* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: comp_f_g#1(plus_x(x3),comp_f_g(x1,x2),0()) -> plus_x#1(x3,comp_f_g#1(x1,x2,0())) comp_f_g#1(plus_x(x3),id(),0()) -> plus_x#1(x3,0()) foldr#3(Cons(x32,x6)) -> comp_f_g(x32,foldr#3(x6)) foldr#3(Nil()) -> id() foldr_f#3(Cons(x16,x5),x24) -> comp_f_g#1(x16,foldr#3(x5),x24) foldr_f#3(Nil(),0()) -> 0() main(x3) -> foldr_f#3(map#2(x3),0()) map#2(Cons(x16,x6)) -> Cons(plus_x(x16),map#2(x6)) map#2(Nil()) -> Nil() plus_x#1(0(),x6) -> x6 plus_x#1(S(x8),x10) -> S(plus_x#1(x8,x10)) - Signature: {comp_f_g#1/3,foldr#3/1,foldr_f#3/2,main/1,map#2/1,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,comp_f_g/2,id/0 ,plus_x/1} - Obligation: innermost runtime complexity wrt. defined symbols {comp_f_g#1,foldr#3,foldr_f#3,main,map#2 ,plus_x#1} and constructors {0,Cons,Nil,S,comp_f_g,id,plus_x} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: comp_f_g#1(plus_x(x3),comp_f_g(x1,x2),0()) -> plus_x#1(x3,comp_f_g#1(x1,x2,0())) comp_f_g#1(plus_x(x3),id(),0()) -> plus_x#1(x3,0()) foldr#3(Cons(x32,x6)) -> comp_f_g(x32,foldr#3(x6)) foldr#3(Nil()) -> id() foldr_f#3(Cons(x16,x5),x24) -> comp_f_g#1(x16,foldr#3(x5),x24) foldr_f#3(Nil(),0()) -> 0() main(x3) -> foldr_f#3(map#2(x3),0()) map#2(Cons(x16,x6)) -> Cons(plus_x(x16),map#2(x6)) map#2(Nil()) -> Nil() plus_x#1(0(),x6) -> x6 plus_x#1(S(x8),x10) -> S(plus_x#1(x8,x10)) - Signature: {comp_f_g#1/3,foldr#3/1,foldr_f#3/2,main/1,map#2/1,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,comp_f_g/2,id/0 ,plus_x/1} - Obligation: innermost runtime complexity wrt. defined symbols {comp_f_g#1,foldr#3,foldr_f#3,main,map#2 ,plus_x#1} and constructors {0,Cons,Nil,S,comp_f_g,id,plus_x} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: foldr#3(y){y -> Cons(x,y)} = foldr#3(Cons(x,y)) ->^+ comp_f_g(x,foldr#3(y)) = C[foldr#3(y) = foldr#3(y){}] ** Step 1.b:1: Bounds WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: comp_f_g#1(plus_x(x3),comp_f_g(x1,x2),0()) -> plus_x#1(x3,comp_f_g#1(x1,x2,0())) comp_f_g#1(plus_x(x3),id(),0()) -> plus_x#1(x3,0()) foldr#3(Cons(x32,x6)) -> comp_f_g(x32,foldr#3(x6)) foldr#3(Nil()) -> id() foldr_f#3(Cons(x16,x5),x24) -> comp_f_g#1(x16,foldr#3(x5),x24) foldr_f#3(Nil(),0()) -> 0() main(x3) -> foldr_f#3(map#2(x3),0()) map#2(Cons(x16,x6)) -> Cons(plus_x(x16),map#2(x6)) map#2(Nil()) -> Nil() plus_x#1(0(),x6) -> x6 plus_x#1(S(x8),x10) -> S(plus_x#1(x8,x10)) - Signature: {comp_f_g#1/3,foldr#3/1,foldr_f#3/2,main/1,map#2/1,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,comp_f_g/2,id/0 ,plus_x/1} - Obligation: innermost runtime complexity wrt. defined symbols {comp_f_g#1,foldr#3,foldr_f#3,main,map#2 ,plus_x#1} and constructors {0,Cons,Nil,S,comp_f_g,id,plus_x} + Applied Processor: Bounds {initialAutomaton = minimal, enrichment = match} + Details: The problem is match-bounded by 2. The enriched problem is compatible with follwoing automaton. 0_0() -> 1 0_0() -> 2 0_0() -> 8 0_0() -> 10 0_1() -> 1 0_1() -> 3 0_1() -> 4 0_1() -> 10 0_2() -> 1 0_2() -> 10 Cons_0(2,2) -> 1 Cons_0(2,2) -> 2 Cons_0(2,2) -> 8 Cons_0(2,2) -> 10 Cons_1(7,6) -> 1 Cons_1(7,6) -> 6 Cons_1(7,6) -> 10 Nil_0() -> 1 Nil_0() -> 2 Nil_0() -> 8 Nil_0() -> 10 Nil_1() -> 1 Nil_1() -> 6 Nil_1() -> 10 S_0(2) -> 1 S_0(2) -> 2 S_0(2) -> 8 S_0(2) -> 10 S_1(1) -> 1 S_1(1) -> 10 S_1(3) -> 1 S_1(3) -> 3 S_1(3) -> 10 S_1(8) -> 1 S_1(8) -> 8 S_1(8) -> 10 comp_f_g_0(2,2) -> 1 comp_f_g_0(2,2) -> 2 comp_f_g_0(2,2) -> 8 comp_f_g_0(2,2) -> 10 comp_f_g_1(2,5) -> 1 comp_f_g_1(2,5) -> 5 comp_f_g_1(2,5) -> 10 comp_f_g_2(7,9) -> 9 comp_f_g#1_0(2,2,2) -> 1 comp_f_g#1_0(2,2,2) -> 10 comp_f_g#1_1(2,2,4) -> 1 comp_f_g#1_1(2,2,4) -> 3 comp_f_g#1_1(2,2,4) -> 10 comp_f_g#1_1(2,5,2) -> 1 comp_f_g#1_1(2,5,2) -> 10 comp_f_g#1_1(2,5,4) -> 1 comp_f_g#1_1(2,5,4) -> 3 comp_f_g#1_1(2,5,4) -> 10 comp_f_g#1_1(7,9,10) -> 1 comp_f_g#1_1(7,9,10) -> 10 comp_f_g#1_2(7,9,1) -> 1 comp_f_g#1_2(7,9,1) -> 10 comp_f_g#1_2(7,9,4) -> 1 comp_f_g#1_2(7,9,4) -> 10 foldr#3_0(2) -> 1 foldr#3_0(2) -> 10 foldr#3_1(2) -> 5 foldr#3_2(6) -> 9 foldr_f#3_0(2,2) -> 1 foldr_f#3_0(2,2) -> 10 foldr_f#3_1(6,4) -> 1 foldr_f#3_1(6,4) -> 10 id_0() -> 1 id_0() -> 2 id_0() -> 8 id_0() -> 10 id_1() -> 1 id_1() -> 5 id_1() -> 10 id_2() -> 9 main_0(2) -> 1 main_0(2) -> 10 map#2_0(2) -> 1 map#2_0(2) -> 10 map#2_1(2) -> 6 plus_x_0(2) -> 1 plus_x_0(2) -> 2 plus_x_0(2) -> 8 plus_x_0(2) -> 10 plus_x_1(2) -> 7 plus_x#1_0(2,2) -> 1 plus_x#1_0(2,2) -> 10 plus_x#1_1(2,1) -> 1 plus_x#1_1(2,1) -> 10 plus_x#1_1(2,2) -> 8 plus_x#1_1(2,3) -> 1 plus_x#1_1(2,3) -> 3 plus_x#1_1(2,3) -> 10 plus_x#1_1(2,4) -> 1 plus_x#1_1(2,4) -> 3 plus_x#1_1(2,4) -> 10 plus_x#1_1(2,10) -> 1 plus_x#1_1(2,10) -> 10 plus_x#1_2(2,1) -> 1 plus_x#1_2(2,1) -> 10 plus_x#1_2(2,10) -> 1 plus_x#1_2(2,10) -> 10 1 -> 10 2 -> 1 2 -> 8 2 -> 10 3 -> 1 3 -> 10 4 -> 1 4 -> 3 4 -> 10 10 -> 1 ** Step 1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: comp_f_g#1(plus_x(x3),comp_f_g(x1,x2),0()) -> plus_x#1(x3,comp_f_g#1(x1,x2,0())) comp_f_g#1(plus_x(x3),id(),0()) -> plus_x#1(x3,0()) foldr#3(Cons(x32,x6)) -> comp_f_g(x32,foldr#3(x6)) foldr#3(Nil()) -> id() foldr_f#3(Cons(x16,x5),x24) -> comp_f_g#1(x16,foldr#3(x5),x24) foldr_f#3(Nil(),0()) -> 0() main(x3) -> foldr_f#3(map#2(x3),0()) map#2(Cons(x16,x6)) -> Cons(plus_x(x16),map#2(x6)) map#2(Nil()) -> Nil() plus_x#1(0(),x6) -> x6 plus_x#1(S(x8),x10) -> S(plus_x#1(x8,x10)) - Signature: {comp_f_g#1/3,foldr#3/1,foldr_f#3/2,main/1,map#2/1,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,comp_f_g/2,id/0 ,plus_x/1} - Obligation: innermost runtime complexity wrt. defined symbols {comp_f_g#1,foldr#3,foldr_f#3,main,map#2 ,plus_x#1} and constructors {0,Cons,Nil,S,comp_f_g,id,plus_x} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))