* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
    + Considered Problem:
        - Strict TRS:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            main(x3) -> fold#3(insert_ord(leq()),x3)
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0
            ,insert_ord/1,leq/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1,fold#3,insert_ord#2,leq#2
            ,main} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            main(x3) -> fold#3(insert_ord(leq()),x3)
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0
            ,insert_ord/1,leq/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1,fold#3,insert_ord#2,leq#2
            ,main} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          fold#3(insert_ord(x),z){z -> Cons(y,z)} =
            fold#3(insert_ord(x),Cons(y,z)) ->^+ insert_ord#2(x,y,fold#3(insert_ord(x),z))
              = C[fold#3(insert_ord(x),z) = fold#3(insert_ord(x),z){}]

** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            main(x3) -> fold#3(insert_ord(leq()),x3)
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0
            ,insert_ord/1,leq/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1,fold#3,insert_ord#2,leq#2
            ,main} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
          cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
          fold#3#(insert_ord(x2),Nil()) -> c_3()
          fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                    ,fold#3#(insert_ord(x6),x2))
          insert_ord#2#(leq(),x2,Nil()) -> c_5()
          insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
          leq#2#(0(),x8) -> c_7()
          leq#2#(S(x12),0()) -> c_8()
          leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
          main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3))
        Weak DPs
          
        
        and mark the set of starting terms.
** Step 1.b:2: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
            cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
            fold#3#(insert_ord(x2),Nil()) -> c_3()
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                      ,fold#3#(insert_ord(x6),x2))
            insert_ord#2#(leq(),x2,Nil()) -> c_5()
            insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
            leq#2#(0(),x8) -> c_7()
            leq#2#(S(x12),0()) -> c_8()
            leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
            main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
            main(x3) -> fold#3(insert_ord(leq()),x3)
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
          cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
          fold#3(insert_ord(x2),Nil()) -> Nil()
          fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
          insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
          insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
          leq#2(0(),x8) -> True()
          leq#2(S(x12),0()) -> False()
          leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
          cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
          cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
          fold#3#(insert_ord(x2),Nil()) -> c_3()
          fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                    ,fold#3#(insert_ord(x6),x2))
          insert_ord#2#(leq(),x2,Nil()) -> c_5()
          insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
          leq#2#(0(),x8) -> c_7()
          leq#2#(S(x12),0()) -> c_8()
          leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
          main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3))
** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
            cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
            fold#3#(insert_ord(x2),Nil()) -> c_3()
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                      ,fold#3#(insert_ord(x6),x2))
            insert_ord#2#(leq(),x2,Nil()) -> c_5()
            insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
            leq#2#(0(),x8) -> c_7()
            leq#2#(S(x12),0()) -> c_8()
            leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
            main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {2,3,5,7,8}
        by application of
          Pre({2,3,5,7,8}) = {1,4,6,9,10}.
        Here rules are labelled as follows:
          1: cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
          2: cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
          3: fold#3#(insert_ord(x2),Nil()) -> c_3()
          4: fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                       ,fold#3#(insert_ord(x6),x2))
          5: insert_ord#2#(leq(),x2,Nil()) -> c_5()
          6: insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
          7: leq#2#(0(),x8) -> c_7()
          8: leq#2#(S(x12),0()) -> c_8()
          9: leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
          10: main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3))
** Step 1.b:4: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                      ,fold#3#(insert_ord(x6),x2))
            insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
            leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
            main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3))
        - Weak DPs:
            cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
            fold#3#(insert_ord(x2),Nil()) -> c_3()
            insert_ord#2#(leq(),x2,Nil()) -> c_5()
            leq#2#(0(),x8) -> c_7()
            leq#2#(S(x12),0()) -> c_8()
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
             -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2)
                                                             ,leq#2#(x6,x4)):3
             -->_1 insert_ord#2#(leq(),x2,Nil()) -> c_5():8
          
          2:S:fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                        ,fold#3#(insert_ord(x6),x2))
             -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2)
                                                             ,leq#2#(x6,x4)):3
             -->_1 insert_ord#2#(leq(),x2,Nil()) -> c_5():8
             -->_2 fold#3#(insert_ord(x2),Nil()) -> c_3():7
             -->_2 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                             ,fold#3#(insert_ord(x6),x2)):2
          
          3:S:insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
             -->_2 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4
             -->_2 leq#2#(S(x12),0()) -> c_8():10
             -->_2 leq#2#(0(),x8) -> c_7():9
             -->_1 cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2():6
             -->_1 cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)):1
          
          4:S:leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
             -->_1 leq#2#(S(x12),0()) -> c_8():10
             -->_1 leq#2#(0(),x8) -> c_7():9
             -->_1 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4
          
          5:S:main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3))
             -->_1 fold#3#(insert_ord(x2),Nil()) -> c_3():7
             -->_1 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                             ,fold#3#(insert_ord(x6),x2)):2
          
          6:W:cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
             
          
          7:W:fold#3#(insert_ord(x2),Nil()) -> c_3()
             
          
          8:W:insert_ord#2#(leq(),x2,Nil()) -> c_5()
             
          
          9:W:leq#2#(0(),x8) -> c_7()
             
          
          10:W:leq#2#(S(x12),0()) -> c_8()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          7: fold#3#(insert_ord(x2),Nil()) -> c_3()
          8: insert_ord#2#(leq(),x2,Nil()) -> c_5()
          6: cond_insert_ord_x_ys_1#(True(),x3,x2,x1) -> c_2()
          9: leq#2#(0(),x8) -> c_7()
          10: leq#2#(S(x12),0()) -> c_8()
** Step 1.b:5: RemoveHeads WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                      ,fold#3#(insert_ord(x6),x2))
            insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
            leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
            main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        RemoveHeads
    + Details:
        Consider the dependency graph
        
        1:S:cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
           -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2)
                                                           ,leq#2#(x6,x4)):3
        
        2:S:fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                      ,fold#3#(insert_ord(x6),x2))
           -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2)
                                                           ,leq#2#(x6,x4)):3
           -->_2 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                           ,fold#3#(insert_ord(x6),x2)):2
        
        3:S:insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
           -->_2 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4
           -->_1 cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)):1
        
        4:S:leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
           -->_1 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4
        
        5:S:main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3))
           -->_1 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                           ,fold#3#(insert_ord(x6),x2)):2
        
        
        Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
        
        [(5,main#(x3) -> c_10(fold#3#(insert_ord(leq()),x3)))]
** Step 1.b:6: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                      ,fold#3#(insert_ord(x6),x2))
            insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
            leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
              insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
              leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
          - Weak DPs:
              fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                        ,fold#3#(insert_ord(x6),x2))
          - Weak TRS:
              cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
              cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
              fold#3(insert_ord(x2),Nil()) -> Nil()
              fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
              insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
              insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
              leq#2(0(),x8) -> True()
              leq#2(S(x12),0()) -> False()
              leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
          - Signature:
              {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
              ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
              ,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
              ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
        
        Problem (S)
          - Strict DPs:
              fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                        ,fold#3#(insert_ord(x6),x2))
          - Weak DPs:
              cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
              insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
              leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
          - Weak TRS:
              cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
              cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
              fold#3(insert_ord(x2),Nil()) -> Nil()
              fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
              insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
              insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
              leq#2(0(),x8) -> True()
              leq#2(S(x12),0()) -> False()
              leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
          - Signature:
              {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
              ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
              ,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
              ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
*** Step 1.b:6.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
            insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
            leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
        - Weak DPs:
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                      ,fold#3#(insert_ord(x6),x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          4: leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
          
        The strictly oriented rules are moved into the weak component.
**** Step 1.b:6.a:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
            insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
            leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
        - Weak DPs:
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                      ,fold#3#(insert_ord(x6),x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_1) = {1},
          uargs(c_4) = {1,2},
          uargs(c_6) = {1,2},
          uargs(c_9) = {1}
        
        Following symbols are considered usable:
          {cond_insert_ord_x_ys_1,fold#3,insert_ord#2,cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}
        TcT has computed the following interpretation:
                                p(0) = 0                
                             p(Cons) = x1 + x2          
                            p(False) = 0                
                              p(Nil) = 0                
                                p(S) = 1 + x1           
                             p(True) = 0                
           p(cond_insert_ord_x_ys_1) = 2*x2 + x3 + x4   
                           p(fold#3) = 2*x2             
                       p(insert_ord) = 0                
                     p(insert_ord#2) = 2*x2 + x3        
                              p(leq) = 0                
                            p(leq#2) = 0                
                             p(main) = 2 + 2*x1^2       
          p(cond_insert_ord_x_ys_1#) = x2*x3 + 3*x2*x4  
                          p(fold#3#) = 2 + 2*x1 + 3*x2^2
                    p(insert_ord#2#) = 3*x2*x3          
                           p(leq#2#) = 2*x1*x2          
                            p(main#) = 2 + 2*x1         
                              p(c_1) = x1               
                              p(c_2) = 0                
                              p(c_3) = 1                
                              p(c_4) = x1 + x2          
                              p(c_5) = 1                
                              p(c_6) = x1 + x2          
                              p(c_7) = 1                
                              p(c_8) = 0                
                              p(c_9) = x1               
                             p(c_10) = 0                
        
        Following rules are strictly oriented:
        leq#2#(S(x4),S(x2)) = 2 + 2*x2 + 2*x2*x4 + 2*x4
                            > 2*x2*x4                  
                            = c_9(leq#2#(x4,x2))       
        
        
        Following rules are (at-least) weakly oriented:
        cond_insert_ord_x_ys_1#(False(),x0,x5,x2) =  3*x0*x2 + x0*x5                                                               
                                                  >= 3*x0*x2                                                                       
                                                  =  c_1(insert_ord#2#(leq(),x0,x2))                                               
        
              fold#3#(insert_ord(x6),Cons(x4,x2)) =  2 + 6*x2*x4 + 3*x2^2 + 3*x4^2                                                 
                                                  >= 2 + 6*x2*x4 + 3*x2^2                                                          
                                                  =  c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2))
        
              insert_ord#2#(leq(),x6,Cons(x4,x2)) =  3*x2*x6 + 3*x4*x6                                                             
                                                  >= 3*x2*x6 + 3*x4*x6                                                             
                                                  =  c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))             
        
         cond_insert_ord_x_ys_1(False(),x0,x5,x2) =  2*x0 + x2 + x5                                                                
                                                  >= 2*x0 + x2 + x5                                                                
                                                  =  Cons(x5,insert_ord#2(leq(),x0,x2))                                            
        
          cond_insert_ord_x_ys_1(True(),x3,x2,x1) =  x1 + x2 + 2*x3                                                                
                                                  >= x1 + x2 + x3                                                                  
                                                  =  Cons(x3,Cons(x2,x1))                                                          
        
                     fold#3(insert_ord(x2),Nil()) =  0                                                                             
                                                  >= 0                                                                             
                                                  =  Nil()                                                                         
        
               fold#3(insert_ord(x6),Cons(x4,x2)) =  2*x2 + 2*x4                                                                   
                                                  >= 2*x2 + 2*x4                                                                   
                                                  =  insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))                                 
        
                     insert_ord#2(leq(),x2,Nil()) =  2*x2                                                                          
                                                  >= x2                                                                            
                                                  =  Cons(x2,Nil())                                                                
        
               insert_ord#2(leq(),x6,Cons(x4,x2)) =  x2 + x4 + 2*x6                                                                
                                                  >= x2 + x4 + 2*x6                                                                
                                                  =  cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)                                 
        
**** Step 1.b:6.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
            insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
        - Weak DPs:
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                      ,fold#3#(insert_ord(x6),x2))
            leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 1.b:6.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
            insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
        - Weak DPs:
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                      ,fold#3#(insert_ord(x6),x2))
            leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
             -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2)
                                                             ,leq#2#(x6,x4)):2
          
          2:S:insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
             -->_2 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4
             -->_1 cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)):1
          
          3:W:fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                        ,fold#3#(insert_ord(x6),x2))
             -->_2 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                             ,fold#3#(insert_ord(x6),x2)):3
             -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2)
                                                             ,leq#2#(x6,x4)):2
          
          4:W:leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
             -->_1 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          4: leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
**** Step 1.b:6.a:1.b:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
            insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
        - Weak DPs:
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                      ,fold#3#(insert_ord(x6),x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
             -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2)
                                                             ,leq#2#(x6,x4)):2
          
          2:S:insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
             -->_1 cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)):1
          
          3:W:fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                        ,fold#3#(insert_ord(x6),x2))
             -->_2 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                             ,fold#3#(insert_ord(x6),x2)):3
             -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2)
                                                             ,leq#2#(x6,x4)):2
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2))
**** Step 1.b:6.a:1.b:3: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
            insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2))
        - Weak DPs:
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                      ,fold#3#(insert_ord(x6),x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/2,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2))
          
        Consider the set of all dependency pairs
          1: cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
          2: insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2))
          3: fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                       ,fold#3#(insert_ord(x6),x2))
        Processor NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {2}
        These cover all (indirect) predecessors of dependency pairs
          {1,2}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
***** Step 1.b:6.a:1.b:3.a:1: NaturalMI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
            insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2))
        - Weak DPs:
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                      ,fold#3#(insert_ord(x6),x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/2,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        NaturalMI {miDimension = 3, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 2 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_1) = {1},
          uargs(c_4) = {1,2},
          uargs(c_6) = {1}
        
        Following symbols are considered usable:
          {cond_insert_ord_x_ys_1,fold#3,insert_ord#2,leq#2,cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
          ,main#}
        TcT has computed the following interpretation:
                                p(0) = [0]                                                    
                                       [0]                                                    
                                       [0]                                                    
                             p(Cons) = [0 1 0]      [1 1 0]      [0]                          
                                       [0 0 0] x1 + [0 0 1] x2 + [0]                          
                                       [0 0 0]      [0 0 1]      [1]                          
                            p(False) = [1]                                                    
                                       [0]                                                    
                                       [0]                                                    
                              p(Nil) = [0]                                                    
                                       [0]                                                    
                                       [1]                                                    
                                p(S) = [1 1 0]      [1]                                       
                                       [0 0 0] x1 + [0]                                       
                                       [0 0 0]      [0]                                       
                             p(True) = [1]                                                    
                                       [0]                                                    
                                       [0]                                                    
           p(cond_insert_ord_x_ys_1) = [0 0 0]      [0 1 0]      [0 1 0]      [1 1 1]      [0]
                                       [0 0 0] x1 + [0 0 0] x2 + [0 0 0] x3 + [0 0 1] x4 + [1]
                                       [1 0 0]      [0 0 0]      [0 0 0]      [0 0 1]      [1]
                           p(fold#3) = [1 0 0]      [0]                                       
                                       [0 1 0] x2 + [0]                                       
                                       [0 0 1]      [0]                                       
                       p(insert_ord) = [1 0 1]      [0]                                       
                                       [0 0 1] x1 + [0]                                       
                                       [0 0 1]      [0]                                       
                     p(insert_ord#2) = [0 1 0]      [1 1 0]      [0]                          
                                       [0 0 0] x2 + [0 0 1] x3 + [0]                          
                                       [0 0 0]      [0 0 1]      [1]                          
                              p(leq) = [0]                                                    
                                       [0]                                                    
                                       [0]                                                    
                            p(leq#2) = [0 0 0]      [1]                                       
                                       [1 0 0] x2 + [0]                                       
                                       [0 0 0]      [1]                                       
                             p(main) = [0]                                                    
                                       [0]                                                    
                                       [0]                                                    
          p(cond_insert_ord_x_ys_1#) = [0 0 0]      [0 0 1]      [0]                          
                                       [0 1 0] x2 + [1 0 0] x4 + [0]                          
                                       [0 0 0]      [0 1 1]      [0]                          
                          p(fold#3#) = [0 0 1]      [1 1 0]      [0]                          
                                       [0 1 0] x1 + [1 0 1] x2 + [1]                          
                                       [1 0 0]      [1 1 1]      [0]                          
                    p(insert_ord#2#) = [0 0 0]      [0 0 0]      [0 0 1]      [0]             
                                       [1 0 1] x1 + [1 1 1] x2 + [1 1 1] x3 + [0]             
                                       [0 0 0]      [0 1 0]      [0 1 1]      [0]             
                           p(leq#2#) = [0]                                                    
                                       [0]                                                    
                                       [0]                                                    
                            p(main#) = [0]                                                    
                                       [0]                                                    
                                       [0]                                                    
                              p(c_1) = [1 0 0]      [0]                                       
                                       [0 0 0] x1 + [0]                                       
                                       [0 0 0]      [0]                                       
                              p(c_2) = [0]                                                    
                                       [0]                                                    
                                       [0]                                                    
                              p(c_3) = [0]                                                    
                                       [0]                                                    
                                       [0]                                                    
                              p(c_4) = [1 0 0]      [1 0 0]      [0]                          
                                       [0 0 0] x1 + [0 0 0] x2 + [0]                          
                                       [0 0 1]      [0 1 0]      [0]                          
                              p(c_5) = [0]                                                    
                                       [0]                                                    
                                       [0]                                                    
                              p(c_6) = [1 0 0]      [0]                                       
                                       [0 1 1] x1 + [1]                                       
                                       [0 0 0]      [0]                                       
                              p(c_7) = [0]                                                    
                                       [0]                                                    
                                       [0]                                                    
                              p(c_8) = [0]                                                    
                                       [0]                                                    
                                       [0]                                                    
                              p(c_9) = [0]                                                    
                                       [0]                                                    
                                       [0]                                                    
                             p(c_10) = [0]                                                    
                                       [0]                                                    
                                       [0]                                                    
        
        Following rules are strictly oriented:
        insert_ord#2#(leq(),x6,Cons(x4,x2)) = [0 0 1]      [0 0 0]      [0 0 0]      [1]         
                                              [1 1 2] x2 + [0 1 0] x4 + [1 1 1] x6 + [1]         
                                              [0 0 2]      [0 0 0]      [0 1 0]      [1]         
                                            > [0 0 1]      [0 0 0]      [0]                      
                                              [1 1 1] x2 + [0 1 0] x6 + [1]                      
                                              [0 0 0]      [0 0 0]      [0]                      
                                            = c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2))
        
        
        Following rules are (at-least) weakly oriented:
        cond_insert_ord_x_ys_1#(False(),x0,x5,x2) =  [0 0 0]      [0 0 1]      [0]                                                 
                                                     [0 1 0] x0 + [1 0 0] x2 + [0]                                                 
                                                     [0 0 0]      [0 1 1]      [0]                                                 
                                                  >= [0 0 1]      [0]                                                              
                                                     [0 0 0] x2 + [0]                                                              
                                                     [0 0 0]      [0]                                                              
                                                  =  c_1(insert_ord#2#(leq(),x0,x2))                                               
        
              fold#3#(insert_ord(x6),Cons(x4,x2)) =  [1 1 1]      [0 1 0]      [0 0 1]      [0]                                    
                                                     [1 1 1] x2 + [0 1 0] x4 + [0 0 1] x6 + [2]                                    
                                                     [1 1 2]      [0 1 0]      [1 0 1]      [1]                                    
                                                  >= [1 1 1]      [0 0 0]      [0 0 1]      [0]                                    
                                                     [0 0 0] x2 + [0 0 0] x4 + [0 0 0] x6 + [0]                                    
                                                     [1 1 2]      [0 1 0]      [0 0 1]      [1]                                    
                                                  =  c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2)),fold#3#(insert_ord(x6),x2))
        
         cond_insert_ord_x_ys_1(False(),x0,x5,x2) =  [0 1 0]      [1 1 1]      [0 1 0]      [0]                                    
                                                     [0 0 0] x0 + [0 0 1] x2 + [0 0 0] x5 + [1]                                    
                                                     [0 0 0]      [0 0 1]      [0 0 0]      [2]                                    
                                                  >= [0 1 0]      [1 1 1]      [0 1 0]      [0]                                    
                                                     [0 0 0] x0 + [0 0 1] x2 + [0 0 0] x5 + [1]                                    
                                                     [0 0 0]      [0 0 1]      [0 0 0]      [2]                                    
                                                  =  Cons(x5,insert_ord#2(leq(),x0,x2))                                            
        
          cond_insert_ord_x_ys_1(True(),x3,x2,x1) =  [1 1 1]      [0 1 0]      [0 1 0]      [0]                                    
                                                     [0 0 1] x1 + [0 0 0] x2 + [0 0 0] x3 + [1]                                    
                                                     [0 0 1]      [0 0 0]      [0 0 0]      [2]                                    
                                                  >= [1 1 1]      [0 1 0]      [0 1 0]      [0]                                    
                                                     [0 0 1] x1 + [0 0 0] x2 + [0 0 0] x3 + [1]                                    
                                                     [0 0 1]      [0 0 0]      [0 0 0]      [2]                                    
                                                  =  Cons(x3,Cons(x2,x1))                                                          
        
                     fold#3(insert_ord(x2),Nil()) =  [0]                                                                           
                                                     [0]                                                                           
                                                     [1]                                                                           
                                                  >= [0]                                                                           
                                                     [0]                                                                           
                                                     [1]                                                                           
                                                  =  Nil()                                                                         
        
               fold#3(insert_ord(x6),Cons(x4,x2)) =  [1 1 0]      [0 1 0]      [0]                                                 
                                                     [0 0 1] x2 + [0 0 0] x4 + [0]                                                 
                                                     [0 0 1]      [0 0 0]      [1]                                                 
                                                  >= [1 1 0]      [0 1 0]      [0]                                                 
                                                     [0 0 1] x2 + [0 0 0] x4 + [0]                                                 
                                                     [0 0 1]      [0 0 0]      [1]                                                 
                                                  =  insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))                                 
        
                     insert_ord#2(leq(),x2,Nil()) =  [0 1 0]      [0]                                                              
                                                     [0 0 0] x2 + [1]                                                              
                                                     [0 0 0]      [2]                                                              
                                                  >= [0 1 0]      [0]                                                              
                                                     [0 0 0] x2 + [1]                                                              
                                                     [0 0 0]      [2]                                                              
                                                  =  Cons(x2,Nil())                                                                
        
               insert_ord#2(leq(),x6,Cons(x4,x2)) =  [1 1 1]      [0 1 0]      [0 1 0]      [0]                                    
                                                     [0 0 1] x2 + [0 0 0] x4 + [0 0 0] x6 + [1]                                    
                                                     [0 0 1]      [0 0 0]      [0 0 0]      [2]                                    
                                                  >= [1 1 1]      [0 1 0]      [0 1 0]      [0]                                    
                                                     [0 0 1] x2 + [0 0 0] x4 + [0 0 0] x6 + [1]                                    
                                                     [0 0 1]      [0 0 0]      [0 0 0]      [2]                                    
                                                  =  cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)                                 
        
                                    leq#2(0(),x8) =  [0 0 0]      [1]                                                              
                                                     [1 0 0] x8 + [0]                                                              
                                                     [0 0 0]      [1]                                                              
                                                  >= [1]                                                                           
                                                     [0]                                                                           
                                                     [0]                                                                           
                                                  =  True()                                                                        
        
                                leq#2(S(x12),0()) =  [1]                                                                           
                                                     [0]                                                                           
                                                     [1]                                                                           
                                                  >= [1]                                                                           
                                                     [0]                                                                           
                                                     [0]                                                                           
                                                  =  False()                                                                       
        
                               leq#2(S(x4),S(x2)) =  [0 0 0]      [1]                                                              
                                                     [1 1 0] x2 + [1]                                                              
                                                     [0 0 0]      [1]                                                              
                                                  >= [0 0 0]      [1]                                                              
                                                     [1 0 0] x2 + [0]                                                              
                                                     [0 0 0]      [1]                                                              
                                                  =  leq#2(x4,x2)                                                                  
        
***** Step 1.b:6.a:1.b:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
        - Weak DPs:
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                      ,fold#3#(insert_ord(x6),x2))
            insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/2,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:6.a:1.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                      ,fold#3#(insert_ord(x6),x2))
            insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/2,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
             -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2)):3
          
          2:W:fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                        ,fold#3#(insert_ord(x6),x2))
             -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2)):3
             -->_2 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                             ,fold#3#(insert_ord(x6),x2)):2
          
          3:W:insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2))
             -->_1 cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                       ,fold#3#(insert_ord(x6),x2))
          1: cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
          3: insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2))
***** Step 1.b:6.a:1.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/2,c_5/0,c_6/1,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 1.b:6.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                      ,fold#3#(insert_ord(x6),x2))
        - Weak DPs:
            cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
            insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
            leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                        ,fold#3#(insert_ord(x6),x2))
             -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2)
                                                             ,leq#2#(x6,x4)):3
             -->_2 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                             ,fold#3#(insert_ord(x6),x2)):1
          
          2:W:cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
             -->_1 insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2)
                                                             ,leq#2#(x6,x4)):3
          
          3:W:insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2),leq#2#(x6,x4))
             -->_2 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4
             -->_1 cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2)):2
          
          4:W:leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
             -->_1 leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2)):4
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: insert_ord#2#(leq(),x6,Cons(x4,x2)) -> c_6(cond_insert_ord_x_ys_1#(leq#2(x6,x4),x6,x4,x2)
                                                       ,leq#2#(x6,x4))
          2: cond_insert_ord_x_ys_1#(False(),x0,x5,x2) -> c_1(insert_ord#2#(leq(),x0,x2))
          4: leq#2#(S(x4),S(x2)) -> c_9(leq#2#(x4,x2))
*** Step 1.b:6.b:2: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                      ,fold#3#(insert_ord(x6),x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/2,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                        ,fold#3#(insert_ord(x6),x2))
             -->_2 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(insert_ord#2#(x6,x4,fold#3(insert_ord(x6),x2))
                                                             ,fold#3#(insert_ord(x6),x2)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2))
*** Step 1.b:6.b:3: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2))
        - Weak TRS:
            cond_insert_ord_x_ys_1(False(),x0,x5,x2) -> Cons(x5,insert_ord#2(leq(),x0,x2))
            cond_insert_ord_x_ys_1(True(),x3,x2,x1) -> Cons(x3,Cons(x2,x1))
            fold#3(insert_ord(x2),Nil()) -> Nil()
            fold#3(insert_ord(x6),Cons(x4,x2)) -> insert_ord#2(x6,x4,fold#3(insert_ord(x6),x2))
            insert_ord#2(leq(),x2,Nil()) -> Cons(x2,Nil())
            insert_ord#2(leq(),x6,Cons(x4,x2)) -> cond_insert_ord_x_ys_1(leq#2(x6,x4),x6,x4,x2)
            leq#2(0(),x8) -> True()
            leq#2(S(x12),0()) -> False()
            leq#2(S(x4),S(x2)) -> leq#2(x4,x2)
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2))
*** Step 1.b:6.b:4: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2))
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2))
          
        The strictly oriented rules are moved into the weak component.
**** Step 1.b:6.b:4.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2))
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_4) = {1}
        
        Following symbols are considered usable:
          {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#,main#}
        TcT has computed the following interpretation:
                                p(0) = [0]                  
                             p(Cons) = [1] x1 + [1] x2 + [2]
                            p(False) = [0]                  
                              p(Nil) = [0]                  
                                p(S) = [1] x1 + [0]         
                             p(True) = [0]                  
           p(cond_insert_ord_x_ys_1) = [0]                  
                           p(fold#3) = [0]                  
                       p(insert_ord) = [1] x1 + [0]         
                     p(insert_ord#2) = [1] x1 + [2] x2 + [0]
                              p(leq) = [4]                  
                            p(leq#2) = [8] x1 + [1]         
                             p(main) = [1] x1 + [0]         
          p(cond_insert_ord_x_ys_1#) = [1] x3 + [1] x4 + [1]
                          p(fold#3#) = [8] x2 + [0]         
                    p(insert_ord#2#) = [1] x2 + [0]         
                           p(leq#2#) = [2] x1 + [1]         
                            p(main#) = [1] x1 + [1]         
                              p(c_1) = [1]                  
                              p(c_2) = [1]                  
                              p(c_3) = [4]                  
                              p(c_4) = [1] x1 + [15]        
                              p(c_5) = [1]                  
                              p(c_6) = [1] x1 + [1] x2 + [1]
                              p(c_7) = [0]                  
                              p(c_8) = [2]                  
                              p(c_9) = [2] x1 + [1]         
                             p(c_10) = [8] x1 + [8]         
        
        Following rules are strictly oriented:
        fold#3#(insert_ord(x6),Cons(x4,x2)) = [8] x2 + [8] x4 + [16]         
                                            > [8] x2 + [15]                  
                                            = c_4(fold#3#(insert_ord(x6),x2))
        
        
        Following rules are (at-least) weakly oriented:
        
**** Step 1.b:6.b:4.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2))
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 1.b:6.b:4.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2))
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2))
             -->_1 fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: fold#3#(insert_ord(x6),Cons(x4,x2)) -> c_4(fold#3#(insert_ord(x6),x2))
**** Step 1.b:6.b:4.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {cond_insert_ord_x_ys_1/4,fold#3/2,insert_ord#2/3,leq#2/2,main/1,cond_insert_ord_x_ys_1#/4,fold#3#/2
            ,insert_ord#2#/3,leq#2#/2,main#/1} / {0/0,Cons/2,False/0,Nil/0,S/1,True/0,insert_ord/1,leq/0,c_1/1,c_2/0
            ,c_3/0,c_4/1,c_5/0,c_6/2,c_7/0,c_8/0,c_9/1,c_10/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {cond_insert_ord_x_ys_1#,fold#3#,insert_ord#2#,leq#2#
            ,main#} and constructors {0,Cons,False,Nil,S,True,insert_ord,leq}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^2))