* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            g(x,s(y)) -> g(f(x,y),0())
            g(0(),f(x,x)) -> x
            g(f(x,y),0()) -> f(g(x,0()),g(y,0()))
            g(s(x),y) -> g(f(x,y),0())
        - Signature:
            {g/2} / {0/0,f/2,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {g} and constructors {0,f,s}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            g(x,s(y)) -> g(f(x,y),0())
            g(0(),f(x,x)) -> x
            g(f(x,y),0()) -> f(g(x,0()),g(y,0()))
            g(s(x),y) -> g(f(x,y),0())
        - Signature:
            {g/2} / {0/0,f/2,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {g} and constructors {0,f,s}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          g(x,0()){x -> f(x,y)} =
            g(f(x,y),0()) ->^+ f(g(x,0()),g(y,0()))
              = C[g(x,0()) = g(x,0()){}]

** Step 1.b:1: Bounds WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            g(x,s(y)) -> g(f(x,y),0())
            g(0(),f(x,x)) -> x
            g(f(x,y),0()) -> f(g(x,0()),g(y,0()))
            g(s(x),y) -> g(f(x,y),0())
        - Signature:
            {g/2} / {0/0,f/2,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {g} and constructors {0,f,s}
    + Applied Processor:
        Bounds {initialAutomaton = minimal, enrichment = match}
    + Details:
        The problem is match-bounded by 2.
        The enriched problem is compatible with follwoing automaton.
          0_0() -> 1
          0_0() -> 2
          0_1() -> 4
          0_2() -> 9
          0_2() -> 10
          f_0(2,2) -> 1
          f_0(2,2) -> 2
          f_1(2,2) -> 3
          f_1(2,4) -> 1
          f_1(2,4) -> 2
          f_1(2,9) -> 11
          f_1(2,10) -> 12
          f_1(5,6) -> 1
          f_1(6,6) -> 5
          f_1(6,6) -> 6
          f_1(6,6) -> 7
          f_1(6,6) -> 8
          f_2(7,8) -> 1
          f_2(8,13) -> 5
          f_2(8,13) -> 6
          f_2(8,13) -> 7
          f_2(8,13) -> 8
          g_0(2,2) -> 1
          g_1(2,4) -> 5
          g_1(2,4) -> 6
          g_1(3,4) -> 1
          g_1(4,4) -> 6
          g_1(11,4) -> 7
          g_1(12,4) -> 8
          g_2(2,9) -> 7
          g_2(2,10) -> 8
          g_2(4,10) -> 13
          g_2(9,10) -> 13
          g_2(10,10) -> 13
          s_0(2) -> 1
          s_0(2) -> 2
          2 -> 1
** Step 1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            g(x,s(y)) -> g(f(x,y),0())
            g(0(),f(x,x)) -> x
            g(f(x,y),0()) -> f(g(x,0()),g(y,0()))
            g(s(x),y) -> g(f(x,y),0())
        - Signature:
            {g/2} / {0/0,f/2,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {g} and constructors {0,f,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))