* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
+ Considered Problem:
- Strict TRS:
compS_f#1(compS_f(x2),x1) -> compS_f#1(x2,S(x1))
compS_f#1(id(),x3) -> S(x3)
iter#3(0()) -> id()
iter#3(S(x6)) -> compS_f(iter#3(x6))
main(0()) -> 0()
main(S(x9)) -> compS_f#1(iter#3(x9),0())
- Signature:
{compS_f#1/2,iter#3/1,main/1} / {0/0,S/1,compS_f/1,id/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {compS_f#1,iter#3,main} and constructors {0,S,compS_f,id}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
compS_f#1(compS_f(x2),x1) -> compS_f#1(x2,S(x1))
compS_f#1(id(),x3) -> S(x3)
iter#3(0()) -> id()
iter#3(S(x6)) -> compS_f(iter#3(x6))
main(0()) -> 0()
main(S(x9)) -> compS_f#1(iter#3(x9),0())
- Signature:
{compS_f#1/2,iter#3/1,main/1} / {0/0,S/1,compS_f/1,id/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {compS_f#1,iter#3,main} and constructors {0,S,compS_f,id}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
compS_f#1(x,y){x -> compS_f(x)} =
compS_f#1(compS_f(x),y) ->^+ compS_f#1(x,S(y))
= C[compS_f#1(x,S(y)) = compS_f#1(x,y){y -> S(y)}]
** Step 1.b:1: Bounds WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
compS_f#1(compS_f(x2),x1) -> compS_f#1(x2,S(x1))
compS_f#1(id(),x3) -> S(x3)
iter#3(0()) -> id()
iter#3(S(x6)) -> compS_f(iter#3(x6))
main(0()) -> 0()
main(S(x9)) -> compS_f#1(iter#3(x9),0())
- Signature:
{compS_f#1/2,iter#3/1,main/1} / {0/0,S/1,compS_f/1,id/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {compS_f#1,iter#3,main} and constructors {0,S,compS_f,id}
+ Applied Processor:
Bounds {initialAutomaton = minimal, enrichment = match}
+ Details:
The problem is match-bounded by 2.
The enriched problem is compatible with follwoing automaton.
0_0() -> 2
0_1() -> 1
S_0(2) -> 2
S_1(1) -> 1
S_1(2) -> 1
S_1(2) -> 3
S_1(3) -> 1
S_2(1) -> 1
S_2(1) -> 5
S_2(5) -> 1
compS_f_0(2) -> 2
compS_f_1(4) -> 1
compS_f_1(4) -> 4
compS_f#1_0(2,2) -> 1
compS_f#1_1(2,1) -> 1
compS_f#1_1(2,3) -> 1
compS_f#1_1(4,1) -> 1
compS_f#1_2(4,1) -> 1
compS_f#1_2(4,5) -> 1
id_0() -> 2
id_1() -> 1
id_1() -> 4
iter#3_0(2) -> 1
iter#3_1(2) -> 4
main_0(2) -> 1
** Step 1.b:2: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Weak TRS:
compS_f#1(compS_f(x2),x1) -> compS_f#1(x2,S(x1))
compS_f#1(id(),x3) -> S(x3)
iter#3(0()) -> id()
iter#3(S(x6)) -> compS_f(iter#3(x6))
main(0()) -> 0()
main(S(x9)) -> compS_f#1(iter#3(x9),0())
- Signature:
{compS_f#1/2,iter#3/1,main/1} / {0/0,S/1,compS_f/1,id/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {compS_f#1,iter#3,main} and constructors {0,S,compS_f,id}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
WORST_CASE(Omega(n^1),O(n^1))