* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            f(x,y,g(z)) -> g(f(x,y,z))
            f(x,g(y),z) -> g(f(x,y,z))
            f(0(),1(),x) -> f(g(x),g(x),x)
            f(g(x),y,z) -> g(f(x,y,z))
        - Signature:
            {f/3} / {0/0,1/0,g/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f} and constructors {0,1,g}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            f(x,y,g(z)) -> g(f(x,y,z))
            f(x,g(y),z) -> g(f(x,y,z))
            f(0(),1(),x) -> f(g(x),g(x),x)
            f(g(x),y,z) -> g(f(x,y,z))
        - Signature:
            {f/3} / {0/0,1/0,g/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {f} and constructors {0,1,g}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          f(x,y,z){z -> g(z)} =
            f(x,y,g(z)) ->^+ g(f(x,y,z))
              = C[f(x,y,z) = f(x,y,z){}]

WORST_CASE(Omega(n^1),?)