* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: f(x,y,g(z)) -> g(f(x,y,z)) f(x,g(y),z) -> g(f(x,y,z)) f(0(),1(),x) -> f(g(x),g(x),x) f(g(x),y,z) -> g(f(x,y,z)) - Signature: {f/3} / {0/0,1/0,g/1} - Obligation: innermost runtime complexity wrt. defined symbols {f} and constructors {0,1,g} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: f(x,y,g(z)) -> g(f(x,y,z)) f(x,g(y),z) -> g(f(x,y,z)) f(0(),1(),x) -> f(g(x),g(x),x) f(g(x),y,z) -> g(f(x,y,z)) - Signature: {f/3} / {0/0,1/0,g/1} - Obligation: innermost runtime complexity wrt. defined symbols {f} and constructors {0,1,g} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: f(x,y,z){z -> g(z)} = f(x,y,g(z)) ->^+ g(f(x,y,z)) = C[f(x,y,z) = f(x,y,z){}] WORST_CASE(Omega(n^1),?)