* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
f(x,y,g(z)) -> g(f(x,y,z))
f(x,g(y),z) -> g(f(x,y,z))
f(0(),1(),x) -> f(g(x),g(x),x)
f(g(x),y,z) -> g(f(x,y,z))
- Signature:
{f/3} / {0/0,1/0,g/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {f} and constructors {0,1,g}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
f(x,y,g(z)) -> g(f(x,y,z))
f(x,g(y),z) -> g(f(x,y,z))
f(0(),1(),x) -> f(g(x),g(x),x)
f(g(x),y,z) -> g(f(x,y,z))
- Signature:
{f/3} / {0/0,1/0,g/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {f} and constructors {0,1,g}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
f(x,y,z){z -> g(z)} =
f(x,y,g(z)) ->^+ g(f(x,y,z))
= C[f(x,y,z) = f(x,y,z){}]
WORST_CASE(Omega(n^1),?)