(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^1).
The TRS R consists of the following rules:
h(f(x, y)) → f(y, f(h(h(x)), a))
Rewrite Strategy: INNERMOST
(1) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1]
transitions:
f0(0, 0) → 0
a0() → 0
h0(0) → 1
h1(0) → 4
h1(4) → 3
a1() → 5
f1(3, 5) → 2
f1(0, 2) → 1
f1(0, 2) → 4
h2(0) → 8
h2(8) → 7
a2() → 9
f2(7, 9) → 6
f2(2, 6) → 3
f1(0, 2) → 8
f2(2, 6) → 7
(2) BOUNDS(1, n^1)
(3) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
h(f(z0, z1)) → f(z1, f(h(h(z0)), a))
Tuples:
H(f(z0, z1)) → c(H(h(z0)), H(z0))
S tuples:
H(f(z0, z1)) → c(H(h(z0)), H(z0))
K tuples:none
Defined Rule Symbols:
h
Defined Pair Symbols:
H
Compound Symbols:
c
(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
H(
f(
z0,
z1)) →
c(
H(
h(
z0)),
H(
z0)) by
H(f(f(z0, z1), x1)) → c(H(f(z1, f(h(h(z0)), a))), H(f(z0, z1)))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
h(f(z0, z1)) → f(z1, f(h(h(z0)), a))
Tuples:
H(f(f(z0, z1), x1)) → c(H(f(z1, f(h(h(z0)), a))), H(f(z0, z1)))
S tuples:
H(f(f(z0, z1), x1)) → c(H(f(z1, f(h(h(z0)), a))), H(f(z0, z1)))
K tuples:none
Defined Rule Symbols:
h
Defined Pair Symbols:
H
Compound Symbols:
c