* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) g(0(),x) -> g(f(x,x),x) - Signature: {f/2,g/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {0,s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) g(0(),x) -> g(f(x,x),x) - Signature: {f/2,g/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {0,s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: f(x,y){x -> s(x),y -> s(y)} = f(s(x),s(y)) ->^+ s(f(x,y)) = C[f(x,y) = f(x,y){}] ** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) g(0(),x) -> g(f(x,x),x) - Signature: {f/2,g/2} / {0/0,s/1} - Obligation: innermost runtime complexity wrt. defined symbols {f,g} and constructors {0,s} + Applied Processor: DependencyPairs {dpKind_ = DT} + Details: We add the following dependency tuples: Strict DPs f#(x,0()) -> c_1() f#(s(x),s(y)) -> c_2(f#(x,y)) g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) Weak DPs and mark the set of starting terms. ** Step 1.b:2: UsableRules WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,0()) -> c_1() f#(s(x),s(y)) -> c_2(f#(x,y)) g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) g(0(),x) -> g(f(x,x),x) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: UsableRules + Details: We replace rewrite rules by usable rules: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) f#(x,0()) -> c_1() f#(s(x),s(y)) -> c_2(f#(x,y)) g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) ** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(x,0()) -> c_1() f#(s(x),s(y)) -> c_2(f#(x,y)) g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} + Details: We estimate the number of application of {1} by application of Pre({1}) = {2,3}. Here rules are labelled as follows: 1: f#(x,0()) -> c_1() 2: f#(s(x),s(y)) -> c_2(f#(x,y)) 3: g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) ** Step 1.b:4: RemoveWeakSuffixes WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(s(x),s(y)) -> c_2(f#(x,y)) g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) - Weak DPs: f#(x,0()) -> c_1() - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:f#(s(x),s(y)) -> c_2(f#(x,y)) -->_1 f#(x,0()) -> c_1():3 -->_1 f#(s(x),s(y)) -> c_2(f#(x,y)):1 2:S:g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) -->_2 f#(x,0()) -> c_1():3 -->_1 g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)):2 -->_2 f#(s(x),s(y)) -> c_2(f#(x,y)):1 3:W:f#(x,0()) -> c_1() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: f#(x,0()) -> c_1() ** Step 1.b:5: Decompose WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(s(x),s(y)) -> c_2(f#(x,y)) g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} + Details: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) - Strict DPs: f#(s(x),s(y)) -> c_2(f#(x,y)) - Weak DPs: g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} Problem (S) - Strict DPs: g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) - Weak DPs: f#(s(x),s(y)) -> c_2(f#(x,y)) - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} *** Step 1.b:5.a:1: DecomposeDG WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(s(x),s(y)) -> c_2(f#(x,y)) - Weak DPs: g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} + Details: We decompose the input problem according to the dependency graph into the upper component g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) and a lower component f#(s(x),s(y)) -> c_2(f#(x,y)) Further, following extension rules are added to the lower component. g#(0(),x) -> f#(x,x) g#(0(),x) -> g#(f(x,x),x) **** Step 1.b:5.a:1.a:1: PredecessorEstimationCP WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) The strictly oriented rules are moved into the weak component. ***** Step 1.b:5.a:1.a:1.a:1: NaturalMI WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1} Following symbols are considered usable: {f,f#,g#} TcT has computed the following interpretation: p(0) = [15] p(f) = [10] p(g) = [1] x2 + [1] p(s) = [0] p(f#) = [6] x1 + [2] x2 + [8] p(g#) = [1] x1 + [2] x2 + [6] p(c_1) = [1] p(c_2) = [2] x1 + [0] p(c_3) = [1] x1 + [1] Following rules are strictly oriented: g#(0(),x) = [2] x + [21] > [2] x + [17] = c_3(g#(f(x,x),x),f#(x,x)) Following rules are (at-least) weakly oriented: f(x,0()) = [10] >= [0] = s(0()) f(s(x),s(y)) = [10] >= [0] = s(f(x,y)) ***** Step 1.b:5.a:1.a:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ***** Step 1.b:5.a:1.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) -->_1 g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) ***** Step 1.b:5.a:1.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). **** Step 1.b:5.a:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(s(x),s(y)) -> c_2(f#(x,y)) - Weak DPs: g#(0(),x) -> f#(x,x) g#(0(),x) -> g#(f(x,x),x) - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: f#(s(x),s(y)) -> c_2(f#(x,y)) The strictly oriented rules are moved into the weak component. ***** Step 1.b:5.a:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict DPs: f#(s(x),s(y)) -> c_2(f#(x,y)) - Weak DPs: g#(0(),x) -> f#(x,x) g#(0(),x) -> g#(f(x,x),x) - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1} Following symbols are considered usable: {f#,g#} TcT has computed the following interpretation: p(0) = [3] p(f) = [0] p(g) = [1] x1 + [2] x2 + [2] p(s) = [1] x1 + [1] p(f#) = [2] x1 + [0] p(g#) = [6] x2 + [0] p(c_1) = [4] p(c_2) = [1] x1 + [0] p(c_3) = [1] x2 + [1] Following rules are strictly oriented: f#(s(x),s(y)) = [2] x + [2] > [2] x + [0] = c_2(f#(x,y)) Following rules are (at-least) weakly oriented: g#(0(),x) = [6] x + [0] >= [2] x + [0] = f#(x,x) g#(0(),x) = [6] x + [0] >= [6] x + [0] = g#(f(x,x),x) ***** Step 1.b:5.a:1.b:1.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(s(x),s(y)) -> c_2(f#(x,y)) g#(0(),x) -> f#(x,x) g#(0(),x) -> g#(f(x,x),x) - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () ***** Step 1.b:5.a:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: f#(s(x),s(y)) -> c_2(f#(x,y)) g#(0(),x) -> f#(x,x) g#(0(),x) -> g#(f(x,x),x) - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:f#(s(x),s(y)) -> c_2(f#(x,y)) -->_1 f#(s(x),s(y)) -> c_2(f#(x,y)):1 2:W:g#(0(),x) -> f#(x,x) -->_1 f#(s(x),s(y)) -> c_2(f#(x,y)):1 3:W:g#(0(),x) -> g#(f(x,x),x) -->_1 g#(0(),x) -> g#(f(x,x),x):3 -->_1 g#(0(),x) -> f#(x,x):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: g#(0(),x) -> g#(f(x,x),x) 2: g#(0(),x) -> f#(x,x) 1: f#(s(x),s(y)) -> c_2(f#(x,y)) ***** Step 1.b:5.a:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). *** Step 1.b:5.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) - Weak DPs: f#(s(x),s(y)) -> c_2(f#(x,y)) - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:S:g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) -->_2 f#(s(x),s(y)) -> c_2(f#(x,y)):2 -->_1 g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)):1 2:W:f#(s(x),s(y)) -> c_2(f#(x,y)) -->_1 f#(s(x),s(y)) -> c_2(f#(x,y)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: f#(s(x),s(y)) -> c_2(f#(x,y)) *** Step 1.b:5.b:2: SimplifyRHS WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/2} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: SimplifyRHS + Details: Consider the dependency graph 1:S:g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)) -->_1 g#(0(),x) -> c_3(g#(f(x,x),x),f#(x,x)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: g#(0(),x) -> c_3(g#(f(x,x),x)) *** Step 1.b:5.b:3: PredecessorEstimationCP WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: g#(0(),x) -> c_3(g#(f(x,x),x)) - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}} + Details: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly: 1: g#(0(),x) -> c_3(g#(f(x,x),x)) The strictly oriented rules are moved into the weak component. **** Step 1.b:5.b:3.a:1: NaturalMI WORST_CASE(?,O(1)) + Considered Problem: - Strict DPs: g#(0(),x) -> c_3(g#(f(x,x),x)) - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules} + Details: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_3) = {1} Following symbols are considered usable: {f,f#,g#} TcT has computed the following interpretation: p(0) = [7] p(f) = [0] p(g) = [4] x2 + [2] p(s) = [0] p(f#) = [2] x2 + [1] p(g#) = [3] x1 + [4] p(c_1) = [1] p(c_2) = [2] x1 + [1] p(c_3) = [2] x1 + [4] Following rules are strictly oriented: g#(0(),x) = [25] > [12] = c_3(g#(f(x,x),x)) Following rules are (at-least) weakly oriented: f(x,0()) = [0] >= [0] = s(0()) f(s(x),s(y)) = [0] >= [0] = s(f(x,y)) **** Step 1.b:5.b:3.a:2: Assumption WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: g#(0(),x) -> c_3(g#(f(x,x),x)) - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}} + Details: () **** Step 1.b:5.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1)) + Considered Problem: - Weak DPs: g#(0(),x) -> c_3(g#(f(x,x),x)) - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: RemoveWeakSuffixes + Details: Consider the dependency graph 1:W:g#(0(),x) -> c_3(g#(f(x,x),x)) -->_1 g#(0(),x) -> c_3(g#(f(x,x),x)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: g#(0(),x) -> c_3(g#(f(x,x),x)) **** Step 1.b:5.b:3.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: f(x,0()) -> s(0()) f(s(x),s(y)) -> s(f(x,y)) - Signature: {f/2,g/2,f#/2,g#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/1} - Obligation: innermost runtime complexity wrt. defined symbols {f#,g#} and constructors {0,s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))