* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            comp_f_g#1(comp_f_g(x4,x5),comp_f_g(x2,x3),x1) -> comp_f_g#1(x4,x5,comp_f_g#1(x2,x3,x1))
            comp_f_g#1(comp_f_g(x7,x9),cons_x(x2),x4) -> comp_f_g#1(x7,x9,Cons(x2,x4))
            comp_f_g#1(cons_x(x2),comp_f_g(x5,x7),x3) -> Cons(x2,comp_f_g#1(x5,x7,x3))
            comp_f_g#1(cons_x(x5),cons_x(x2),x4) -> Cons(x5,Cons(x2,x4))
            main(Leaf(x4)) -> Cons(x4,Nil())
            main(Node(x9,x5)) -> comp_f_g#1(walk#1(x9),walk#1(x5),Nil())
            walk#1(Leaf(x2)) -> cons_x(x2)
            walk#1(Node(x5,x3)) -> comp_f_g(walk#1(x5),walk#1(x3))
        - Signature:
            {comp_f_g#1/3,main/1,walk#1/1} / {Cons/2,Leaf/1,Nil/0,Node/2,comp_f_g/2,cons_x/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {comp_f_g#1,main,walk#1} and constructors {Cons,Leaf,Nil
            ,Node,comp_f_g,cons_x}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            comp_f_g#1(comp_f_g(x4,x5),comp_f_g(x2,x3),x1) -> comp_f_g#1(x4,x5,comp_f_g#1(x2,x3,x1))
            comp_f_g#1(comp_f_g(x7,x9),cons_x(x2),x4) -> comp_f_g#1(x7,x9,Cons(x2,x4))
            comp_f_g#1(cons_x(x2),comp_f_g(x5,x7),x3) -> Cons(x2,comp_f_g#1(x5,x7,x3))
            comp_f_g#1(cons_x(x5),cons_x(x2),x4) -> Cons(x5,Cons(x2,x4))
            main(Leaf(x4)) -> Cons(x4,Nil())
            main(Node(x9,x5)) -> comp_f_g#1(walk#1(x9),walk#1(x5),Nil())
            walk#1(Leaf(x2)) -> cons_x(x2)
            walk#1(Node(x5,x3)) -> comp_f_g(walk#1(x5),walk#1(x3))
        - Signature:
            {comp_f_g#1/3,main/1,walk#1/1} / {Cons/2,Leaf/1,Nil/0,Node/2,comp_f_g/2,cons_x/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {comp_f_g#1,main,walk#1} and constructors {Cons,Leaf,Nil
            ,Node,comp_f_g,cons_x}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          walk#1(x){x -> Node(x,y)} =
            walk#1(Node(x,y)) ->^+ comp_f_g(walk#1(x),walk#1(y))
              = C[walk#1(x) = walk#1(x){}]

** Step 1.b:1: Bounds WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            comp_f_g#1(comp_f_g(x4,x5),comp_f_g(x2,x3),x1) -> comp_f_g#1(x4,x5,comp_f_g#1(x2,x3,x1))
            comp_f_g#1(comp_f_g(x7,x9),cons_x(x2),x4) -> comp_f_g#1(x7,x9,Cons(x2,x4))
            comp_f_g#1(cons_x(x2),comp_f_g(x5,x7),x3) -> Cons(x2,comp_f_g#1(x5,x7,x3))
            comp_f_g#1(cons_x(x5),cons_x(x2),x4) -> Cons(x5,Cons(x2,x4))
            main(Leaf(x4)) -> Cons(x4,Nil())
            main(Node(x9,x5)) -> comp_f_g#1(walk#1(x9),walk#1(x5),Nil())
            walk#1(Leaf(x2)) -> cons_x(x2)
            walk#1(Node(x5,x3)) -> comp_f_g(walk#1(x5),walk#1(x3))
        - Signature:
            {comp_f_g#1/3,main/1,walk#1/1} / {Cons/2,Leaf/1,Nil/0,Node/2,comp_f_g/2,cons_x/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {comp_f_g#1,main,walk#1} and constructors {Cons,Leaf,Nil
            ,Node,comp_f_g,cons_x}
    + Applied Processor:
        Bounds {initialAutomaton = minimal, enrichment = match}
    + Details:
        The problem is match-bounded by 2.
        The enriched problem is compatible with follwoing automaton.
          Cons_0(2,2) -> 2
          Cons_1(2,2) -> 2
          Cons_1(2,2) -> 3
          Cons_1(2,2) -> 4
          Cons_1(2,3) -> 1
          Cons_1(2,3) -> 3
          Cons_1(2,3) -> 4
          Cons_1(2,3) -> 5
          Cons_1(2,4) -> 2
          Cons_1(2,5) -> 3
          Cons_1(2,5) -> 5
          Cons_2(2,2) -> 4
          Cons_2(2,3) -> 5
          Cons_2(2,4) -> 2
          Cons_2(2,4) -> 3
          Cons_2(2,4) -> 4
          Cons_2(2,5) -> 1
          Cons_2(2,5) -> 3
          Cons_2(2,5) -> 4
          Cons_2(2,5) -> 5
          Leaf_0(2) -> 2
          Nil_0() -> 2
          Nil_1() -> 3
          Node_0(2,2) -> 2
          comp_f_g_0(2,2) -> 2
          comp_f_g_1(2,2) -> 1
          comp_f_g_1(2,2) -> 2
          comp_f_g#1_0(2,2,2) -> 1
          comp_f_g#1_1(2,2,2) -> 2
          comp_f_g#1_1(2,2,2) -> 3
          comp_f_g#1_1(2,2,2) -> 4
          comp_f_g#1_1(2,2,3) -> 1
          comp_f_g#1_1(2,2,3) -> 3
          comp_f_g#1_1(2,2,3) -> 4
          comp_f_g#1_1(2,2,3) -> 5
          comp_f_g#1_1(2,2,4) -> 2
          comp_f_g#1_1(2,2,5) -> 3
          comp_f_g#1_2(2,2,2) -> 4
          comp_f_g#1_2(2,2,3) -> 5
          comp_f_g#1_2(2,2,4) -> 2
          comp_f_g#1_2(2,2,4) -> 3
          comp_f_g#1_2(2,2,4) -> 4
          comp_f_g#1_2(2,2,5) -> 1
          comp_f_g#1_2(2,2,5) -> 3
          comp_f_g#1_2(2,2,5) -> 4
          comp_f_g#1_2(2,2,5) -> 5
          cons_x_0(2) -> 2
          cons_x_1(2) -> 1
          cons_x_1(2) -> 2
          main_0(2) -> 1
          walk#1_0(2) -> 1
          walk#1_1(2) -> 2
** Step 1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            comp_f_g#1(comp_f_g(x4,x5),comp_f_g(x2,x3),x1) -> comp_f_g#1(x4,x5,comp_f_g#1(x2,x3,x1))
            comp_f_g#1(comp_f_g(x7,x9),cons_x(x2),x4) -> comp_f_g#1(x7,x9,Cons(x2,x4))
            comp_f_g#1(cons_x(x2),comp_f_g(x5,x7),x3) -> Cons(x2,comp_f_g#1(x5,x7,x3))
            comp_f_g#1(cons_x(x5),cons_x(x2),x4) -> Cons(x5,Cons(x2,x4))
            main(Leaf(x4)) -> Cons(x4,Nil())
            main(Node(x9,x5)) -> comp_f_g#1(walk#1(x9),walk#1(x5),Nil())
            walk#1(Leaf(x2)) -> cons_x(x2)
            walk#1(Node(x5,x3)) -> comp_f_g(walk#1(x5),walk#1(x3))
        - Signature:
            {comp_f_g#1/3,main/1,walk#1/1} / {Cons/2,Leaf/1,Nil/0,Node/2,comp_f_g/2,cons_x/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {comp_f_g#1,main,walk#1} and constructors {Cons,Leaf,Nil
            ,Node,comp_f_g,cons_x}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))