* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            comp_f_g#1(plus_x(x3),comp_f_g(x1,x2),0()) -> plus_x#1(x3,comp_f_g#1(x1,x2,0()))
            comp_f_g#1(plus_x(x3),id(),0()) -> plus_x#1(x3,0())
            foldr#3(Cons(x32,x6)) -> comp_f_g(x32,foldr#3(x6))
            foldr#3(Nil()) -> id()
            foldr_f#3(Cons(x16,x5),x24) -> comp_f_g#1(x16,foldr#3(x5),x24)
            foldr_f#3(Nil(),0()) -> 0()
            main(x3) -> foldr_f#3(map#2(x3),0())
            map#2(Cons(x16,x6)) -> Cons(plus_x(x16),map#2(x6))
            map#2(Nil()) -> Nil()
            plus_x#1(0(),x6) -> x6
            plus_x#1(S(x8),x10) -> S(plus_x#1(x8,x10))
        - Signature:
            {comp_f_g#1/3,foldr#3/1,foldr_f#3/2,main/1,map#2/1,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,comp_f_g/2,id/0
            ,plus_x/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {comp_f_g#1,foldr#3,foldr_f#3,main,map#2
            ,plus_x#1} and constructors {0,Cons,Nil,S,comp_f_g,id,plus_x}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            comp_f_g#1(plus_x(x3),comp_f_g(x1,x2),0()) -> plus_x#1(x3,comp_f_g#1(x1,x2,0()))
            comp_f_g#1(plus_x(x3),id(),0()) -> plus_x#1(x3,0())
            foldr#3(Cons(x32,x6)) -> comp_f_g(x32,foldr#3(x6))
            foldr#3(Nil()) -> id()
            foldr_f#3(Cons(x16,x5),x24) -> comp_f_g#1(x16,foldr#3(x5),x24)
            foldr_f#3(Nil(),0()) -> 0()
            main(x3) -> foldr_f#3(map#2(x3),0())
            map#2(Cons(x16,x6)) -> Cons(plus_x(x16),map#2(x6))
            map#2(Nil()) -> Nil()
            plus_x#1(0(),x6) -> x6
            plus_x#1(S(x8),x10) -> S(plus_x#1(x8,x10))
        - Signature:
            {comp_f_g#1/3,foldr#3/1,foldr_f#3/2,main/1,map#2/1,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,comp_f_g/2,id/0
            ,plus_x/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {comp_f_g#1,foldr#3,foldr_f#3,main,map#2
            ,plus_x#1} and constructors {0,Cons,Nil,S,comp_f_g,id,plus_x}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          foldr#3(y){y -> Cons(x,y)} =
            foldr#3(Cons(x,y)) ->^+ comp_f_g(x,foldr#3(y))
              = C[foldr#3(y) = foldr#3(y){}]

** Step 1.b:1: Bounds WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            comp_f_g#1(plus_x(x3),comp_f_g(x1,x2),0()) -> plus_x#1(x3,comp_f_g#1(x1,x2,0()))
            comp_f_g#1(plus_x(x3),id(),0()) -> plus_x#1(x3,0())
            foldr#3(Cons(x32,x6)) -> comp_f_g(x32,foldr#3(x6))
            foldr#3(Nil()) -> id()
            foldr_f#3(Cons(x16,x5),x24) -> comp_f_g#1(x16,foldr#3(x5),x24)
            foldr_f#3(Nil(),0()) -> 0()
            main(x3) -> foldr_f#3(map#2(x3),0())
            map#2(Cons(x16,x6)) -> Cons(plus_x(x16),map#2(x6))
            map#2(Nil()) -> Nil()
            plus_x#1(0(),x6) -> x6
            plus_x#1(S(x8),x10) -> S(plus_x#1(x8,x10))
        - Signature:
            {comp_f_g#1/3,foldr#3/1,foldr_f#3/2,main/1,map#2/1,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,comp_f_g/2,id/0
            ,plus_x/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {comp_f_g#1,foldr#3,foldr_f#3,main,map#2
            ,plus_x#1} and constructors {0,Cons,Nil,S,comp_f_g,id,plus_x}
    + Applied Processor:
        Bounds {initialAutomaton = minimal, enrichment = match}
    + Details:
        The problem is match-bounded by 2.
        The enriched problem is compatible with follwoing automaton.
          0_0() -> 1
          0_0() -> 2
          0_0() -> 8
          0_0() -> 10
          0_1() -> 1
          0_1() -> 3
          0_1() -> 4
          0_1() -> 10
          0_2() -> 1
          0_2() -> 10
          Cons_0(2,2) -> 1
          Cons_0(2,2) -> 2
          Cons_0(2,2) -> 8
          Cons_0(2,2) -> 10
          Cons_1(7,6) -> 1
          Cons_1(7,6) -> 6
          Cons_1(7,6) -> 10
          Nil_0() -> 1
          Nil_0() -> 2
          Nil_0() -> 8
          Nil_0() -> 10
          Nil_1() -> 1
          Nil_1() -> 6
          Nil_1() -> 10
          S_0(2) -> 1
          S_0(2) -> 2
          S_0(2) -> 8
          S_0(2) -> 10
          S_1(1) -> 1
          S_1(1) -> 10
          S_1(3) -> 1
          S_1(3) -> 3
          S_1(3) -> 10
          S_1(8) -> 1
          S_1(8) -> 8
          S_1(8) -> 10
          comp_f_g_0(2,2) -> 1
          comp_f_g_0(2,2) -> 2
          comp_f_g_0(2,2) -> 8
          comp_f_g_0(2,2) -> 10
          comp_f_g_1(2,5) -> 1
          comp_f_g_1(2,5) -> 5
          comp_f_g_1(2,5) -> 10
          comp_f_g_2(7,9) -> 9
          comp_f_g#1_0(2,2,2) -> 1
          comp_f_g#1_0(2,2,2) -> 10
          comp_f_g#1_1(2,2,4) -> 1
          comp_f_g#1_1(2,2,4) -> 3
          comp_f_g#1_1(2,2,4) -> 10
          comp_f_g#1_1(2,5,2) -> 1
          comp_f_g#1_1(2,5,2) -> 10
          comp_f_g#1_1(2,5,4) -> 1
          comp_f_g#1_1(2,5,4) -> 3
          comp_f_g#1_1(2,5,4) -> 10
          comp_f_g#1_1(7,9,10) -> 1
          comp_f_g#1_1(7,9,10) -> 10
          comp_f_g#1_2(7,9,1) -> 1
          comp_f_g#1_2(7,9,1) -> 10
          comp_f_g#1_2(7,9,4) -> 1
          comp_f_g#1_2(7,9,4) -> 10
          foldr#3_0(2) -> 1
          foldr#3_0(2) -> 10
          foldr#3_1(2) -> 5
          foldr#3_2(6) -> 9
          foldr_f#3_0(2,2) -> 1
          foldr_f#3_0(2,2) -> 10
          foldr_f#3_1(6,4) -> 1
          foldr_f#3_1(6,4) -> 10
          id_0() -> 1
          id_0() -> 2
          id_0() -> 8
          id_0() -> 10
          id_1() -> 1
          id_1() -> 5
          id_1() -> 10
          id_2() -> 9
          main_0(2) -> 1
          main_0(2) -> 10
          map#2_0(2) -> 1
          map#2_0(2) -> 10
          map#2_1(2) -> 6
          plus_x_0(2) -> 1
          plus_x_0(2) -> 2
          plus_x_0(2) -> 8
          plus_x_0(2) -> 10
          plus_x_1(2) -> 7
          plus_x#1_0(2,2) -> 1
          plus_x#1_0(2,2) -> 10
          plus_x#1_1(2,1) -> 1
          plus_x#1_1(2,1) -> 10
          plus_x#1_1(2,2) -> 8
          plus_x#1_1(2,3) -> 1
          plus_x#1_1(2,3) -> 3
          plus_x#1_1(2,3) -> 10
          plus_x#1_1(2,4) -> 1
          plus_x#1_1(2,4) -> 3
          plus_x#1_1(2,4) -> 10
          plus_x#1_1(2,10) -> 1
          plus_x#1_1(2,10) -> 10
          plus_x#1_2(2,1) -> 1
          plus_x#1_2(2,1) -> 10
          plus_x#1_2(2,10) -> 1
          plus_x#1_2(2,10) -> 10
          1 -> 10
          2 -> 1
          2 -> 8
          2 -> 10
          3 -> 1
          3 -> 10
          4 -> 1
          4 -> 3
          4 -> 10
          10 -> 1
** Step 1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            comp_f_g#1(plus_x(x3),comp_f_g(x1,x2),0()) -> plus_x#1(x3,comp_f_g#1(x1,x2,0()))
            comp_f_g#1(plus_x(x3),id(),0()) -> plus_x#1(x3,0())
            foldr#3(Cons(x32,x6)) -> comp_f_g(x32,foldr#3(x6))
            foldr#3(Nil()) -> id()
            foldr_f#3(Cons(x16,x5),x24) -> comp_f_g#1(x16,foldr#3(x5),x24)
            foldr_f#3(Nil(),0()) -> 0()
            main(x3) -> foldr_f#3(map#2(x3),0())
            map#2(Cons(x16,x6)) -> Cons(plus_x(x16),map#2(x6))
            map#2(Nil()) -> Nil()
            plus_x#1(0(),x6) -> x6
            plus_x#1(S(x8),x10) -> S(plus_x#1(x8,x10))
        - Signature:
            {comp_f_g#1/3,foldr#3/1,foldr_f#3/2,main/1,map#2/1,plus_x#1/2} / {0/0,Cons/2,Nil/0,S/1,comp_f_g/2,id/0
            ,plus_x/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {comp_f_g#1,foldr#3,foldr_f#3,main,map#2
            ,plus_x#1} and constructors {0,Cons,Nil,S,comp_f_g,id,plus_x}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))