]                
                                                     [0 0 0]      [0 0 0]      [1]                
                                                  =  c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))    
        
         cond_insert_ord_x_ys_1(False(),x3,x2,x1) =  [1 1 1]      [1 1 0]      [1 1 0]      [0]   
                                                     [0 0 1] x1 + [0 0 0] x2 + [0 0 0] x3 + [1]   
                                                     [0 0 1]      [0 0 0]      [0 0 0]      [2]   
                                                  >= [1 1 1]      [1 1 0]      [1 1 0]      [0]   
                                                     [0 0 1] x1 + [0 0 0] x2 + [0 0 0] x3 + [1]   
                                                     [0 0 1]      [0 0 0]      [0 0 0]      [2]   
                                                  =  Cons(x2,insert#3(x3,x1))                     
        
          cond_insert_ord_x_ys_1(True(),x3,x2,x1) =  [1 1 1]      [1 1 0]      [1 1 0]      [0]   
                                                     [0 0 1] x1 + [0 0 0] x2 + [0 0 0] x3 + [1]   
                                                     [0 0 1]      [0 0 0]      [0 0 0]      [2]   
                                                  >= [1 1 1]      [1 1 0]      [1 1 0]      [0]   
                                                     [0 0 1] x1 + [0 0 0] x2 + [0 0 0] x3 + [1]   
                                                     [0 0 1]      [0 0 0]      [0 0 0]      [2]   
                                                  =  Cons(x3,Cons(x2,x1))                         
        
                               insert#3(x2,Nil()) =  [1 1 0]      [0]                             
                                                     [0 0 0] x2 + [1]                             
                                                     [0 0 0]      [2]                             
                                                  >= [1 1 0]      [0]                             
                                                     [0 0 0] x2 + [1]                             
                                                     [0 0 0]      [2]                             
                                                  =  Cons(x2,Nil())                               
        
                         insert#3(x6,Cons(x4,x2)) =  [1 1 1]      [1 1 0]      [1 1 0]      [0]   
                                                     [0 0 1] x2 + [0 0 0] x4 + [0 0 0] x6 + [1]   
                                                     [0 0 1]      [0 0 0]      [0 0 0]      [2]   
                                                  >= [1 1 1]      [1 1 0]      [1 1 0]      [0]   
                                                     [0 0 1] x2 + [0 0 0] x4 + [0 0 0] x6 + [1]   
                                                     [0 0 1]      [0 0 0]      [0 0 0]      [2]   
                                                  =  cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
        
                                    leq#2(0(),x8) =  [1]                                          
                                                     [0]                                          
                                                     [1]                                          
                                                  >= [0]                                          
                                                     [0]                                          
                                                     [1]                                          
                                                  =  True()                                       
        
                                leq#2(S(x12),0()) =  [0 0 1]       [0]                            
                                                     [0 0 0] x12 + [0]                            
                                                     [0 0 0]       [1]                            
                                                  >= [0]                                          
                                                     [0]                                          
                                                     [1]                                          
                                                  =  False()                                      
        
                               leq#2(S(x4),S(x2)) =  [0 0 1]      [0]                             
                                                     [0 0 0] x4 + [0]                             
                                                     [0 0 0]      [1]                             
                                                  >= [0 0 1]      [0]                             
                                                     [0 0 0] x4 + [0]                             
                                                     [0 0 0]      [1]                             
                                                  =  leq#2(x4,x2)                                 
        
                              sort#2(Cons(x4,x2)) =  [1 1 0]      [1 1 0]      [0]                
                                                     [0 0 1] x2 + [0 0 0] x4 + [0]                
                                                     [0 0 1]      [0 0 0]      [1]                
                                                  >= [1 1 0]      [1 1 0]      [0]                
                                                     [0 0 1] x2 + [0 0 0] x4 + [0]                
                                                     [0 0 1]      [0 0 0]      [1]                
                                                  =  insert#3(x4,sort#2(x2))                      
        
                                    sort#2(Nil()) =  [0]                                          
                                                     [0]                                          
                                                     [1]                                          
                                                  >= [0]                                          
                                                     [0]                                          
                                                     [1]                                          
                                                  =  Nil()                                        
        
***** Step 1.b:6.a:1.b:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
        - Weak DPs:
            insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2))
            sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:6.a:1.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
            insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2))
            sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
             -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2)):2
          
          2:W:insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2))
             -->_1 cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)):1
          
          3:W:sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
             -->_2 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):3
             -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
          1: cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
          2: insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2))
***** Step 1.b:6.a:1.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/1,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 1.b:6.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        - Weak DPs:
            cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
            insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
            leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
             -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):3
             -->_2 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):1
          
          2:W:cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
             -->_1 insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4)):3
          
          3:W:insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
             -->_2 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):4
             -->_1 cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1)):2
          
          4:W:leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
             -->_1 leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2)):4
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: insert#3#(x6,Cons(x4,x2)) -> c_4(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
          2: cond_insert_ord_x_ys_1#(False(),x3,x2,x1) -> c_1(insert#3#(x3,x1))
          4: leq#2#(S(x4),S(x2)) -> c_7(leq#2#(x4,x2))
*** Step 1.b:6.b:2: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2))
             -->_2 sort#2#(Cons(x4,x2)) -> c_9(insert#3#(x4,sort#2(x2)),sort#2#(x2)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2))
*** Step 1.b:6.b:3: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x3,x2,x1) -> Cons(x2,insert#3(x3,x1))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            insert#3(x2,Nil()) -> Cons(x2,Nil())
            insert#3(x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            sort#2(Cons(x4,x2)) -> insert#3(x4,sort#2(x2))
            sort#2(Nil()) -> Nil()
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/1,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2))
*** Step 1.b:6.b:4: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2))
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/1,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2))
          
        The strictly oriented rules are moved into the weak component.
**** Step 1.b:6.b:4.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2))
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/1,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_9) = {1}
        
        Following symbols are considered usable:
          {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#,sort#2#}
        TcT has computed the following interpretation:
                                p(0) = [0]                   
                             p(Cons) = [1] x1 + [1] x2 + [10]
                            p(False) = [0]                   
                              p(Nil) = [0]                   
                                p(S) = [1] x1 + [0]          
                             p(True) = [0]                   
           p(cond_insert_ord_x_ys_1) = [0]                   
                         p(insert#3) = [0]                   
                            p(leq#2) = [0]                   
                             p(main) = [0]                   
                           p(sort#2) = [0]                   
          p(cond_insert_ord_x_ys_1#) = [0]                   
                        p(insert#3#) = [1] x2 + [0]          
                           p(leq#2#) = [8] x1 + [1]          
                            p(main#) = [1] x1 + [1]          
                          p(sort#2#) = [2] x1 + [8]          
                              p(c_1) = [0]                   
                              p(c_2) = [0]                   
                              p(c_3) = [0]                   
                              p(c_4) = [1] x2 + [0]          
                              p(c_5) = [0]                   
                              p(c_6) = [1]                   
                              p(c_7) = [8] x1 + [0]          
                              p(c_8) = [1] x1 + [1]          
                              p(c_9) = [1] x1 + [1]          
                             p(c_10) = [2]                   
        
        Following rules are strictly oriented:
        sort#2#(Cons(x4,x2)) = [2] x2 + [2] x4 + [28]
                             > [2] x2 + [9]          
                             = c_9(sort#2#(x2))      
        
        
        Following rules are (at-least) weakly oriented:
        
**** Step 1.b:6.b:4.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2))
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/1,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 1.b:6.b:4.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2))
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/1,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2))
             -->_1 sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: sort#2#(Cons(x4,x2)) -> c_9(sort#2#(x2))
**** Step 1.b:6.b:4.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {cond_insert_ord_x_ys_1/4,insert#3/2,leq#2/2,main/1,sort#2/1,cond_insert_ord_x_ys_1#/4,insert#3#/2,leq#2#/2
            ,main#/1,sort#2#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,c_1/1,c_2/0,c_3/0,c_4/2,c_5/0,c_6/0,c_7/1,c_8/1
            ,c_9/1,c_10/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,insert#3#,leq#2#,main#
            ,sort#2#} and constructors {0,Cons,False,Nil,S,True}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^2))