* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
    + Considered Problem:
        - Strict TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            BS(L(x)) -> true()
            BS(N(x,l(),r())) -> and(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r())))
            Log(x) -> -(Log'(x),I(0()))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            Max(L(x)) -> x
            Max(N(x,l(),r())) -> Max(r())
            Min(L(x)) -> x
            Min(N(x,l(),r())) -> Min(l())
            O(0()) -> 0()
            Size(L(x)) -> I(0())
            Size(N(x,l(),r())) -> +(+(Size(l()),Size(r())),I(1()))
            Val(L(x)) -> x
            Val(N(x,l(),r())) -> x
            WB(L(x)) -> true()
            WB(N(x,l(),r())) -> and(if(ge(Size(l()),Size(r()))
                                      ,ge(I(0()),-(Size(l()),Size(r())))
                                      ,ge(I(0()),-(Size(r()),Size(l()))))
                                   ,and(WB(l()),WB(r())))
            and(x,false()) -> false()
            and(x,true()) -> x
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1} / {0/0,1/0,I/1,L/1,N/3
            ,false/0,l/0,r/0,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+,-,BS,Log,Log',Max,Min,O,Size,Val,WB,and,ge,if
            ,not} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            BS(L(x)) -> true()
            BS(N(x,l(),r())) -> and(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r())))
            Log(x) -> -(Log'(x),I(0()))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            Max(L(x)) -> x
            Max(N(x,l(),r())) -> Max(r())
            Min(L(x)) -> x
            Min(N(x,l(),r())) -> Min(l())
            O(0()) -> 0()
            Size(L(x)) -> I(0())
            Size(N(x,l(),r())) -> +(+(Size(l()),Size(r())),I(1()))
            Val(L(x)) -> x
            Val(N(x,l(),r())) -> x
            WB(L(x)) -> true()
            WB(N(x,l(),r())) -> and(if(ge(Size(l()),Size(r()))
                                      ,ge(I(0()),-(Size(l()),Size(r())))
                                      ,ge(I(0()),-(Size(r()),Size(l()))))
                                   ,and(WB(l()),WB(r())))
            and(x,false()) -> false()
            and(x,true()) -> x
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1} / {0/0,1/0,I/1,L/1,N/3
            ,false/0,l/0,r/0,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+,-,BS,Log,Log',Max,Min,O,Size,Val,WB,and,ge,if
            ,not} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          +(x,y){x -> I(x),y -> I(y)} =
            +(I(x),I(y)) ->^+ O(+(+(x,y),I(0())))
              = C[+(x,y) = +(x,y){}]

** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            BS(L(x)) -> true()
            BS(N(x,l(),r())) -> and(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r())))
            Log(x) -> -(Log'(x),I(0()))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            Max(L(x)) -> x
            Max(N(x,l(),r())) -> Max(r())
            Min(L(x)) -> x
            Min(N(x,l(),r())) -> Min(l())
            O(0()) -> 0()
            Size(L(x)) -> I(0())
            Size(N(x,l(),r())) -> +(+(Size(l()),Size(r())),I(1()))
            Val(L(x)) -> x
            Val(N(x,l(),r())) -> x
            WB(L(x)) -> true()
            WB(N(x,l(),r())) -> and(if(ge(Size(l()),Size(r()))
                                      ,ge(I(0()),-(Size(l()),Size(r())))
                                      ,ge(I(0()),-(Size(r()),Size(l()))))
                                   ,and(WB(l()),WB(r())))
            and(x,false()) -> false()
            and(x,true()) -> x
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1} / {0/0,1/0,I/1,L/1,N/3
            ,false/0,l/0,r/0,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+,-,BS,Log,Log',Max,Min,O,Size,Val,WB,and,ge,if
            ,not} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          +#(x,0()) -> c_2()
          +#(0(),x) -> c_3()
          +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y))
          +#(I(x),O(y)) -> c_5(+#(x,y))
          +#(O(x),I(y)) -> c_6(+#(x,y))
          +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y))
          -#(x,0()) -> c_8()
          -#(0(),x) -> c_9()
          -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y))
          -#(I(x),O(y)) -> c_11(-#(x,y))
          -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
          -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y))
          BS#(L(x)) -> c_14()
          BS#(N(x,l(),r())) -> c_15(and#(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r())))
                                   ,and#(ge(x,Max(l())),ge(Min(r()),x))
                                   ,ge#(x,Max(l()))
                                   ,Max#(l())
                                   ,ge#(Min(r()),x)
                                   ,Min#(r())
                                   ,and#(BS(l()),BS(r()))
                                   ,BS#(l())
                                   ,BS#(r()))
          Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
          Log'#(0()) -> c_17()
          Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
          Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
          Max#(L(x)) -> c_20()
          Max#(N(x,l(),r())) -> c_21(Max#(r()))
          Min#(L(x)) -> c_22()
          Min#(N(x,l(),r())) -> c_23(Min#(l()))
          O#(0()) -> c_24()
          Size#(L(x)) -> c_25()
          Size#(N(x,l(),r())) -> c_26(+#(+(Size(l()),Size(r())),I(1())),+#(Size(l()),Size(r())),Size#(l()),Size#(r()))
          Val#(L(x)) -> c_27()
          Val#(N(x,l(),r())) -> c_28()
          WB#(L(x)) -> c_29()
          WB#(N(x,l(),r())) -> c_30(and#(if(ge(Size(l()),Size(r()))
                                           ,ge(I(0()),-(Size(l()),Size(r())))
                                           ,ge(I(0()),-(Size(r()),Size(l()))))
                                        ,and(WB(l()),WB(r())))
                                   ,if#(ge(Size(l()),Size(r()))
                                       ,ge(I(0()),-(Size(l()),Size(r())))
                                       ,ge(I(0()),-(Size(r()),Size(l()))))
                                   ,ge#(Size(l()),Size(r()))
                                   ,Size#(l())
                                   ,Size#(r())
                                   ,ge#(I(0()),-(Size(l()),Size(r())))
                                   ,-#(Size(l()),Size(r()))
                                   ,Size#(l())
                                   ,Size#(r())
                                   ,ge#(I(0()),-(Size(r()),Size(l())))
                                   ,-#(Size(r()),Size(l()))
                                   ,Size#(r())
                                   ,Size#(l())
                                   ,and#(WB(l()),WB(r()))
                                   ,WB#(l())
                                   ,WB#(r()))
          and#(x,false()) -> c_31()
          and#(x,true()) -> c_32()
          ge#(x,0()) -> c_33()
          ge#(0(),I(x)) -> c_34()
          ge#(0(),O(x)) -> c_35(ge#(0(),x))
          ge#(I(x),I(y)) -> c_36(ge#(x,y))
          ge#(I(x),O(y)) -> c_37(ge#(x,y))
          ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x))
          ge#(O(x),O(y)) -> c_39(ge#(x,y))
          if#(false(),x,y) -> c_40()
          if#(true(),x,y) -> c_41()
          not#(false()) -> c_42()
          not#(true()) -> c_43()
        Weak DPs
          
        
        and mark the set of starting terms.
** Step 1.b:2: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(x,0()) -> c_2()
            +#(0(),x) -> c_3()
            +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y))
            -#(x,0()) -> c_8()
            -#(0(),x) -> c_9()
            -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y))
            BS#(L(x)) -> c_14()
            BS#(N(x,l(),r())) -> c_15(and#(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r())))
                                     ,and#(ge(x,Max(l())),ge(Min(r()),x))
                                     ,ge#(x,Max(l()))
                                     ,Max#(l())
                                     ,ge#(Min(r()),x)
                                     ,Min#(r())
                                     ,and#(BS(l()),BS(r()))
                                     ,BS#(l())
                                     ,BS#(r()))
            Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
            Log'#(0()) -> c_17()
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
            Max#(L(x)) -> c_20()
            Max#(N(x,l(),r())) -> c_21(Max#(r()))
            Min#(L(x)) -> c_22()
            Min#(N(x,l(),r())) -> c_23(Min#(l()))
            O#(0()) -> c_24()
            Size#(L(x)) -> c_25()
            Size#(N(x,l(),r())) -> c_26(+#(+(Size(l()),Size(r())),I(1())),+#(Size(l()),Size(r())),Size#(l()),Size#(r()))
            Val#(L(x)) -> c_27()
            Val#(N(x,l(),r())) -> c_28()
            WB#(L(x)) -> c_29()
            WB#(N(x,l(),r())) -> c_30(and#(if(ge(Size(l()),Size(r()))
                                             ,ge(I(0()),-(Size(l()),Size(r())))
                                             ,ge(I(0()),-(Size(r()),Size(l()))))
                                          ,and(WB(l()),WB(r())))
                                     ,if#(ge(Size(l()),Size(r()))
                                         ,ge(I(0()),-(Size(l()),Size(r())))
                                         ,ge(I(0()),-(Size(r()),Size(l()))))
                                     ,ge#(Size(l()),Size(r()))
                                     ,Size#(l())
                                     ,Size#(r())
                                     ,ge#(I(0()),-(Size(l()),Size(r())))
                                     ,-#(Size(l()),Size(r()))
                                     ,Size#(l())
                                     ,Size#(r())
                                     ,ge#(I(0()),-(Size(r()),Size(l())))
                                     ,-#(Size(r()),Size(l()))
                                     ,Size#(r())
                                     ,Size#(l())
                                     ,and#(WB(l()),WB(r()))
                                     ,WB#(l())
                                     ,WB#(r()))
            and#(x,false()) -> c_31()
            and#(x,true()) -> c_32()
            ge#(x,0()) -> c_33()
            ge#(0(),I(x)) -> c_34()
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
            if#(false(),x,y) -> c_40()
            if#(true(),x,y) -> c_41()
            not#(false()) -> c_42()
            not#(true()) -> c_43()
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            BS(L(x)) -> true()
            BS(N(x,l(),r())) -> and(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r())))
            Log(x) -> -(Log'(x),I(0()))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            Max(L(x)) -> x
            Max(N(x,l(),r())) -> Max(r())
            Min(L(x)) -> x
            Min(N(x,l(),r())) -> Min(l())
            O(0()) -> 0()
            Size(L(x)) -> I(0())
            Size(N(x,l(),r())) -> +(+(Size(l()),Size(r())),I(1()))
            Val(L(x)) -> x
            Val(N(x,l(),r())) -> x
            WB(L(x)) -> true()
            WB(N(x,l(),r())) -> and(if(ge(Size(l()),Size(r()))
                                      ,ge(I(0()),-(Size(l()),Size(r())))
                                      ,ge(I(0()),-(Size(r()),Size(l()))))
                                   ,and(WB(l()),WB(r())))
            and(x,false()) -> false()
            and(x,true()) -> x
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/3,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/2,c_11/1,c_12/2,c_13/2,c_14/0
            ,c_15/9,c_16/2,c_17/0,c_18/2,c_19/4,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/2,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          +(x,+(y,z)) -> +(+(x,y),z)
          +(x,0()) -> x
          +(0(),x) -> x
          +(I(x),I(y)) -> O(+(+(x,y),I(0())))
          +(I(x),O(y)) -> I(+(x,y))
          +(O(x),I(y)) -> I(+(x,y))
          +(O(x),O(y)) -> O(+(x,y))
          -(x,0()) -> x
          -(0(),x) -> 0()
          -(I(x),I(y)) -> O(-(x,y))
          -(I(x),O(y)) -> I(-(x,y))
          -(O(x),I(y)) -> I(-(-(x,y),I(1())))
          -(O(x),O(y)) -> O(-(x,y))
          Log'(0()) -> 0()
          Log'(I(x)) -> +(Log'(x),I(0()))
          Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
          O(0()) -> 0()
          and(x,false()) -> false()
          and(x,true()) -> x
          ge(x,0()) -> true()
          ge(0(),I(x)) -> false()
          ge(0(),O(x)) -> ge(0(),x)
          ge(I(x),I(y)) -> ge(x,y)
          ge(I(x),O(y)) -> ge(x,y)
          ge(O(x),I(y)) -> not(ge(y,x))
          ge(O(x),O(y)) -> ge(x,y)
          if(false(),x,y) -> y
          if(true(),x,y) -> x
          not(false()) -> true()
          not(true()) -> false()
          +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          +#(x,0()) -> c_2()
          +#(0(),x) -> c_3()
          +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y))
          +#(I(x),O(y)) -> c_5(+#(x,y))
          +#(O(x),I(y)) -> c_6(+#(x,y))
          +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y))
          -#(x,0()) -> c_8()
          -#(0(),x) -> c_9()
          -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y))
          -#(I(x),O(y)) -> c_11(-#(x,y))
          -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
          -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y))
          BS#(L(x)) -> c_14()
          BS#(N(x,l(),r())) -> c_15(and#(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r())))
                                   ,and#(ge(x,Max(l())),ge(Min(r()),x))
                                   ,ge#(x,Max(l()))
                                   ,Max#(l())
                                   ,ge#(Min(r()),x)
                                   ,Min#(r())
                                   ,and#(BS(l()),BS(r()))
                                   ,BS#(l())
                                   ,BS#(r()))
          Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
          Log'#(0()) -> c_17()
          Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
          Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
          Max#(L(x)) -> c_20()
          Max#(N(x,l(),r())) -> c_21(Max#(r()))
          Min#(L(x)) -> c_22()
          Min#(N(x,l(),r())) -> c_23(Min#(l()))
          O#(0()) -> c_24()
          Size#(L(x)) -> c_25()
          Size#(N(x,l(),r())) -> c_26(+#(+(Size(l()),Size(r())),I(1())),+#(Size(l()),Size(r())),Size#(l()),Size#(r()))
          Val#(L(x)) -> c_27()
          Val#(N(x,l(),r())) -> c_28()
          WB#(L(x)) -> c_29()
          WB#(N(x,l(),r())) -> c_30(and#(if(ge(Size(l()),Size(r()))
                                           ,ge(I(0()),-(Size(l()),Size(r())))
                                           ,ge(I(0()),-(Size(r()),Size(l()))))
                                        ,and(WB(l()),WB(r())))
                                   ,if#(ge(Size(l()),Size(r()))
                                       ,ge(I(0()),-(Size(l()),Size(r())))
                                       ,ge(I(0()),-(Size(r()),Size(l()))))
                                   ,ge#(Size(l()),Size(r()))
                                   ,Size#(l())
                                   ,Size#(r())
                                   ,ge#(I(0()),-(Size(l()),Size(r())))
                                   ,-#(Size(l()),Size(r()))
                                   ,Size#(l())
                                   ,Size#(r())
                                   ,ge#(I(0()),-(Size(r()),Size(l())))
                                   ,-#(Size(r()),Size(l()))
                                   ,Size#(r())
                                   ,Size#(l())
                                   ,and#(WB(l()),WB(r()))
                                   ,WB#(l())
                                   ,WB#(r()))
          and#(x,false()) -> c_31()
          and#(x,true()) -> c_32()
          ge#(x,0()) -> c_33()
          ge#(0(),I(x)) -> c_34()
          ge#(0(),O(x)) -> c_35(ge#(0(),x))
          ge#(I(x),I(y)) -> c_36(ge#(x,y))
          ge#(I(x),O(y)) -> c_37(ge#(x,y))
          ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x))
          ge#(O(x),O(y)) -> c_39(ge#(x,y))
          if#(false(),x,y) -> c_40()
          if#(true(),x,y) -> c_41()
          not#(false()) -> c_42()
          not#(true()) -> c_43()
** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(x,0()) -> c_2()
            +#(0(),x) -> c_3()
            +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y))
            -#(x,0()) -> c_8()
            -#(0(),x) -> c_9()
            -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y))
            BS#(L(x)) -> c_14()
            BS#(N(x,l(),r())) -> c_15(and#(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r())))
                                     ,and#(ge(x,Max(l())),ge(Min(r()),x))
                                     ,ge#(x,Max(l()))
                                     ,Max#(l())
                                     ,ge#(Min(r()),x)
                                     ,Min#(r())
                                     ,and#(BS(l()),BS(r()))
                                     ,BS#(l())
                                     ,BS#(r()))
            Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
            Log'#(0()) -> c_17()
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
            Max#(L(x)) -> c_20()
            Max#(N(x,l(),r())) -> c_21(Max#(r()))
            Min#(L(x)) -> c_22()
            Min#(N(x,l(),r())) -> c_23(Min#(l()))
            O#(0()) -> c_24()
            Size#(L(x)) -> c_25()
            Size#(N(x,l(),r())) -> c_26(+#(+(Size(l()),Size(r())),I(1())),+#(Size(l()),Size(r())),Size#(l()),Size#(r()))
            Val#(L(x)) -> c_27()
            Val#(N(x,l(),r())) -> c_28()
            WB#(L(x)) -> c_29()
            WB#(N(x,l(),r())) -> c_30(and#(if(ge(Size(l()),Size(r()))
                                             ,ge(I(0()),-(Size(l()),Size(r())))
                                             ,ge(I(0()),-(Size(r()),Size(l()))))
                                          ,and(WB(l()),WB(r())))
                                     ,if#(ge(Size(l()),Size(r()))
                                         ,ge(I(0()),-(Size(l()),Size(r())))
                                         ,ge(I(0()),-(Size(r()),Size(l()))))
                                     ,ge#(Size(l()),Size(r()))
                                     ,Size#(l())
                                     ,Size#(r())
                                     ,ge#(I(0()),-(Size(l()),Size(r())))
                                     ,-#(Size(l()),Size(r()))
                                     ,Size#(l())
                                     ,Size#(r())
                                     ,ge#(I(0()),-(Size(r()),Size(l())))
                                     ,-#(Size(r()),Size(l()))
                                     ,Size#(r())
                                     ,Size#(l())
                                     ,and#(WB(l()),WB(r()))
                                     ,WB#(l())
                                     ,WB#(r()))
            and#(x,false()) -> c_31()
            and#(x,true()) -> c_32()
            ge#(x,0()) -> c_33()
            ge#(0(),I(x)) -> c_34()
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
            if#(false(),x,y) -> c_40()
            if#(true(),x,y) -> c_41()
            not#(false()) -> c_42()
            not#(true()) -> c_43()
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            and(x,false()) -> false()
            and(x,true()) -> x
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/3,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/2,c_11/1,c_12/2,c_13/2,c_14/0
            ,c_15/9,c_16/2,c_17/0,c_18/2,c_19/4,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/2,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {2,3,8,9,14,17,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,40,41,42,43}
        by application of
          Pre({2,3,8,9,14,17,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,40,41,42,43}) = {1,4,5,6,7,10,11,12,13,15
          ,16,18,19,35,36,37,38,39}.
        Here rules are labelled as follows:
          1: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          2: +#(x,0()) -> c_2()
          3: +#(0(),x) -> c_3()
          4: +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y))
          5: +#(I(x),O(y)) -> c_5(+#(x,y))
          6: +#(O(x),I(y)) -> c_6(+#(x,y))
          7: +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y))
          8: -#(x,0()) -> c_8()
          9: -#(0(),x) -> c_9()
          10: -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y))
          11: -#(I(x),O(y)) -> c_11(-#(x,y))
          12: -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
          13: -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y))
          14: BS#(L(x)) -> c_14()
          15: BS#(N(x,l(),r())) -> c_15(and#(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r())))
                                       ,and#(ge(x,Max(l())),ge(Min(r()),x))
                                       ,ge#(x,Max(l()))
                                       ,Max#(l())
                                       ,ge#(Min(r()),x)
                                       ,Min#(r())
                                       ,and#(BS(l()),BS(r()))
                                       ,BS#(l())
                                       ,BS#(r()))
          16: Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
          17: Log'#(0()) -> c_17()
          18: Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
          19: Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
          20: Max#(L(x)) -> c_20()
          21: Max#(N(x,l(),r())) -> c_21(Max#(r()))
          22: Min#(L(x)) -> c_22()
          23: Min#(N(x,l(),r())) -> c_23(Min#(l()))
          24: O#(0()) -> c_24()
          25: Size#(L(x)) -> c_25()
          26: Size#(N(x,l(),r())) -> c_26(+#(+(Size(l()),Size(r())),I(1()))
                                         ,+#(Size(l()),Size(r()))
                                         ,Size#(l())
                                         ,Size#(r()))
          27: Val#(L(x)) -> c_27()
          28: Val#(N(x,l(),r())) -> c_28()
          29: WB#(L(x)) -> c_29()
          30: WB#(N(x,l(),r())) -> c_30(and#(if(ge(Size(l()),Size(r()))
                                               ,ge(I(0()),-(Size(l()),Size(r())))
                                               ,ge(I(0()),-(Size(r()),Size(l()))))
                                            ,and(WB(l()),WB(r())))
                                       ,if#(ge(Size(l()),Size(r()))
                                           ,ge(I(0()),-(Size(l()),Size(r())))
                                           ,ge(I(0()),-(Size(r()),Size(l()))))
                                       ,ge#(Size(l()),Size(r()))
                                       ,Size#(l())
                                       ,Size#(r())
                                       ,ge#(I(0()),-(Size(l()),Size(r())))
                                       ,-#(Size(l()),Size(r()))
                                       ,Size#(l())
                                       ,Size#(r())
                                       ,ge#(I(0()),-(Size(r()),Size(l())))
                                       ,-#(Size(r()),Size(l()))
                                       ,Size#(r())
                                       ,Size#(l())
                                       ,and#(WB(l()),WB(r()))
                                       ,WB#(l())
                                       ,WB#(r()))
          31: and#(x,false()) -> c_31()
          32: and#(x,true()) -> c_32()
          33: ge#(x,0()) -> c_33()
          34: ge#(0(),I(x)) -> c_34()
          35: ge#(0(),O(x)) -> c_35(ge#(0(),x))
          36: ge#(I(x),I(y)) -> c_36(ge#(x,y))
          37: ge#(I(x),O(y)) -> c_37(ge#(x,y))
          38: ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x))
          39: ge#(O(x),O(y)) -> c_39(ge#(x,y))
          40: if#(false(),x,y) -> c_40()
          41: if#(true(),x,y) -> c_41()
          42: not#(false()) -> c_42()
          43: not#(true()) -> c_43()
** Step 1.b:4: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y))
            -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y))
            BS#(N(x,l(),r())) -> c_15(and#(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r())))
                                     ,and#(ge(x,Max(l())),ge(Min(r()),x))
                                     ,ge#(x,Max(l()))
                                     ,Max#(l())
                                     ,ge#(Min(r()),x)
                                     ,Min#(r())
                                     ,and#(BS(l()),BS(r()))
                                     ,BS#(l())
                                     ,BS#(r()))
            Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
        - Weak DPs:
            +#(x,0()) -> c_2()
            +#(0(),x) -> c_3()
            -#(x,0()) -> c_8()
            -#(0(),x) -> c_9()
            BS#(L(x)) -> c_14()
            Log'#(0()) -> c_17()
            Max#(L(x)) -> c_20()
            Max#(N(x,l(),r())) -> c_21(Max#(r()))
            Min#(L(x)) -> c_22()
            Min#(N(x,l(),r())) -> c_23(Min#(l()))
            O#(0()) -> c_24()
            Size#(L(x)) -> c_25()
            Size#(N(x,l(),r())) -> c_26(+#(+(Size(l()),Size(r())),I(1())),+#(Size(l()),Size(r())),Size#(l()),Size#(r()))
            Val#(L(x)) -> c_27()
            Val#(N(x,l(),r())) -> c_28()
            WB#(L(x)) -> c_29()
            WB#(N(x,l(),r())) -> c_30(and#(if(ge(Size(l()),Size(r()))
                                             ,ge(I(0()),-(Size(l()),Size(r())))
                                             ,ge(I(0()),-(Size(r()),Size(l()))))
                                          ,and(WB(l()),WB(r())))
                                     ,if#(ge(Size(l()),Size(r()))
                                         ,ge(I(0()),-(Size(l()),Size(r())))
                                         ,ge(I(0()),-(Size(r()),Size(l()))))
                                     ,ge#(Size(l()),Size(r()))
                                     ,Size#(l())
                                     ,Size#(r())
                                     ,ge#(I(0()),-(Size(l()),Size(r())))
                                     ,-#(Size(l()),Size(r()))
                                     ,Size#(l())
                                     ,Size#(r())
                                     ,ge#(I(0()),-(Size(r()),Size(l())))
                                     ,-#(Size(r()),Size(l()))
                                     ,Size#(r())
                                     ,Size#(l())
                                     ,and#(WB(l()),WB(r()))
                                     ,WB#(l())
                                     ,WB#(r()))
            and#(x,false()) -> c_31()
            and#(x,true()) -> c_32()
            ge#(x,0()) -> c_33()
            ge#(0(),I(x)) -> c_34()
            if#(false(),x,y) -> c_40()
            if#(true(),x,y) -> c_41()
            not#(false()) -> c_42()
            not#(true()) -> c_43()
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            and(x,false()) -> false()
            and(x,true()) -> x
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/3,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/2,c_11/1,c_12/2,c_13/2,c_14/0
            ,c_15/9,c_16/2,c_17/0,c_18/2,c_19/4,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/2,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {10}
        by application of
          Pre({10}) = {}.
        Here rules are labelled as follows:
          1: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          2: +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y))
          3: +#(I(x),O(y)) -> c_5(+#(x,y))
          4: +#(O(x),I(y)) -> c_6(+#(x,y))
          5: +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y))
          6: -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y))
          7: -#(I(x),O(y)) -> c_11(-#(x,y))
          8: -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
          9: -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y))
          10: BS#(N(x,l(),r())) -> c_15(and#(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r())))
                                       ,and#(ge(x,Max(l())),ge(Min(r()),x))
                                       ,ge#(x,Max(l()))
                                       ,Max#(l())
                                       ,ge#(Min(r()),x)
                                       ,Min#(r())
                                       ,and#(BS(l()),BS(r()))
                                       ,BS#(l())
                                       ,BS#(r()))
          11: Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
          12: Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
          13: Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
          14: ge#(0(),O(x)) -> c_35(ge#(0(),x))
          15: ge#(I(x),I(y)) -> c_36(ge#(x,y))
          16: ge#(I(x),O(y)) -> c_37(ge#(x,y))
          17: ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x))
          18: ge#(O(x),O(y)) -> c_39(ge#(x,y))
          19: +#(x,0()) -> c_2()
          20: +#(0(),x) -> c_3()
          21: -#(x,0()) -> c_8()
          22: -#(0(),x) -> c_9()
          23: BS#(L(x)) -> c_14()
          24: Log'#(0()) -> c_17()
          25: Max#(L(x)) -> c_20()
          26: Max#(N(x,l(),r())) -> c_21(Max#(r()))
          27: Min#(L(x)) -> c_22()
          28: Min#(N(x,l(),r())) -> c_23(Min#(l()))
          29: O#(0()) -> c_24()
          30: Size#(L(x)) -> c_25()
          31: Size#(N(x,l(),r())) -> c_26(+#(+(Size(l()),Size(r())),I(1()))
                                         ,+#(Size(l()),Size(r()))
                                         ,Size#(l())
                                         ,Size#(r()))
          32: Val#(L(x)) -> c_27()
          33: Val#(N(x,l(),r())) -> c_28()
          34: WB#(L(x)) -> c_29()
          35: WB#(N(x,l(),r())) -> c_30(and#(if(ge(Size(l()),Size(r()))
                                               ,ge(I(0()),-(Size(l()),Size(r())))
                                               ,ge(I(0()),-(Size(r()),Size(l()))))
                                            ,and(WB(l()),WB(r())))
                                       ,if#(ge(Size(l()),Size(r()))
                                           ,ge(I(0()),-(Size(l()),Size(r())))
                                           ,ge(I(0()),-(Size(r()),Size(l()))))
                                       ,ge#(Size(l()),Size(r()))
                                       ,Size#(l())
                                       ,Size#(r())
                                       ,ge#(I(0()),-(Size(l()),Size(r())))
                                       ,-#(Size(l()),Size(r()))
                                       ,Size#(l())
                                       ,Size#(r())
                                       ,ge#(I(0()),-(Size(r()),Size(l())))
                                       ,-#(Size(r()),Size(l()))
                                       ,Size#(r())
                                       ,Size#(l())
                                       ,and#(WB(l()),WB(r()))
                                       ,WB#(l())
                                       ,WB#(r()))
          36: and#(x,false()) -> c_31()
          37: and#(x,true()) -> c_32()
          38: ge#(x,0()) -> c_33()
          39: ge#(0(),I(x)) -> c_34()
          40: if#(false(),x,y) -> c_40()
          41: if#(true(),x,y) -> c_41()
          42: not#(false()) -> c_42()
          43: not#(true()) -> c_43()
** Step 1.b:5: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y))
            -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y))
            Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
        - Weak DPs:
            +#(x,0()) -> c_2()
            +#(0(),x) -> c_3()
            -#(x,0()) -> c_8()
            -#(0(),x) -> c_9()
            BS#(L(x)) -> c_14()
            BS#(N(x,l(),r())) -> c_15(and#(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r())))
                                     ,and#(ge(x,Max(l())),ge(Min(r()),x))
                                     ,ge#(x,Max(l()))
                                     ,Max#(l())
                                     ,ge#(Min(r()),x)
                                     ,Min#(r())
                                     ,and#(BS(l()),BS(r()))
                                     ,BS#(l())
                                     ,BS#(r()))
            Log'#(0()) -> c_17()
            Max#(L(x)) -> c_20()
            Max#(N(x,l(),r())) -> c_21(Max#(r()))
            Min#(L(x)) -> c_22()
            Min#(N(x,l(),r())) -> c_23(Min#(l()))
            O#(0()) -> c_24()
            Size#(L(x)) -> c_25()
            Size#(N(x,l(),r())) -> c_26(+#(+(Size(l()),Size(r())),I(1())),+#(Size(l()),Size(r())),Size#(l()),Size#(r()))
            Val#(L(x)) -> c_27()
            Val#(N(x,l(),r())) -> c_28()
            WB#(L(x)) -> c_29()
            WB#(N(x,l(),r())) -> c_30(and#(if(ge(Size(l()),Size(r()))
                                             ,ge(I(0()),-(Size(l()),Size(r())))
                                             ,ge(I(0()),-(Size(r()),Size(l()))))
                                          ,and(WB(l()),WB(r())))
                                     ,if#(ge(Size(l()),Size(r()))
                                         ,ge(I(0()),-(Size(l()),Size(r())))
                                         ,ge(I(0()),-(Size(r()),Size(l()))))
                                     ,ge#(Size(l()),Size(r()))
                                     ,Size#(l())
                                     ,Size#(r())
                                     ,ge#(I(0()),-(Size(l()),Size(r())))
                                     ,-#(Size(l()),Size(r()))
                                     ,Size#(l())
                                     ,Size#(r())
                                     ,ge#(I(0()),-(Size(r()),Size(l())))
                                     ,-#(Size(r()),Size(l()))
                                     ,Size#(r())
                                     ,Size#(l())
                                     ,and#(WB(l()),WB(r()))
                                     ,WB#(l())
                                     ,WB#(r()))
            and#(x,false()) -> c_31()
            and#(x,true()) -> c_32()
            ge#(x,0()) -> c_33()
            ge#(0(),I(x)) -> c_34()
            if#(false(),x,y) -> c_40()
            if#(true(),x,y) -> c_41()
            not#(false()) -> c_42()
            not#(true()) -> c_43()
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            and(x,false()) -> false()
            and(x,true()) -> x
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/3,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/2,c_11/1,c_12/2,c_13/2,c_14/0
            ,c_15/9,c_16/2,c_17/0,c_18/2,c_19/4,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/2,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
             -->_2 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
             -->_1 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_2 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
             -->_2 +#(0(),x) -> c_3():19
             -->_1 +#(0(),x) -> c_3():19
             -->_2 +#(x,0()) -> c_2():18
             -->_1 +#(x,0()) -> c_2():18
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          2:S:+#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y))
             -->_3 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
             -->_3 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_3 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 O#(0()) -> c_24():29
             -->_3 +#(0(),x) -> c_3():19
             -->_2 +#(0(),x) -> c_3():19
             -->_3 +#(x,0()) -> c_2():18
             -->_3 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
             -->_2 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
             -->_3 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          3:S:+#(I(x),O(y)) -> c_5(+#(x,y))
             -->_1 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(0(),x) -> c_3():19
             -->_1 +#(x,0()) -> c_2():18
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          4:S:+#(O(x),I(y)) -> c_6(+#(x,y))
             -->_1 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
             -->_1 +#(0(),x) -> c_3():19
             -->_1 +#(x,0()) -> c_2():18
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          5:S:+#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y))
             -->_1 O#(0()) -> c_24():29
             -->_2 +#(0(),x) -> c_3():19
             -->_2 +#(x,0()) -> c_2():18
             -->_2 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_2 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          6:S:-#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y))
             -->_2 -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y)):9
             -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):7
             -->_1 O#(0()) -> c_24():29
             -->_2 -#(0(),x) -> c_9():21
             -->_2 -#(x,0()) -> c_8():20
             -->_2 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
          
          7:S:-#(I(x),O(y)) -> c_11(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y)):9
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_1 -#(0(),x) -> c_9():21
             -->_1 -#(x,0()) -> c_8():20
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):7
             -->_1 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
          
          8:S:-#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
             -->_2 -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y)):9
             -->_2 -#(0(),x) -> c_9():21
             -->_1 -#(0(),x) -> c_9():21
             -->_2 -#(x,0()) -> c_8():20
             -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):7
             -->_2 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
             -->_1 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
          
          9:S:-#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y))
             -->_1 O#(0()) -> c_24():29
             -->_2 -#(0(),x) -> c_9():21
             -->_2 -#(x,0()) -> c_8():20
             -->_2 -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y)):9
             -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):7
             -->_2 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
          
          10:S:Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
             -->_2 Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0())
                                      ,ge#(x,I(0()))
                                      ,+#(Log'(x),I(0()))
                                      ,Log'#(x)):12
             -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
             -->_2 Log'#(0()) -> c_17():24
             -->_1 -#(0(),x) -> c_9():21
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_1 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
          
          11:S:Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
             -->_2 Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0())
                                      ,ge#(x,I(0()))
                                      ,+#(Log'(x),I(0()))
                                      ,Log'#(x)):12
             -->_2 Log'#(0()) -> c_17():24
             -->_1 +#(0(),x) -> c_3():19
             -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
          
          12:S:Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
             -->_2 ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x)):16
             -->_2 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
             -->_1 if#(true(),x,y) -> c_41():41
             -->_1 if#(false(),x,y) -> c_40():40
             -->_4 Log'#(0()) -> c_17():24
             -->_3 +#(0(),x) -> c_3():19
             -->_4 Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0())
                                      ,ge#(x,I(0()))
                                      ,+#(Log'(x),I(0()))
                                      ,Log'#(x)):12
             -->_4 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
             -->_3 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_3 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
          
          13:S:ge#(0(),O(x)) -> c_35(ge#(0(),x))
             -->_1 ge#(0(),I(x)) -> c_34():39
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
          
          14:S:ge#(I(x),I(y)) -> c_36(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
             -->_1 ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x)):16
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
             -->_1 ge#(0(),I(x)) -> c_34():39
             -->_1 ge#(x,0()) -> c_33():38
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
          
          15:S:ge#(I(x),O(y)) -> c_37(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
             -->_1 ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x)):16
             -->_1 ge#(0(),I(x)) -> c_34():39
             -->_1 ge#(x,0()) -> c_33():38
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
          
          16:S:ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x))
             -->_2 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
             -->_1 not#(true()) -> c_43():43
             -->_1 not#(false()) -> c_42():42
             -->_2 ge#(0(),I(x)) -> c_34():39
             -->_2 ge#(x,0()) -> c_33():38
             -->_2 ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x)):16
             -->_2 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
             -->_2 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
             -->_2 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
          
          17:S:ge#(O(x),O(y)) -> c_39(ge#(x,y))
             -->_1 ge#(0(),I(x)) -> c_34():39
             -->_1 ge#(x,0()) -> c_33():38
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
             -->_1 ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x)):16
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
          
          18:W:+#(x,0()) -> c_2()
             
          
          19:W:+#(0(),x) -> c_3()
             
          
          20:W:-#(x,0()) -> c_8()
             
          
          21:W:-#(0(),x) -> c_9()
             
          
          22:W:BS#(L(x)) -> c_14()
             
          
          23:W:BS#(N(x,l(),r())) -> c_15(and#(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r())))
                                        ,and#(ge(x,Max(l())),ge(Min(r()),x))
                                        ,ge#(x,Max(l()))
                                        ,Max#(l())
                                        ,ge#(Min(r()),x)
                                        ,Min#(r())
                                        ,and#(BS(l()),BS(r()))
                                        ,BS#(l())
                                        ,BS#(r()))
             -->_5 ge#(x,0()) -> c_33():38
             -->_2 and#(x,true()) -> c_32():37
             -->_2 and#(x,false()) -> c_31():36
          
          24:W:Log'#(0()) -> c_17()
             
          
          25:W:Max#(L(x)) -> c_20()
             
          
          26:W:Max#(N(x,l(),r())) -> c_21(Max#(r()))
             
          
          27:W:Min#(L(x)) -> c_22()
             
          
          28:W:Min#(N(x,l(),r())) -> c_23(Min#(l()))
             
          
          29:W:O#(0()) -> c_24()
             
          
          30:W:Size#(L(x)) -> c_25()
             
          
          31:W:Size#(N(x,l(),r())) -> c_26(+#(+(Size(l()),Size(r())),I(1()))
                                          ,+#(Size(l()),Size(r()))
                                          ,Size#(l())
                                          ,Size#(r()))
             
          
          32:W:Val#(L(x)) -> c_27()
             
          
          33:W:Val#(N(x,l(),r())) -> c_28()
             
          
          34:W:WB#(L(x)) -> c_29()
             
          
          35:W:WB#(N(x,l(),r())) -> c_30(and#(if(ge(Size(l()),Size(r()))
                                                ,ge(I(0()),-(Size(l()),Size(r())))
                                                ,ge(I(0()),-(Size(r()),Size(l()))))
                                             ,and(WB(l()),WB(r())))
                                        ,if#(ge(Size(l()),Size(r()))
                                            ,ge(I(0()),-(Size(l()),Size(r())))
                                            ,ge(I(0()),-(Size(r()),Size(l()))))
                                        ,ge#(Size(l()),Size(r()))
                                        ,Size#(l())
                                        ,Size#(r())
                                        ,ge#(I(0()),-(Size(l()),Size(r())))
                                        ,-#(Size(l()),Size(r()))
                                        ,Size#(l())
                                        ,Size#(r())
                                        ,ge#(I(0()),-(Size(r()),Size(l())))
                                        ,-#(Size(r()),Size(l()))
                                        ,Size#(r())
                                        ,Size#(l())
                                        ,and#(WB(l()),WB(r()))
                                        ,WB#(l())
                                        ,WB#(r()))
             
          
          36:W:and#(x,false()) -> c_31()
             
          
          37:W:and#(x,true()) -> c_32()
             
          
          38:W:ge#(x,0()) -> c_33()
             
          
          39:W:ge#(0(),I(x)) -> c_34()
             
          
          40:W:if#(false(),x,y) -> c_40()
             
          
          41:W:if#(true(),x,y) -> c_41()
             
          
          42:W:not#(false()) -> c_42()
             
          
          43:W:not#(true()) -> c_43()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          35: WB#(N(x,l(),r())) -> c_30(and#(if(ge(Size(l()),Size(r()))
                                               ,ge(I(0()),-(Size(l()),Size(r())))
                                               ,ge(I(0()),-(Size(r()),Size(l()))))
                                            ,and(WB(l()),WB(r())))
                                       ,if#(ge(Size(l()),Size(r()))
                                           ,ge(I(0()),-(Size(l()),Size(r())))
                                           ,ge(I(0()),-(Size(r()),Size(l()))))
                                       ,ge#(Size(l()),Size(r()))
                                       ,Size#(l())
                                       ,Size#(r())
                                       ,ge#(I(0()),-(Size(l()),Size(r())))
                                       ,-#(Size(l()),Size(r()))
                                       ,Size#(l())
                                       ,Size#(r())
                                       ,ge#(I(0()),-(Size(r()),Size(l())))
                                       ,-#(Size(r()),Size(l()))
                                       ,Size#(r())
                                       ,Size#(l())
                                       ,and#(WB(l()),WB(r()))
                                       ,WB#(l())
                                       ,WB#(r()))
          34: WB#(L(x)) -> c_29()
          33: Val#(N(x,l(),r())) -> c_28()
          32: Val#(L(x)) -> c_27()
          31: Size#(N(x,l(),r())) -> c_26(+#(+(Size(l()),Size(r())),I(1()))
                                         ,+#(Size(l()),Size(r()))
                                         ,Size#(l())
                                         ,Size#(r()))
          30: Size#(L(x)) -> c_25()
          28: Min#(N(x,l(),r())) -> c_23(Min#(l()))
          27: Min#(L(x)) -> c_22()
          26: Max#(N(x,l(),r())) -> c_21(Max#(r()))
          25: Max#(L(x)) -> c_20()
          23: BS#(N(x,l(),r())) -> c_15(and#(and(ge(x,Max(l())),ge(Min(r()),x)),and(BS(l()),BS(r())))
                                       ,and#(ge(x,Max(l())),ge(Min(r()),x))
                                       ,ge#(x,Max(l()))
                                       ,Max#(l())
                                       ,ge#(Min(r()),x)
                                       ,Min#(r())
                                       ,and#(BS(l()),BS(r()))
                                       ,BS#(l())
                                       ,BS#(r()))
          36: and#(x,false()) -> c_31()
          37: and#(x,true()) -> c_32()
          22: BS#(L(x)) -> c_14()
          24: Log'#(0()) -> c_17()
          40: if#(false(),x,y) -> c_40()
          41: if#(true(),x,y) -> c_41()
          42: not#(false()) -> c_42()
          43: not#(true()) -> c_43()
          38: ge#(x,0()) -> c_33()
          39: ge#(0(),I(x)) -> c_34()
          20: -#(x,0()) -> c_8()
          21: -#(0(),x) -> c_9()
          18: +#(x,0()) -> c_2()
          19: +#(0(),x) -> c_3()
          29: O#(0()) -> c_24()
** Step 1.b:6: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y))
            -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y))
            Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            and(x,false()) -> false()
            and(x,true()) -> x
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/3,c_5/1,c_6/1,c_7/2,c_8/0,c_9/0,c_10/2,c_11/1,c_12/2,c_13/2,c_14/0
            ,c_15/9,c_16/2,c_17/0,c_18/2,c_19/4,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/2,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
             -->_2 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
             -->_1 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_2 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          2:S:+#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y))
             -->_3 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
             -->_3 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_3 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_3 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
             -->_2 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
             -->_3 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          3:S:+#(I(x),O(y)) -> c_5(+#(x,y))
             -->_1 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          4:S:+#(O(x),I(y)) -> c_6(+#(x,y))
             -->_1 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          5:S:+#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y))
             -->_2 +#(O(x),O(y)) -> c_7(O#(+(x,y)),+#(x,y)):5
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_2 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          6:S:-#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y))
             -->_2 -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y)):9
             -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):7
             -->_2 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
          
          7:S:-#(I(x),O(y)) -> c_11(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y)):9
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):7
             -->_1 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
          
          8:S:-#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
             -->_2 -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y)):9
             -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):7
             -->_2 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
             -->_1 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
          
          9:S:-#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y))
             -->_2 -#(O(x),O(y)) -> c_13(O#(-(x,y)),-#(x,y)):9
             -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):7
             -->_2 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
          
          10:S:Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
             -->_2 Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0())
                                      ,ge#(x,I(0()))
                                      ,+#(Log'(x),I(0()))
                                      ,Log'#(x)):12
             -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_1 -#(I(x),I(y)) -> c_10(O#(-(x,y)),-#(x,y)):6
          
          11:S:Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
             -->_2 Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0())
                                      ,ge#(x,I(0()))
                                      ,+#(Log'(x),I(0()))
                                      ,Log'#(x)):12
             -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
          
          12:S:Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0()),ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
             -->_2 ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x)):16
             -->_2 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
             -->_4 Log'#(O(x)) -> c_19(if#(ge(x,I(0())),+(Log'(x),I(0())),0())
                                      ,ge#(x,I(0()))
                                      ,+#(Log'(x),I(0()))
                                      ,Log'#(x)):12
             -->_4 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
             -->_3 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_3 +#(I(x),I(y)) -> c_4(O#(+(+(x,y),I(0()))),+#(+(x,y),I(0())),+#(x,y)):2
          
          13:S:ge#(0(),O(x)) -> c_35(ge#(0(),x))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
          
          14:S:ge#(I(x),I(y)) -> c_36(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
             -->_1 ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x)):16
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
          
          15:S:ge#(I(x),O(y)) -> c_37(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
             -->_1 ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x)):16
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
          
          16:S:ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x))
             -->_2 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
             -->_2 ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x)):16
             -->_2 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
             -->_2 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
             -->_2 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
          
          17:S:ge#(O(x),O(y)) -> c_39(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
             -->_1 ge#(O(x),I(y)) -> c_38(not#(ge(y,x)),ge#(y,x)):16
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
          +#(O(x),O(y)) -> c_7(+#(x,y))
          -#(I(x),I(y)) -> c_10(-#(x,y))
          -#(O(x),O(y)) -> c_13(-#(x,y))
          Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
          ge#(O(x),I(y)) -> c_38(ge#(y,x))
** Step 1.b:7: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
            Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            and(x,false()) -> false()
            and(x,true()) -> x
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/2,c_17/0,c_18/2,c_19/3,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          +(x,+(y,z)) -> +(+(x,y),z)
          +(x,0()) -> x
          +(0(),x) -> x
          +(I(x),I(y)) -> O(+(+(x,y),I(0())))
          +(I(x),O(y)) -> I(+(x,y))
          +(O(x),I(y)) -> I(+(x,y))
          +(O(x),O(y)) -> O(+(x,y))
          -(x,0()) -> x
          -(0(),x) -> 0()
          -(I(x),I(y)) -> O(-(x,y))
          -(I(x),O(y)) -> I(-(x,y))
          -(O(x),I(y)) -> I(-(-(x,y),I(1())))
          -(O(x),O(y)) -> O(-(x,y))
          Log'(0()) -> 0()
          Log'(I(x)) -> +(Log'(x),I(0()))
          Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
          O(0()) -> 0()
          ge(x,0()) -> true()
          ge(0(),I(x)) -> false()
          ge(0(),O(x)) -> ge(0(),x)
          ge(I(x),I(y)) -> ge(x,y)
          ge(I(x),O(y)) -> ge(x,y)
          ge(O(x),I(y)) -> not(ge(y,x))
          ge(O(x),O(y)) -> ge(x,y)
          if(false(),x,y) -> y
          if(true(),x,y) -> x
          not(false()) -> true()
          not(true()) -> false()
          +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
          +#(I(x),O(y)) -> c_5(+#(x,y))
          +#(O(x),I(y)) -> c_6(+#(x,y))
          +#(O(x),O(y)) -> c_7(+#(x,y))
          -#(I(x),I(y)) -> c_10(-#(x,y))
          -#(I(x),O(y)) -> c_11(-#(x,y))
          -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
          -#(O(x),O(y)) -> c_13(-#(x,y))
          Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
          Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
          Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
          ge#(0(),O(x)) -> c_35(ge#(0(),x))
          ge#(I(x),I(y)) -> c_36(ge#(x,y))
          ge#(I(x),O(y)) -> c_37(ge#(x,y))
          ge#(O(x),I(y)) -> c_38(ge#(y,x))
          ge#(O(x),O(y)) -> c_39(ge#(x,y))
** Step 1.b:8: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
            Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/2,c_17/0,c_18/2,c_19/3,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
              +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
              +#(I(x),O(y)) -> c_5(+#(x,y))
              +#(O(x),I(y)) -> c_6(+#(x,y))
              +#(O(x),O(y)) -> c_7(+#(x,y))
          - Weak DPs:
              -#(I(x),I(y)) -> c_10(-#(x,y))
              -#(I(x),O(y)) -> c_11(-#(x,y))
              -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
              -#(O(x),O(y)) -> c_13(-#(x,y))
              Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
              Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
              Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
              ge#(0(),O(x)) -> c_35(ge#(0(),x))
              ge#(I(x),I(y)) -> c_36(ge#(x,y))
              ge#(I(x),O(y)) -> c_37(ge#(x,y))
              ge#(O(x),I(y)) -> c_38(ge#(y,x))
              ge#(O(x),O(y)) -> c_39(ge#(x,y))
          - Weak TRS:
              +(x,+(y,z)) -> +(+(x,y),z)
              +(x,0()) -> x
              +(0(),x) -> x
              +(I(x),I(y)) -> O(+(+(x,y),I(0())))
              +(I(x),O(y)) -> I(+(x,y))
              +(O(x),I(y)) -> I(+(x,y))
              +(O(x),O(y)) -> O(+(x,y))
              -(x,0()) -> x
              -(0(),x) -> 0()
              -(I(x),I(y)) -> O(-(x,y))
              -(I(x),O(y)) -> I(-(x,y))
              -(O(x),I(y)) -> I(-(-(x,y),I(1())))
              -(O(x),O(y)) -> O(-(x,y))
              Log'(0()) -> 0()
              Log'(I(x)) -> +(Log'(x),I(0()))
              Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
              O(0()) -> 0()
              ge(x,0()) -> true()
              ge(0(),I(x)) -> false()
              ge(0(),O(x)) -> ge(0(),x)
              ge(I(x),I(y)) -> ge(x,y)
              ge(I(x),O(y)) -> ge(x,y)
              ge(O(x),I(y)) -> not(ge(y,x))
              ge(O(x),O(y)) -> ge(x,y)
              if(false(),x,y) -> y
              if(true(),x,y) -> x
              not(false()) -> true()
              not(true()) -> false()
          - Signature:
              {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
              ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
              ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
              ,c_15/9,c_16/2,c_17/0,c_18/2,c_19/3,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
              ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#
              ,ge#,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
        
        Problem (S)
          - Strict DPs:
              -#(I(x),I(y)) -> c_10(-#(x,y))
              -#(I(x),O(y)) -> c_11(-#(x,y))
              -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
              -#(O(x),O(y)) -> c_13(-#(x,y))
              Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
              Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
              Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
              ge#(0(),O(x)) -> c_35(ge#(0(),x))
              ge#(I(x),I(y)) -> c_36(ge#(x,y))
              ge#(I(x),O(y)) -> c_37(ge#(x,y))
              ge#(O(x),I(y)) -> c_38(ge#(y,x))
              ge#(O(x),O(y)) -> c_39(ge#(x,y))
          - Weak DPs:
              +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
              +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
              +#(I(x),O(y)) -> c_5(+#(x,y))
              +#(O(x),I(y)) -> c_6(+#(x,y))
              +#(O(x),O(y)) -> c_7(+#(x,y))
          - Weak TRS:
              +(x,+(y,z)) -> +(+(x,y),z)
              +(x,0()) -> x
              +(0(),x) -> x
              +(I(x),I(y)) -> O(+(+(x,y),I(0())))
              +(I(x),O(y)) -> I(+(x,y))
              +(O(x),I(y)) -> I(+(x,y))
              +(O(x),O(y)) -> O(+(x,y))
              -(x,0()) -> x
              -(0(),x) -> 0()
              -(I(x),I(y)) -> O(-(x,y))
              -(I(x),O(y)) -> I(-(x,y))
              -(O(x),I(y)) -> I(-(-(x,y),I(1())))
              -(O(x),O(y)) -> O(-(x,y))
              Log'(0()) -> 0()
              Log'(I(x)) -> +(Log'(x),I(0()))
              Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
              O(0()) -> 0()
              ge(x,0()) -> true()
              ge(0(),I(x)) -> false()
              ge(0(),O(x)) -> ge(0(),x)
              ge(I(x),I(y)) -> ge(x,y)
              ge(I(x),O(y)) -> ge(x,y)
              ge(O(x),I(y)) -> not(ge(y,x))
              ge(O(x),O(y)) -> ge(x,y)
              if(false(),x,y) -> y
              if(true(),x,y) -> x
              not(false()) -> true()
              not(true()) -> false()
          - Signature:
              {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
              ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
              ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
              ,c_15/9,c_16/2,c_17/0,c_18/2,c_19/3,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
              ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#
              ,ge#,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
*** Step 1.b:8.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
        - Weak DPs:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
            Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/2,c_17/0,c_18/2,c_19/3,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
             -->_2 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_2 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          2:S:+#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
             -->_2 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_2 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
          
          3:S:+#(I(x),O(y)) -> c_5(+#(x,y))
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
          
          4:S:+#(O(x),I(y)) -> c_6(+#(x,y))
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
          
          5:S:+#(O(x),O(y)) -> c_7(+#(x,y))
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
          
          6:W:-#(I(x),I(y)) -> c_10(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):9
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):7
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):6
          
          7:W:-#(I(x),O(y)) -> c_11(-#(x,y))
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):6
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):9
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):7
          
          8:W:-#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
             -->_2 -#(I(x),I(y)) -> c_10(-#(x,y)):6
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):6
             -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):7
             -->_2 -#(O(x),O(y)) -> c_13(-#(x,y)):9
             -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
          
          9:W:-#(O(x),O(y)) -> c_13(-#(x,y))
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):6
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):7
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):9
          
          10:W:Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):6
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):8
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):12
             -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
          
          11:W:Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):12
             -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
          
          12:W:Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
             -->_2 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_3 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):16
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
             -->_3 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):12
          
          13:W:ge#(0(),O(x)) -> c_35(ge#(0(),x))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
          
          14:W:ge#(I(x),I(y)) -> c_36(ge#(x,y))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):16
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
          
          15:W:ge#(I(x),O(y)) -> c_37(ge#(x,y))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):16
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
          
          16:W:ge#(O(x),I(y)) -> c_38(ge#(y,x))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):16
          
          17:W:ge#(O(x),O(y)) -> c_39(ge#(x,y))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):13
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):14
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):15
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):16
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):17
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          16: ge#(O(x),I(y)) -> c_38(ge#(y,x))
          17: ge#(O(x),O(y)) -> c_39(ge#(x,y))
          15: ge#(I(x),O(y)) -> c_37(ge#(x,y))
          14: ge#(I(x),I(y)) -> c_36(ge#(x,y))
          13: ge#(0(),O(x)) -> c_35(ge#(0(),x))
          6: -#(I(x),I(y)) -> c_10(-#(x,y))
          9: -#(O(x),O(y)) -> c_13(-#(x,y))
          8: -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
          7: -#(I(x),O(y)) -> c_11(-#(x,y))
*** Step 1.b:8.a:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
        - Weak DPs:
            Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/2,c_17/0,c_18/2,c_19/3,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
             -->_2 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_2 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          2:S:+#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
             -->_2 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_2 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
          
          3:S:+#(I(x),O(y)) -> c_5(+#(x,y))
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
          
          4:S:+#(O(x),I(y)) -> c_6(+#(x,y))
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
          
          5:S:+#(O(x),O(y)) -> c_7(+#(x,y))
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
          
          10:W:Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):12
             -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
          
          11:W:Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):12
             -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
          
          12:W:Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
             -->_2 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_3 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):11
             -->_3 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):12
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          Log#(x) -> c_16(Log'#(x))
          Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
*** Step 1.b:8.a:3: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
        - Weak DPs:
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          +(x,+(y,z)) -> +(+(x,y),z)
          +(x,0()) -> x
          +(0(),x) -> x
          +(I(x),I(y)) -> O(+(+(x,y),I(0())))
          +(I(x),O(y)) -> I(+(x,y))
          +(O(x),I(y)) -> I(+(x,y))
          +(O(x),O(y)) -> O(+(x,y))
          Log'(0()) -> 0()
          Log'(I(x)) -> +(Log'(x),I(0()))
          Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
          O(0()) -> 0()
          ge(x,0()) -> true()
          ge(0(),I(x)) -> false()
          ge(0(),O(x)) -> ge(0(),x)
          ge(I(x),I(y)) -> ge(x,y)
          ge(I(x),O(y)) -> ge(x,y)
          ge(O(x),I(y)) -> not(ge(y,x))
          ge(O(x),O(y)) -> ge(x,y)
          if(false(),x,y) -> y
          if(true(),x,y) -> x
          not(false()) -> true()
          not(true()) -> false()
          +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
          +#(I(x),O(y)) -> c_5(+#(x,y))
          +#(O(x),I(y)) -> c_6(+#(x,y))
          +#(O(x),O(y)) -> c_7(+#(x,y))
          Log#(x) -> c_16(Log'#(x))
          Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
          Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
*** Step 1.b:8.a:4: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
        - Weak DPs:
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          
        Consider the set of all dependency pairs
          1: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          2: +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
          3: +#(I(x),O(y)) -> c_5(+#(x,y))
          4: +#(O(x),I(y)) -> c_6(+#(x,y))
          5: +#(O(x),O(y)) -> c_7(+#(x,y))
          6: Log#(x) -> c_16(Log'#(x))
          7: Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
          8: Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,6}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
**** Step 1.b:8.a:4.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
        - Weak DPs:
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_4) = {1,2},
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1},
          uargs(c_16) = {1},
          uargs(c_18) = {1,2},
          uargs(c_19) = {1,2}
        
        Following symbols are considered usable:
          {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}
        TcT has computed the following interpretation:
              p(+) = [2] x1 + [3] x2 + [1]                                                
              p(-) = [0]                                                                  
              p(0) = [0]                                                                  
              p(1) = [0]                                                                  
             p(BS) = [0]                                                                  
              p(I) = [1] x1 + [0]                                                         
              p(L) = [1] x1 + [0]                                                         
            p(Log) = [0]                                                                  
           p(Log') = [0]                                                                  
            p(Max) = [0]                                                                  
            p(Min) = [0]                                                                  
              p(N) = [1] x1 + [1] x2 + [1] x3 + [0]                                       
              p(O) = [2] x1 + [0]                                                         
           p(Size) = [0]                                                                  
            p(Val) = [0]                                                                  
             p(WB) = [0]                                                                  
            p(and) = [0]                                                                  
          p(false) = [0]                                                                  
             p(ge) = [2]                                                                  
             p(if) = [0]                                                                  
              p(l) = [0]                                                                  
            p(not) = [6] x1 + [0]                                                         
              p(r) = [0]                                                                  
           p(true) = [0]                                                                  
             p(+#) = [4] x2 + [0]                                                         
             p(-#) = [0]                                                                  
            p(BS#) = [0]                                                                  
           p(Log#) = [4] x1 + [0]                                                         
          p(Log'#) = [4] x1 + [0]                                                         
           p(Max#) = [0]                                                                  
           p(Min#) = [0]                                                                  
             p(O#) = [0]                                                                  
          p(Size#) = [0]                                                                  
           p(Val#) = [0]                                                                  
            p(WB#) = [0]                                                                  
           p(and#) = [0]                                                                  
            p(ge#) = [0]                                                                  
            p(if#) = [0]                                                                  
           p(not#) = [0]                                                                  
            p(c_1) = [3] x1 + [1] x2 + [0]                                                
            p(c_2) = [0]                                                                  
            p(c_3) = [1]                                                                  
            p(c_4) = [1] x1 + [1] x2 + [0]                                                
            p(c_5) = [1] x1 + [0]                                                         
            p(c_6) = [1] x1 + [0]                                                         
            p(c_7) = [1] x1 + [0]                                                         
            p(c_8) = [0]                                                                  
            p(c_9) = [0]                                                                  
           p(c_10) = [1] x1 + [0]                                                         
           p(c_11) = [0]                                                                  
           p(c_12) = [2] x2 + [0]                                                         
           p(c_13) = [1] x1 + [0]                                                         
           p(c_14) = [0]                                                                  
           p(c_15) = [1] x3 + [1] x5 + [1] x6 + [1] x9 + [0]                              
           p(c_16) = [1] x1 + [0]                                                         
           p(c_17) = [0]                                                                  
           p(c_18) = [1] x1 + [1] x2 + [0]                                                
           p(c_19) = [1] x1 + [1] x2 + [0]                                                
           p(c_20) = [1]                                                                  
           p(c_21) = [1]                                                                  
           p(c_22) = [0]                                                                  
           p(c_23) = [4] x1 + [0]                                                         
           p(c_24) = [2]                                                                  
           p(c_25) = [4]                                                                  
           p(c_26) = [1] x3 + [4] x4 + [0]                                                
           p(c_27) = [0]                                                                  
           p(c_28) = [0]                                                                  
           p(c_29) = [0]                                                                  
           p(c_30) = [1] x3 + [1] x6 + [2] x7 + [1] x8 + [1] x10 + [1] x13 + [4] x15 + [1]
           p(c_31) = [1]                                                                  
           p(c_32) = [1]                                                                  
           p(c_33) = [0]                                                                  
           p(c_34) = [1]                                                                  
           p(c_35) = [1]                                                                  
           p(c_36) = [1] x1 + [0]                                                         
           p(c_37) = [1]                                                                  
           p(c_38) = [0]                                                                  
           p(c_39) = [4] x1 + [4]                                                         
           p(c_40) = [2]                                                                  
           p(c_41) = [4]                                                                  
           p(c_42) = [1]                                                                  
           p(c_43) = [4]                                                                  
        
        Following rules are strictly oriented:
        +#(x,+(y,z)) = [8] y + [12] z + [4]     
                     > [4] y + [12] z + [0]     
                     = c_1(+#(+(x,y),z),+#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
        +#(I(x),I(y)) =  [4] y + [0]                      
                      >= [4] y + [0]                      
                      =  c_4(+#(+(x,y),I(0())),+#(x,y))   
        
        +#(I(x),O(y)) =  [8] y + [0]                      
                      >= [4] y + [0]                      
                      =  c_5(+#(x,y))                     
        
        +#(O(x),I(y)) =  [4] y + [0]                      
                      >= [4] y + [0]                      
                      =  c_6(+#(x,y))                     
        
        +#(O(x),O(y)) =  [8] y + [0]                      
                      >= [4] y + [0]                      
                      =  c_7(+#(x,y))                     
        
              Log#(x) =  [4] x + [0]                      
                      >= [4] x + [0]                      
                      =  c_16(Log'#(x))                   
        
          Log'#(I(x)) =  [4] x + [0]                      
                      >= [4] x + [0]                      
                      =  c_18(+#(Log'(x),I(0())),Log'#(x))
        
          Log'#(O(x)) =  [8] x + [0]                      
                      >= [4] x + [0]                      
                      =  c_19(+#(Log'(x),I(0())),Log'#(x))
        
**** Step 1.b:8.a:4.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
        - Weak DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 1.b:8.a:4.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
        - Weak DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: +#(I(x),O(y)) -> c_5(+#(x,y))
          
        Consider the set of all dependency pairs
          1: +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
          2: +#(I(x),O(y)) -> c_5(+#(x,y))
          3: +#(O(x),I(y)) -> c_6(+#(x,y))
          4: +#(O(x),O(y)) -> c_7(+#(x,y))
          5: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          6: Log#(x) -> c_16(Log'#(x))
          7: Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
          8: Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {2}
        These cover all (indirect) predecessors of dependency pairs
          {2,6}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
***** Step 1.b:8.a:4.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
        - Weak DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_4) = {1,2},
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1},
          uargs(c_16) = {1},
          uargs(c_18) = {1,2},
          uargs(c_19) = {1,2}
        
        Following symbols are considered usable:
          {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}
        TcT has computed the following interpretation:
              p(+) = [2] x1 + [2] x2 + [0]                                                
              p(-) = [0]                                                                  
              p(0) = [0]                                                                  
              p(1) = [0]                                                                  
             p(BS) = [0]                                                                  
              p(I) = [1] x1 + [0]                                                         
              p(L) = [1] x1 + [0]                                                         
            p(Log) = [0]                                                                  
           p(Log') = [0]                                                                  
            p(Max) = [0]                                                                  
            p(Min) = [0]                                                                  
              p(N) = [1] x1 + [1] x2 + [1] x3 + [0]                                       
              p(O) = [2] x1 + [1]                                                         
           p(Size) = [0]                                                                  
            p(Val) = [0]                                                                  
             p(WB) = [0]                                                                  
            p(and) = [0]                                                                  
          p(false) = [2]                                                                  
             p(ge) = [5]                                                                  
             p(if) = [2]                                                                  
              p(l) = [0]                                                                  
            p(not) = [1] x1 + [0]                                                         
              p(r) = [0]                                                                  
           p(true) = [4]                                                                  
             p(+#) = [4] x2 + [0]                                                         
             p(-#) = [0]                                                                  
            p(BS#) = [0]                                                                  
           p(Log#) = [0]                                                                  
          p(Log'#) = [0]                                                                  
           p(Max#) = [0]                                                                  
           p(Min#) = [0]                                                                  
             p(O#) = [0]                                                                  
          p(Size#) = [0]                                                                  
           p(Val#) = [0]                                                                  
            p(WB#) = [0]                                                                  
           p(and#) = [0]                                                                  
            p(ge#) = [0]                                                                  
            p(if#) = [0]                                                                  
           p(not#) = [1] x1 + [0]                                                         
            p(c_1) = [2] x1 + [1] x2 + [0]                                                
            p(c_2) = [0]                                                                  
            p(c_3) = [0]                                                                  
            p(c_4) = [4] x1 + [1] x2 + [0]                                                
            p(c_5) = [2] x1 + [0]                                                         
            p(c_6) = [1] x1 + [0]                                                         
            p(c_7) = [2] x1 + [4]                                                         
            p(c_8) = [0]                                                                  
            p(c_9) = [0]                                                                  
           p(c_10) = [0]                                                                  
           p(c_11) = [0]                                                                  
           p(c_12) = [0]                                                                  
           p(c_13) = [0]                                                                  
           p(c_14) = [0]                                                                  
           p(c_15) = [0]                                                                  
           p(c_16) = [2] x1 + [0]                                                         
           p(c_17) = [0]                                                                  
           p(c_18) = [1] x1 + [4] x2 + [0]                                                
           p(c_19) = [4] x1 + [1] x2 + [0]                                                
           p(c_20) = [0]                                                                  
           p(c_21) = [1] x1 + [0]                                                         
           p(c_22) = [0]                                                                  
           p(c_23) = [0]                                                                  
           p(c_24) = [0]                                                                  
           p(c_25) = [0]                                                                  
           p(c_26) = [4] x4 + [0]                                                         
           p(c_27) = [0]                                                                  
           p(c_28) = [0]                                                                  
           p(c_29) = [0]                                                                  
           p(c_30) = [1] x1 + [1] x4 + [2] x5 + [1] x8 + [1] x10 + [2] x15 + [1] x16 + [0]
           p(c_31) = [0]                                                                  
           p(c_32) = [0]                                                                  
           p(c_33) = [0]                                                                  
           p(c_34) = [0]                                                                  
           p(c_35) = [1] x1 + [0]                                                         
           p(c_36) = [2] x1 + [0]                                                         
           p(c_37) = [0]                                                                  
           p(c_38) = [0]                                                                  
           p(c_39) = [1] x1 + [0]                                                         
           p(c_40) = [0]                                                                  
           p(c_41) = [0]                                                                  
           p(c_42) = [0]                                                                  
           p(c_43) = [0]                                                                  
        
        Following rules are strictly oriented:
        +#(I(x),O(y)) = [8] y + [4] 
                      > [8] y + [0] 
                      = c_5(+#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
         +#(x,+(y,z)) =  [8] y + [8] z + [0]              
                      >= [4] y + [8] z + [0]              
                      =  c_1(+#(+(x,y),z),+#(x,y))        
        
        +#(I(x),I(y)) =  [4] y + [0]                      
                      >= [4] y + [0]                      
                      =  c_4(+#(+(x,y),I(0())),+#(x,y))   
        
        +#(O(x),I(y)) =  [4] y + [0]                      
                      >= [4] y + [0]                      
                      =  c_6(+#(x,y))                     
        
        +#(O(x),O(y)) =  [8] y + [4]                      
                      >= [8] y + [4]                      
                      =  c_7(+#(x,y))                     
        
              Log#(x) =  [0]                              
                      >= [0]                              
                      =  c_16(Log'#(x))                   
        
          Log'#(I(x)) =  [0]                              
                      >= [0]                              
                      =  c_18(+#(Log'(x),I(0())),Log'#(x))
        
          Log'#(O(x)) =  [0]                              
                      >= [0]                              
                      =  c_19(+#(Log'(x),I(0())),Log'#(x))
        
***** Step 1.b:8.a:4.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
        - Weak DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:8.a:4.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
        - Weak DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          3: +#(O(x),O(y)) -> c_7(+#(x,y))
          
        Consider the set of all dependency pairs
          1: +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
          2: +#(O(x),I(y)) -> c_6(+#(x,y))
          3: +#(O(x),O(y)) -> c_7(+#(x,y))
          4: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          5: +#(I(x),O(y)) -> c_5(+#(x,y))
          6: Log#(x) -> c_16(Log'#(x))
          7: Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
          8: Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {3}
        These cover all (indirect) predecessors of dependency pairs
          {3,6}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
****** Step 1.b:8.a:4.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
        - Weak DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_4) = {1,2},
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1},
          uargs(c_16) = {1},
          uargs(c_18) = {1,2},
          uargs(c_19) = {1,2}
        
        Following symbols are considered usable:
          {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}
        TcT has computed the following interpretation:
              p(+) = [1] x1 + [2] x2 + [0]                                        
              p(-) = [0]                                                          
              p(0) = [0]                                                          
              p(1) = [0]                                                          
             p(BS) = [0]                                                          
              p(I) = [1] x1 + [0]                                                 
              p(L) = [1] x1 + [0]                                                 
            p(Log) = [0]                                                          
           p(Log') = [0]                                                          
            p(Max) = [0]                                                          
            p(Min) = [0]                                                          
              p(N) = [1] x1 + [1] x2 + [1] x3 + [0]                               
              p(O) = [2] x1 + [1]                                                 
           p(Size) = [0]                                                          
            p(Val) = [0]                                                          
             p(WB) = [0]                                                          
            p(and) = [0]                                                          
          p(false) = [0]                                                          
             p(ge) = [0]                                                          
             p(if) = [0]                                                          
              p(l) = [0]                                                          
            p(not) = [0]                                                          
              p(r) = [2]                                                          
           p(true) = [0]                                                          
             p(+#) = [4] x2 + [0]                                                 
             p(-#) = [1] x1 + [1]                                                 
            p(BS#) = [1]                                                          
           p(Log#) = [4]                                                          
          p(Log'#) = [4]                                                          
           p(Max#) = [0]                                                          
           p(Min#) = [0]                                                          
             p(O#) = [4] x1 + [0]                                                 
          p(Size#) = [4]                                                          
           p(Val#) = [1] x1 + [1]                                                 
            p(WB#) = [1]                                                          
           p(and#) = [1]                                                          
            p(ge#) = [2] x1 + [0]                                                 
            p(if#) = [1] x1 + [0]                                                 
           p(not#) = [0]                                                          
            p(c_1) = [2] x1 + [1] x2 + [0]                                        
            p(c_2) = [1]                                                          
            p(c_3) = [1]                                                          
            p(c_4) = [4] x1 + [1] x2 + [0]                                        
            p(c_5) = [2] x1 + [4]                                                 
            p(c_6) = [1] x1 + [0]                                                 
            p(c_7) = [1] x1 + [2]                                                 
            p(c_8) = [2]                                                          
            p(c_9) = [0]                                                          
           p(c_10) = [2] x1 + [2]                                                 
           p(c_11) = [1] x1 + [0]                                                 
           p(c_12) = [4]                                                          
           p(c_13) = [1]                                                          
           p(c_14) = [1]                                                          
           p(c_15) = [4] x1 + [1] x2 + [4] x4 + [1] x7 + [1] x8 + [1] x9 + [0]    
           p(c_16) = [1] x1 + [0]                                                 
           p(c_17) = [4]                                                          
           p(c_18) = [1] x1 + [1] x2 + [0]                                        
           p(c_19) = [1] x1 + [1] x2 + [0]                                        
           p(c_20) = [1]                                                          
           p(c_21) = [1]                                                          
           p(c_22) = [0]                                                          
           p(c_23) = [1]                                                          
           p(c_24) = [0]                                                          
           p(c_25) = [0]                                                          
           p(c_26) = [1] x2 + [0]                                                 
           p(c_27) = [2]                                                          
           p(c_28) = [1]                                                          
           p(c_29) = [4]                                                          
           p(c_30) = [4] x2 + [4] x9 + [1] x10 + [1] x12 + [1] x14 + [1] x16 + [0]
           p(c_31) = [1]                                                          
           p(c_32) = [1]                                                          
           p(c_33) = [0]                                                          
           p(c_34) = [0]                                                          
           p(c_35) = [1] x1 + [0]                                                 
           p(c_36) = [2] x1 + [0]                                                 
           p(c_37) = [4]                                                          
           p(c_38) = [1] x1 + [0]                                                 
           p(c_39) = [1]                                                          
           p(c_40) = [1]                                                          
           p(c_41) = [0]                                                          
           p(c_42) = [4]                                                          
           p(c_43) = [1]                                                          
        
        Following rules are strictly oriented:
        +#(O(x),O(y)) = [8] y + [4] 
                      > [4] y + [2] 
                      = c_7(+#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
         +#(x,+(y,z)) =  [4] y + [8] z + [0]              
                      >= [4] y + [8] z + [0]              
                      =  c_1(+#(+(x,y),z),+#(x,y))        
        
        +#(I(x),I(y)) =  [4] y + [0]                      
                      >= [4] y + [0]                      
                      =  c_4(+#(+(x,y),I(0())),+#(x,y))   
        
        +#(I(x),O(y)) =  [8] y + [4]                      
                      >= [8] y + [4]                      
                      =  c_5(+#(x,y))                     
        
        +#(O(x),I(y)) =  [4] y + [0]                      
                      >= [4] y + [0]                      
                      =  c_6(+#(x,y))                     
        
              Log#(x) =  [4]                              
                      >= [4]                              
                      =  c_16(Log'#(x))                   
        
          Log'#(I(x)) =  [4]                              
                      >= [4]                              
                      =  c_18(+#(Log'(x),I(0())),Log'#(x))
        
          Log'#(O(x)) =  [4]                              
                      >= [4]                              
                      =  c_19(+#(Log'(x),I(0())),Log'#(x))
        
****** Step 1.b:8.a:4.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
        - Weak DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

****** Step 1.b:8.a:4.b:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
        - Weak DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: +#(O(x),I(y)) -> c_6(+#(x,y))
          
        Consider the set of all dependency pairs
          1: +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
          2: +#(O(x),I(y)) -> c_6(+#(x,y))
          3: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          4: +#(I(x),O(y)) -> c_5(+#(x,y))
          5: +#(O(x),O(y)) -> c_7(+#(x,y))
          6: Log#(x) -> c_16(Log'#(x))
          7: Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
          8: Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {2}
        These cover all (indirect) predecessors of dependency pairs
          {2,6}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
******* Step 1.b:8.a:4.b:1.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
        - Weak DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_4) = {1,2},
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1},
          uargs(c_16) = {1},
          uargs(c_18) = {1,2},
          uargs(c_19) = {1,2}
        
        Following symbols are considered usable:
          {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}
        TcT has computed the following interpretation:
              p(+) = [2] x1 + [2] x2 + [0]                                                  
              p(-) = [1] x2 + [1]                                                           
              p(0) = [0]                                                                    
              p(1) = [1]                                                                    
             p(BS) = [1] x1 + [1]                                                           
              p(I) = [1] x1 + [1]                                                           
              p(L) = [1]                                                                    
            p(Log) = [4] x1 + [0]                                                           
           p(Log') = [1] x1 + [0]                                                           
            p(Max) = [4] x1 + [1]                                                           
            p(Min) = [1] x1 + [0]                                                           
              p(N) = [1] x3 + [1]                                                           
              p(O) = [2] x1 + [1]                                                           
           p(Size) = [4] x1 + [4]                                                           
            p(Val) = [1] x1 + [2]                                                           
             p(WB) = [1] x1 + [4]                                                           
            p(and) = [1] x1 + [2] x2 + [1]                                                  
          p(false) = [4]                                                                    
             p(ge) = [2] x2 + [1]                                                           
             p(if) = [3] x2 + [4]                                                           
              p(l) = [0]                                                                    
            p(not) = [1] x1 + [0]                                                           
              p(r) = [0]                                                                    
           p(true) = [0]                                                                    
             p(+#) = [4] x2 + [0]                                                           
             p(-#) = [1] x1 + [4]                                                           
            p(BS#) = [1]                                                                    
           p(Log#) = [7] x1 + [4]                                                           
          p(Log'#) = [7] x1 + [1]                                                           
           p(Max#) = [4] x1 + [1]                                                           
           p(Min#) = [0]                                                                    
             p(O#) = [1] x1 + [0]                                                           
          p(Size#) = [1] x1 + [1]                                                           
           p(Val#) = [1]                                                                    
            p(WB#) = [4]                                                                    
           p(and#) = [1] x2 + [0]                                                           
            p(ge#) = [2] x2 + [0]                                                           
            p(if#) = [1]                                                                    
           p(not#) = [4]                                                                    
            p(c_1) = [2] x1 + [2] x2 + [0]                                                  
            p(c_2) = [0]                                                                    
            p(c_3) = [0]                                                                    
            p(c_4) = [1] x1 + [1] x2 + [0]                                                  
            p(c_5) = [1] x1 + [4]                                                           
            p(c_6) = [1] x1 + [3]                                                           
            p(c_7) = [2] x1 + [0]                                                           
            p(c_8) = [1]                                                                    
            p(c_9) = [1]                                                                    
           p(c_10) = [1] x1 + [0]                                                           
           p(c_11) = [1]                                                                    
           p(c_12) = [1] x2 + [0]                                                           
           p(c_13) = [4]                                                                    
           p(c_14) = [1]                                                                    
           p(c_15) = [4] x2 + [1] x4 + [2] x5 + [4] x7 + [4]                                
           p(c_16) = [1] x1 + [3]                                                           
           p(c_17) = [0]                                                                    
           p(c_18) = [1] x1 + [1] x2 + [3]                                                  
           p(c_19) = [1] x1 + [1] x2 + [0]                                                  
           p(c_20) = [1]                                                                    
           p(c_21) = [2]                                                                    
           p(c_22) = [2]                                                                    
           p(c_23) = [1] x1 + [2]                                                           
           p(c_24) = [0]                                                                    
           p(c_25) = [0]                                                                    
           p(c_26) = [2] x1 + [2] x3 + [1]                                                  
           p(c_27) = [0]                                                                    
           p(c_28) = [0]                                                                    
           p(c_29) = [1]                                                                    
           p(c_30) = [2] x1 + [4] x2 + [4] x10 + [2] x12 + [1] x13 + [1] x14 + [4] x16 + [1]
           p(c_31) = [0]                                                                    
           p(c_32) = [4]                                                                    
           p(c_33) = [0]                                                                    
           p(c_34) = [0]                                                                    
           p(c_35) = [1] x1 + [1]                                                           
           p(c_36) = [4] x1 + [1]                                                           
           p(c_37) = [4] x1 + [0]                                                           
           p(c_38) = [2]                                                                    
           p(c_39) = [0]                                                                    
           p(c_40) = [4]                                                                    
           p(c_41) = [4]                                                                    
           p(c_42) = [4]                                                                    
           p(c_43) = [0]                                                                    
        
        Following rules are strictly oriented:
        +#(O(x),I(y)) = [4] y + [4] 
                      > [4] y + [3] 
                      = c_6(+#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
         +#(x,+(y,z)) =  [8] y + [8] z + [0]              
                      >= [8] y + [8] z + [0]              
                      =  c_1(+#(+(x,y),z),+#(x,y))        
        
        +#(I(x),I(y)) =  [4] y + [4]                      
                      >= [4] y + [4]                      
                      =  c_4(+#(+(x,y),I(0())),+#(x,y))   
        
        +#(I(x),O(y)) =  [8] y + [4]                      
                      >= [4] y + [4]                      
                      =  c_5(+#(x,y))                     
        
        +#(O(x),O(y)) =  [8] y + [4]                      
                      >= [8] y + [0]                      
                      =  c_7(+#(x,y))                     
        
              Log#(x) =  [7] x + [4]                      
                      >= [7] x + [4]                      
                      =  c_16(Log'#(x))                   
        
          Log'#(I(x)) =  [7] x + [8]                      
                      >= [7] x + [8]                      
                      =  c_18(+#(Log'(x),I(0())),Log'#(x))
        
          Log'#(O(x)) =  [14] x + [8]                     
                      >= [7] x + [5]                      
                      =  c_19(+#(Log'(x),I(0())),Log'#(x))
        
******* Step 1.b:8.a:4.b:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
        - Weak DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******* Step 1.b:8.a:4.b:1.b:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
        - Weak DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
          
        Consider the set of all dependency pairs
          1: +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
          2: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          3: +#(I(x),O(y)) -> c_5(+#(x,y))
          4: +#(O(x),I(y)) -> c_6(+#(x,y))
          5: +#(O(x),O(y)) -> c_7(+#(x,y))
          6: Log#(x) -> c_16(Log'#(x))
          7: Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
          8: Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,6}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
******** Step 1.b:8.a:4.b:1.b:1.b:1.b:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
        - Weak DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_1) = {1,2},
          uargs(c_4) = {1,2},
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1},
          uargs(c_16) = {1},
          uargs(c_18) = {1,2},
          uargs(c_19) = {1,2}
        
        Following symbols are considered usable:
          {+,Log',O,ge,if,not,+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}
        TcT has computed the following interpretation:
              p(+) = x1 + x2     
              p(-) = 0           
              p(0) = 0           
              p(1) = 0           
             p(BS) = 0           
              p(I) = 1 + x1      
              p(L) = 0           
            p(Log) = 0           
           p(Log') = x1          
            p(Max) = 0           
            p(Min) = 0           
              p(N) = 0           
              p(O) = 1 + x1      
           p(Size) = 0           
            p(Val) = 0           
             p(WB) = 0           
            p(and) = 0           
          p(false) = 0           
             p(ge) = 1           
             p(if) = x1*x2 + x3  
              p(l) = 0           
            p(not) = 1           
              p(r) = 0           
           p(true) = 1           
             p(+#) = x1*x2 + x2^2
             p(-#) = 0           
            p(BS#) = 0           
           p(Log#) = x1 + x1^2   
          p(Log'#) = x1^2        
           p(Max#) = 0           
           p(Min#) = 0           
             p(O#) = 0           
          p(Size#) = 0           
           p(Val#) = 0           
            p(WB#) = 0           
           p(and#) = 0           
            p(ge#) = 0           
            p(if#) = 0           
           p(not#) = 0           
            p(c_1) = x1 + x2     
            p(c_2) = 0           
            p(c_3) = 0           
            p(c_4) = x1 + x2     
            p(c_5) = x1          
            p(c_6) = 1 + x1      
            p(c_7) = x1          
            p(c_8) = 0           
            p(c_9) = 0           
           p(c_10) = 0           
           p(c_11) = 0           
           p(c_12) = 0           
           p(c_13) = 0           
           p(c_14) = 0           
           p(c_15) = 0           
           p(c_16) = x1          
           p(c_17) = 0           
           p(c_18) = x1 + x2     
           p(c_19) = x1 + x2     
           p(c_20) = 0           
           p(c_21) = 0           
           p(c_22) = 0           
           p(c_23) = 0           
           p(c_24) = 0           
           p(c_25) = 0           
           p(c_26) = 0           
           p(c_27) = 0           
           p(c_28) = 0           
           p(c_29) = 0           
           p(c_30) = 0           
           p(c_31) = 0           
           p(c_32) = 0           
           p(c_33) = 0           
           p(c_34) = 0           
           p(c_35) = 0           
           p(c_36) = 0           
           p(c_37) = 0           
           p(c_38) = 0           
           p(c_39) = 0           
           p(c_40) = 0           
           p(c_41) = 0           
           p(c_42) = 0           
           p(c_43) = 0           
        
        Following rules are strictly oriented:
        +#(I(x),I(y)) = 2 + x + x*y + 3*y + y^2       
                      > 1 + x + x*y + y + y^2         
                      = c_4(+#(+(x,y),I(0())),+#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
           +#(x,+(y,z)) =  x*y + x*z + 2*y*z + y^2 + z^2         
                        >= x*y + x*z + y*z + y^2 + z^2           
                        =  c_1(+#(+(x,y),z),+#(x,y))             
        
          +#(I(x),O(y)) =  2 + x + x*y + 3*y + y^2               
                        >= x*y + y^2                             
                        =  c_5(+#(x,y))                          
        
          +#(O(x),I(y)) =  2 + x + x*y + 3*y + y^2               
                        >= 1 + x*y + y^2                         
                        =  c_6(+#(x,y))                          
        
          +#(O(x),O(y)) =  2 + x + x*y + 3*y + y^2               
                        >= x*y + y^2                             
                        =  c_7(+#(x,y))                          
        
                Log#(x) =  x + x^2                               
                        >= x^2                                   
                        =  c_16(Log'#(x))                        
        
            Log'#(I(x)) =  1 + 2*x + x^2                         
                        >= 1 + x + x^2                           
                        =  c_18(+#(Log'(x),I(0())),Log'#(x))     
        
            Log'#(O(x)) =  1 + 2*x + x^2                         
                        >= 1 + x + x^2                           
                        =  c_19(+#(Log'(x),I(0())),Log'#(x))     
        
            +(x,+(y,z)) =  x + y + z                             
                        >= x + y + z                             
                        =  +(+(x,y),z)                           
        
               +(x,0()) =  x                                     
                        >= x                                     
                        =  x                                     
        
               +(0(),x) =  x                                     
                        >= x                                     
                        =  x                                     
        
           +(I(x),I(y)) =  2 + x + y                             
                        >= 2 + x + y                             
                        =  O(+(+(x,y),I(0())))                   
        
           +(I(x),O(y)) =  2 + x + y                             
                        >= 1 + x + y                             
                        =  I(+(x,y))                             
        
           +(O(x),I(y)) =  2 + x + y                             
                        >= 1 + x + y                             
                        =  I(+(x,y))                             
        
           +(O(x),O(y)) =  2 + x + y                             
                        >= 1 + x + y                             
                        =  O(+(x,y))                             
        
              Log'(0()) =  0                                     
                        >= 0                                     
                        =  0()                                   
        
             Log'(I(x)) =  1 + x                                 
                        >= 1 + x                                 
                        =  +(Log'(x),I(0()))                     
        
             Log'(O(x)) =  1 + x                                 
                        >= 1 + x                                 
                        =  if(ge(x,I(0())),+(Log'(x),I(0())),0())
        
                 O(0()) =  1                                     
                        >= 0                                     
                        =  0()                                   
        
              ge(x,0()) =  1                                     
                        >= 1                                     
                        =  true()                                
        
           ge(0(),I(x)) =  1                                     
                        >= 0                                     
                        =  false()                               
        
           ge(0(),O(x)) =  1                                     
                        >= 1                                     
                        =  ge(0(),x)                             
        
          ge(I(x),I(y)) =  1                                     
                        >= 1                                     
                        =  ge(x,y)                               
        
          ge(I(x),O(y)) =  1                                     
                        >= 1                                     
                        =  ge(x,y)                               
        
          ge(O(x),I(y)) =  1                                     
                        >= 1                                     
                        =  not(ge(y,x))                          
        
          ge(O(x),O(y)) =  1                                     
                        >= 1                                     
                        =  ge(x,y)                               
        
        if(false(),x,y) =  y                                     
                        >= y                                     
                        =  y                                     
        
         if(true(),x,y) =  x + y                                 
                        >= x                                     
                        =  x                                     
        
           not(false()) =  1                                     
                        >= 1                                     
                        =  true()                                
        
            not(true()) =  1                                     
                        >= 0                                     
                        =  false()                               
        
******** Step 1.b:8.a:4.b:1.b:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******** Step 1.b:8.a:4.b:1.b:1.b:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
             -->_2 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_2 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          2:W:+#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
             -->_2 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_2 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          3:W:+#(I(x),O(y)) -> c_5(+#(x,y))
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          4:W:+#(O(x),I(y)) -> c_6(+#(x,y))
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          5:W:+#(O(x),O(y)) -> c_7(+#(x,y))
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):5
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):3
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):1
          
          6:W:Log#(x) -> c_16(Log'#(x))
             -->_1 Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x)):8
             -->_1 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):7
          
          7:W:Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
             -->_2 Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x)):8
             -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):7
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
          
          8:W:Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
             -->_2 Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x)):8
             -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):7
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):4
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          6: Log#(x) -> c_16(Log'#(x))
          8: Log'#(O(x)) -> c_19(+#(Log'(x),I(0())),Log'#(x))
          7: Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
          1: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
          5: +#(O(x),O(y)) -> c_7(+#(x,y))
          4: +#(O(x),I(y)) -> c_6(+#(x,y))
          3: +#(I(x),O(y)) -> c_5(+#(x,y))
          2: +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
******** Step 1.b:8.a:4.b:1.b:1.b:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/2,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 1.b:8.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
            Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
        - Weak DPs:
            +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
            +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
            +#(I(x),O(y)) -> c_5(+#(x,y))
            +#(O(x),I(y)) -> c_6(+#(x,y))
            +#(O(x),O(y)) -> c_7(+#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/2,c_17/0,c_18/2,c_19/3,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:-#(I(x),I(y)) -> c_10(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          2:S:-#(I(x),O(y)) -> c_11(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          3:S:-#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
             -->_2 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_2 -#(I(x),I(y)) -> c_10(-#(x,y)):1
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          4:S:-#(O(x),O(y)) -> c_13(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          5:S:Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):7
             -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):6
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          6:S:Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):16
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):14
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):7
             -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):6
          
          7:S:Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):16
             -->_2 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):14
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_3 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):7
             -->_3 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):6
          
          8:S:ge#(0(),O(x)) -> c_35(ge#(0(),x))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
          
          9:S:ge#(I(x),I(y)) -> c_36(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
          
          10:S:ge#(I(x),O(y)) -> c_37(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
          
          11:S:ge#(O(x),I(y)) -> c_38(ge#(y,x))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
          
          12:S:ge#(O(x),O(y)) -> c_39(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
          
          13:W:+#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
             -->_2 +#(O(x),O(y)) -> c_7(+#(x,y)):17
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):17
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):16
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):16
             -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):15
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):15
             -->_2 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):14
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):14
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):13
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):13
          
          14:W:+#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
             -->_2 +#(O(x),O(y)) -> c_7(+#(x,y)):17
             -->_2 +#(O(x),I(y)) -> c_6(+#(x,y)):16
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):16
             -->_2 +#(I(x),O(y)) -> c_5(+#(x,y)):15
             -->_2 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):14
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):14
             -->_2 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):13
          
          15:W:+#(I(x),O(y)) -> c_5(+#(x,y))
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):17
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):16
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):15
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):14
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):13
          
          16:W:+#(O(x),I(y)) -> c_6(+#(x,y))
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):17
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):16
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):15
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):14
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):13
          
          17:W:+#(O(x),O(y)) -> c_7(+#(x,y))
             -->_1 +#(O(x),O(y)) -> c_7(+#(x,y)):17
             -->_1 +#(O(x),I(y)) -> c_6(+#(x,y)):16
             -->_1 +#(I(x),O(y)) -> c_5(+#(x,y)):15
             -->_1 +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y)):14
             -->_1 +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y)):13
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          16: +#(O(x),I(y)) -> c_6(+#(x,y))
          17: +#(O(x),O(y)) -> c_7(+#(x,y))
          15: +#(I(x),O(y)) -> c_5(+#(x,y))
          14: +#(I(x),I(y)) -> c_4(+#(+(x,y),I(0())),+#(x,y))
          13: +#(x,+(y,z)) -> c_1(+#(+(x,y),z),+#(x,y))
*** Step 1.b:8.b:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
            Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
            Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/2,c_17/0,c_18/2,c_19/3,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:-#(I(x),I(y)) -> c_10(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          2:S:-#(I(x),O(y)) -> c_11(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          3:S:-#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
             -->_2 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_2 -#(I(x),I(y)) -> c_10(-#(x,y)):1
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          4:S:-#(O(x),O(y)) -> c_13(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          5:S:Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):7
             -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):6
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          6:S:Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x))
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):7
             -->_2 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):6
          
          7:S:Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x))
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_3 Log'#(O(x)) -> c_19(ge#(x,I(0())),+#(Log'(x),I(0())),Log'#(x)):7
             -->_3 Log'#(I(x)) -> c_18(+#(Log'(x),I(0())),Log'#(x)):6
          
          8:S:ge#(0(),O(x)) -> c_35(ge#(0(),x))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
          
          9:S:ge#(I(x),I(y)) -> c_36(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
          
          10:S:ge#(I(x),O(y)) -> c_37(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
          
          11:S:ge#(O(x),I(y)) -> c_38(ge#(y,x))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
          
          12:S:ge#(O(x),O(y)) -> c_39(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          Log'#(I(x)) -> c_18(Log'#(x))
          Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
*** Step 1.b:8.b:3: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
            Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
            Log'#(I(x)) -> c_18(Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/2,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              -#(I(x),I(y)) -> c_10(-#(x,y))
              -#(I(x),O(y)) -> c_11(-#(x,y))
              -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
              -#(O(x),O(y)) -> c_13(-#(x,y))
          - Weak DPs:
              Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
              Log'#(I(x)) -> c_18(Log'#(x))
              Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
              ge#(0(),O(x)) -> c_35(ge#(0(),x))
              ge#(I(x),I(y)) -> c_36(ge#(x,y))
              ge#(I(x),O(y)) -> c_37(ge#(x,y))
              ge#(O(x),I(y)) -> c_38(ge#(y,x))
              ge#(O(x),O(y)) -> c_39(ge#(x,y))
          - Weak TRS:
              +(x,+(y,z)) -> +(+(x,y),z)
              +(x,0()) -> x
              +(0(),x) -> x
              +(I(x),I(y)) -> O(+(+(x,y),I(0())))
              +(I(x),O(y)) -> I(+(x,y))
              +(O(x),I(y)) -> I(+(x,y))
              +(O(x),O(y)) -> O(+(x,y))
              -(x,0()) -> x
              -(0(),x) -> 0()
              -(I(x),I(y)) -> O(-(x,y))
              -(I(x),O(y)) -> I(-(x,y))
              -(O(x),I(y)) -> I(-(-(x,y),I(1())))
              -(O(x),O(y)) -> O(-(x,y))
              Log'(0()) -> 0()
              Log'(I(x)) -> +(Log'(x),I(0()))
              Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
              O(0()) -> 0()
              ge(x,0()) -> true()
              ge(0(),I(x)) -> false()
              ge(0(),O(x)) -> ge(0(),x)
              ge(I(x),I(y)) -> ge(x,y)
              ge(I(x),O(y)) -> ge(x,y)
              ge(O(x),I(y)) -> not(ge(y,x))
              ge(O(x),O(y)) -> ge(x,y)
              if(false(),x,y) -> y
              if(true(),x,y) -> x
              not(false()) -> true()
              not(true()) -> false()
          - Signature:
              {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
              ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
              ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
              ,c_15/9,c_16/2,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
              ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#
              ,ge#,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
        
        Problem (S)
          - Strict DPs:
              Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
              Log'#(I(x)) -> c_18(Log'#(x))
              Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
              ge#(0(),O(x)) -> c_35(ge#(0(),x))
              ge#(I(x),I(y)) -> c_36(ge#(x,y))
              ge#(I(x),O(y)) -> c_37(ge#(x,y))
              ge#(O(x),I(y)) -> c_38(ge#(y,x))
              ge#(O(x),O(y)) -> c_39(ge#(x,y))
          - Weak DPs:
              -#(I(x),I(y)) -> c_10(-#(x,y))
              -#(I(x),O(y)) -> c_11(-#(x,y))
              -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
              -#(O(x),O(y)) -> c_13(-#(x,y))
          - Weak TRS:
              +(x,+(y,z)) -> +(+(x,y),z)
              +(x,0()) -> x
              +(0(),x) -> x
              +(I(x),I(y)) -> O(+(+(x,y),I(0())))
              +(I(x),O(y)) -> I(+(x,y))
              +(O(x),I(y)) -> I(+(x,y))
              +(O(x),O(y)) -> O(+(x,y))
              -(x,0()) -> x
              -(0(),x) -> 0()
              -(I(x),I(y)) -> O(-(x,y))
              -(I(x),O(y)) -> I(-(x,y))
              -(O(x),I(y)) -> I(-(-(x,y),I(1())))
              -(O(x),O(y)) -> O(-(x,y))
              Log'(0()) -> 0()
              Log'(I(x)) -> +(Log'(x),I(0()))
              Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
              O(0()) -> 0()
              ge(x,0()) -> true()
              ge(0(),I(x)) -> false()
              ge(0(),O(x)) -> ge(0(),x)
              ge(I(x),I(y)) -> ge(x,y)
              ge(I(x),O(y)) -> ge(x,y)
              ge(O(x),I(y)) -> not(ge(y,x))
              ge(O(x),O(y)) -> ge(x,y)
              if(false(),x,y) -> y
              if(true(),x,y) -> x
              not(false()) -> true()
              not(true()) -> false()
          - Signature:
              {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
              ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
              ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
              ,c_15/9,c_16/2,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
              ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#
              ,ge#,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
**** Step 1.b:8.b:3.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
        - Weak DPs:
            Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
            Log'#(I(x)) -> c_18(Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/2,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:-#(I(x),I(y)) -> c_10(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          2:S:-#(I(x),O(y)) -> c_11(-#(x,y))
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
          
          3:S:-#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
             -->_2 -#(I(x),I(y)) -> c_10(-#(x,y)):1
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
             -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_2 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
          
          4:S:-#(O(x),O(y)) -> c_13(-#(x,y))
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
          
          5:W:Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):7
             -->_2 Log'#(I(x)) -> c_18(Log'#(x)):6
          
          6:W:Log'#(I(x)) -> c_18(Log'#(x))
             -->_1 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):7
             -->_1 Log'#(I(x)) -> c_18(Log'#(x)):6
          
          7:W:Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
             -->_2 Log'#(I(x)) -> c_18(Log'#(x)):6
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):7
          
          8:W:ge#(0(),O(x)) -> c_35(ge#(0(),x))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
          
          9:W:ge#(I(x),I(y)) -> c_36(ge#(x,y))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
          
          10:W:ge#(I(x),O(y)) -> c_37(ge#(x,y))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
          
          11:W:ge#(O(x),I(y)) -> c_38(ge#(y,x))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
          
          12:W:ge#(O(x),O(y)) -> c_39(ge#(x,y))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):8
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):9
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):10
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):11
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):12
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          7: Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
          6: Log'#(I(x)) -> c_18(Log'#(x))
          11: ge#(O(x),I(y)) -> c_38(ge#(y,x))
          12: ge#(O(x),O(y)) -> c_39(ge#(x,y))
          10: ge#(I(x),O(y)) -> c_37(ge#(x,y))
          9: ge#(I(x),I(y)) -> c_36(ge#(x,y))
          8: ge#(0(),O(x)) -> c_35(ge#(0(),x))
**** Step 1.b:8.b:3.a:2: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
        - Weak DPs:
            Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/2,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:-#(I(x),I(y)) -> c_10(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          2:S:-#(I(x),O(y)) -> c_11(-#(x,y))
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
          
          3:S:-#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
             -->_2 -#(I(x),I(y)) -> c_10(-#(x,y)):1
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
             -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_2 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
          
          4:S:-#(O(x),O(y)) -> c_13(-#(x,y))
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
          
          5:W:Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          Log#(x) -> c_16(-#(Log'(x),I(0())))
**** Step 1.b:8.b:3.a:3: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
        - Weak DPs:
            Log#(x) -> c_16(-#(Log'(x),I(0())))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: -#(I(x),O(y)) -> c_11(-#(x,y))
          4: -#(O(x),O(y)) -> c_13(-#(x,y))
          
        Consider the set of all dependency pairs
          1: -#(I(x),I(y)) -> c_10(-#(x,y))
          2: -#(I(x),O(y)) -> c_11(-#(x,y))
          3: -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
          4: -#(O(x),O(y)) -> c_13(-#(x,y))
          5: Log#(x) -> c_16(-#(Log'(x),I(0())))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {2,4}
        These cover all (indirect) predecessors of dependency pairs
          {2,4,5}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
***** Step 1.b:8.b:3.a:3.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
        - Weak DPs:
            Log#(x) -> c_16(-#(Log'(x),I(0())))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_10) = {1},
          uargs(c_11) = {1},
          uargs(c_12) = {1,2},
          uargs(c_13) = {1},
          uargs(c_16) = {1}
        
        Following symbols are considered usable:
          {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}
        TcT has computed the following interpretation:
              p(+) = [0]                                                                                     
              p(-) = [0]                                                                                     
              p(0) = [0]                                                                                     
              p(1) = [0]                                                                                     
             p(BS) = [0]                                                                                     
              p(I) = [1] x1 + [0]                                                                            
              p(L) = [1] x1 + [0]                                                                            
            p(Log) = [0]                                                                                     
           p(Log') = [0]                                                                                     
            p(Max) = [0]                                                                                     
            p(Min) = [0]                                                                                     
              p(N) = [1] x1 + [1] x2 + [1] x3 + [0]                                                          
              p(O) = [2] x1 + [1]                                                                            
           p(Size) = [0]                                                                                     
            p(Val) = [0]                                                                                     
             p(WB) = [0]                                                                                     
            p(and) = [0]                                                                                     
          p(false) = [0]                                                                                     
             p(ge) = [2] x2 + [0]                                                                            
             p(if) = [0]                                                                                     
              p(l) = [0]                                                                                     
            p(not) = [0]                                                                                     
              p(r) = [0]                                                                                     
           p(true) = [0]                                                                                     
             p(+#) = [0]                                                                                     
             p(-#) = [1] x2 + [0]                                                                            
            p(BS#) = [0]                                                                                     
           p(Log#) = [0]                                                                                     
          p(Log'#) = [2]                                                                                     
           p(Max#) = [0]                                                                                     
           p(Min#) = [0]                                                                                     
             p(O#) = [0]                                                                                     
          p(Size#) = [0]                                                                                     
           p(Val#) = [0]                                                                                     
            p(WB#) = [0]                                                                                     
           p(and#) = [0]                                                                                     
            p(ge#) = [0]                                                                                     
            p(if#) = [0]                                                                                     
           p(not#) = [0]                                                                                     
            p(c_1) = [0]                                                                                     
            p(c_2) = [0]                                                                                     
            p(c_3) = [0]                                                                                     
            p(c_4) = [0]                                                                                     
            p(c_5) = [0]                                                                                     
            p(c_6) = [0]                                                                                     
            p(c_7) = [0]                                                                                     
            p(c_8) = [0]                                                                                     
            p(c_9) = [0]                                                                                     
           p(c_10) = [1] x1 + [0]                                                                            
           p(c_11) = [1] x1 + [0]                                                                            
           p(c_12) = [2] x1 + [1] x2 + [0]                                                                   
           p(c_13) = [2] x1 + [0]                                                                            
           p(c_14) = [0]                                                                                     
           p(c_15) = [1] x1 + [1] x5 + [4] x6 + [1] x8 + [0]                                                 
           p(c_16) = [2] x1 + [0]                                                                            
           p(c_17) = [0]                                                                                     
           p(c_18) = [1] x1 + [0]                                                                            
           p(c_19) = [1] x1 + [4] x2 + [0]                                                                   
           p(c_20) = [0]                                                                                     
           p(c_21) = [0]                                                                                     
           p(c_22) = [0]                                                                                     
           p(c_23) = [0]                                                                                     
           p(c_24) = [0]                                                                                     
           p(c_25) = [0]                                                                                     
           p(c_26) = [4] x2 + [0]                                                                            
           p(c_27) = [0]                                                                                     
           p(c_28) = [0]                                                                                     
           p(c_29) = [0]                                                                                     
           p(c_30) = [2] x4 + [1] x5 + [2] x6 + [4] x7 + [2] x8 + [1] x10 + [1] x12 + [2] x14 + [2] x16 + [0]
           p(c_31) = [0]                                                                                     
           p(c_32) = [0]                                                                                     
           p(c_33) = [0]                                                                                     
           p(c_34) = [0]                                                                                     
           p(c_35) = [4] x1 + [0]                                                                            
           p(c_36) = [2] x1 + [0]                                                                            
           p(c_37) = [0]                                                                                     
           p(c_38) = [0]                                                                                     
           p(c_39) = [0]                                                                                     
           p(c_40) = [0]                                                                                     
           p(c_41) = [0]                                                                                     
           p(c_42) = [0]                                                                                     
           p(c_43) = [0]                                                                                     
        
        Following rules are strictly oriented:
        -#(I(x),O(y)) = [2] y + [1]  
                      > [1] y + [0]  
                      = c_11(-#(x,y))
        
        -#(O(x),O(y)) = [2] y + [1]  
                      > [2] y + [0]  
                      = c_13(-#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
        -#(I(x),I(y)) =  [1] y + [0]                    
                      >= [1] y + [0]                    
                      =  c_10(-#(x,y))                  
        
        -#(O(x),I(y)) =  [1] y + [0]                    
                      >= [1] y + [0]                    
                      =  c_12(-#(-(x,y),I(1())),-#(x,y))
        
              Log#(x) =  [0]                            
                      >= [0]                            
                      =  c_16(-#(Log'(x),I(0())))       
        
***** Step 1.b:8.b:3.a:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
        - Weak DPs:
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
            Log#(x) -> c_16(-#(Log'(x),I(0())))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:8.b:3.a:3.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
        - Weak DPs:
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
            Log#(x) -> c_16(-#(Log'(x),I(0())))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: -#(I(x),I(y)) -> c_10(-#(x,y))
          
        Consider the set of all dependency pairs
          1: -#(I(x),I(y)) -> c_10(-#(x,y))
          2: -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
          3: -#(I(x),O(y)) -> c_11(-#(x,y))
          4: -#(O(x),O(y)) -> c_13(-#(x,y))
          5: Log#(x) -> c_16(-#(Log'(x),I(0())))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,5}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
****** Step 1.b:8.b:3.a:3.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
        - Weak DPs:
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
            Log#(x) -> c_16(-#(Log'(x),I(0())))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_10) = {1},
          uargs(c_11) = {1},
          uargs(c_12) = {1,2},
          uargs(c_13) = {1},
          uargs(c_16) = {1}
        
        Following symbols are considered usable:
          {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}
        TcT has computed the following interpretation:
              p(+) = [1] x1 + [2] x2 + [0]                                                                            
              p(-) = [0]                                                                                              
              p(0) = [0]                                                                                              
              p(1) = [0]                                                                                              
             p(BS) = [1] x1 + [1]                                                                                     
              p(I) = [1] x1 + [1]                                                                                     
              p(L) = [0]                                                                                              
            p(Log) = [1]                                                                                              
           p(Log') = [4] x1 + [0]                                                                                     
            p(Max) = [4]                                                                                              
            p(Min) = [2] x1 + [1]                                                                                     
              p(N) = [1] x2 + [0]                                                                                     
              p(O) = [1] x1 + [0]                                                                                     
           p(Size) = [1] x1 + [1]                                                                                     
            p(Val) = [0]                                                                                              
             p(WB) = [4] x1 + [4]                                                                                     
            p(and) = [4] x1 + [2] x2 + [0]                                                                            
          p(false) = [2]                                                                                              
             p(ge) = [0]                                                                                              
             p(if) = [2] x1 + [4]                                                                                     
              p(l) = [0]                                                                                              
            p(not) = [4] x1 + [1]                                                                                     
              p(r) = [2]                                                                                              
           p(true) = [3]                                                                                              
             p(+#) = [1] x2 + [1]                                                                                     
             p(-#) = [4] x2 + [0]                                                                                     
            p(BS#) = [1] x1 + [1]                                                                                     
           p(Log#) = [4] x1 + [6]                                                                                     
          p(Log'#) = [1]                                                                                              
           p(Max#) = [1] x1 + [1]                                                                                     
           p(Min#) = [4] x1 + [1]                                                                                     
             p(O#) = [4]                                                                                              
          p(Size#) = [1] x1 + [1]                                                                                     
           p(Val#) = [0]                                                                                              
            p(WB#) = [4] x1 + [2]                                                                                     
           p(and#) = [1]                                                                                              
            p(ge#) = [0]                                                                                              
            p(if#) = [1] x1 + [4] x3 + [1]                                                                            
           p(not#) = [1] x1 + [0]                                                                                     
            p(c_1) = [2]                                                                                              
            p(c_2) = [2]                                                                                              
            p(c_3) = [2]                                                                                              
            p(c_4) = [1] x1 + [4] x2 + [4]                                                                            
            p(c_5) = [4] x1 + [0]                                                                                     
            p(c_6) = [4]                                                                                              
            p(c_7) = [1]                                                                                              
            p(c_8) = [1]                                                                                              
            p(c_9) = [4]                                                                                              
           p(c_10) = [1] x1 + [0]                                                                                     
           p(c_11) = [1] x1 + [0]                                                                                     
           p(c_12) = [1] x1 + [1] x2 + [0]                                                                            
           p(c_13) = [1] x1 + [0]                                                                                     
           p(c_14) = [0]                                                                                              
           p(c_15) = [1] x7 + [0]                                                                                     
           p(c_16) = [1] x1 + [2]                                                                                     
           p(c_17) = [1]                                                                                              
           p(c_18) = [2] x1 + [1]                                                                                     
           p(c_19) = [4] x1 + [1] x2 + [2]                                                                            
           p(c_20) = [1]                                                                                              
           p(c_21) = [1]                                                                                              
           p(c_22) = [1]                                                                                              
           p(c_23) = [1] x1 + [1]                                                                                     
           p(c_24) = [0]                                                                                              
           p(c_25) = [1]                                                                                              
           p(c_26) = [4] x2 + [1] x4 + [1]                                                                            
           p(c_27) = [0]                                                                                              
           p(c_28) = [2]                                                                                              
           p(c_29) = [1]                                                                                              
           p(c_30) = [1] x2 + [1] x3 + [1] x4 + [1] x5 + [1] x8 + [4] x9 + [1] x11 + [1] x13 + [2] x15 + [4] x16 + [0]
           p(c_31) = [0]                                                                                              
           p(c_32) = [1]                                                                                              
           p(c_33) = [1]                                                                                              
           p(c_34) = [0]                                                                                              
           p(c_35) = [0]                                                                                              
           p(c_36) = [2]                                                                                              
           p(c_37) = [0]                                                                                              
           p(c_38) = [1] x1 + [0]                                                                                     
           p(c_39) = [0]                                                                                              
           p(c_40) = [0]                                                                                              
           p(c_41) = [1]                                                                                              
           p(c_42) = [1]                                                                                              
           p(c_43) = [0]                                                                                              
        
        Following rules are strictly oriented:
        -#(I(x),I(y)) = [4] y + [4]  
                      > [4] y + [0]  
                      = c_10(-#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
        -#(I(x),O(y)) =  [4] y + [0]                    
                      >= [4] y + [0]                    
                      =  c_11(-#(x,y))                  
        
        -#(O(x),I(y)) =  [4] y + [4]                    
                      >= [4] y + [4]                    
                      =  c_12(-#(-(x,y),I(1())),-#(x,y))
        
        -#(O(x),O(y)) =  [4] y + [0]                    
                      >= [4] y + [0]                    
                      =  c_13(-#(x,y))                  
        
              Log#(x) =  [4] x + [6]                    
                      >= [6]                            
                      =  c_16(-#(Log'(x),I(0())))       
        
****** Step 1.b:8.b:3.a:3.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
        - Weak DPs:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
            Log#(x) -> c_16(-#(Log'(x),I(0())))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

****** Step 1.b:8.b:3.a:3.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
        - Weak DPs:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
            Log#(x) -> c_16(-#(Log'(x),I(0())))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
          
        Consider the set of all dependency pairs
          1: -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
          2: -#(I(x),I(y)) -> c_10(-#(x,y))
          3: -#(I(x),O(y)) -> c_11(-#(x,y))
          4: -#(O(x),O(y)) -> c_13(-#(x,y))
          5: Log#(x) -> c_16(-#(Log'(x),I(0())))
        Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,5}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
******* Step 1.b:8.b:3.a:3.b:1.b:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
        - Weak DPs:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
            Log#(x) -> c_16(-#(Log'(x),I(0())))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_10) = {1},
          uargs(c_11) = {1},
          uargs(c_12) = {1,2},
          uargs(c_13) = {1},
          uargs(c_16) = {1}
        
        Following symbols are considered usable:
          {+,-,Log',O,if,+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}
        TcT has computed the following interpretation:
              p(+) = x1 + x2
              p(-) = x1 + x2
              p(0) = 0      
              p(1) = 0      
             p(BS) = 0      
              p(I) = 1 + x1 
              p(L) = 0      
            p(Log) = 0      
           p(Log') = x1     
            p(Max) = 0      
            p(Min) = 0      
              p(N) = 0      
              p(O) = 1 + x1 
           p(Size) = 0      
            p(Val) = 0      
             p(WB) = 0      
            p(and) = 0      
          p(false) = 0      
             p(ge) = 0      
             p(if) = x2 + x3
              p(l) = 0      
            p(not) = 0      
              p(r) = 0      
           p(true) = 1      
             p(+#) = 0      
             p(-#) = x1*x2  
            p(BS#) = 0      
           p(Log#) = x1     
          p(Log'#) = 0      
           p(Max#) = 0      
           p(Min#) = 0      
             p(O#) = 0      
          p(Size#) = 0      
           p(Val#) = 0      
            p(WB#) = 0      
           p(and#) = 0      
            p(ge#) = 0      
            p(if#) = 0      
           p(not#) = 0      
            p(c_1) = 0      
            p(c_2) = 0      
            p(c_3) = 0      
            p(c_4) = 0      
            p(c_5) = 0      
            p(c_6) = 0      
            p(c_7) = 0      
            p(c_8) = 0      
            p(c_9) = 0      
           p(c_10) = 1 + x1 
           p(c_11) = 1 + x1 
           p(c_12) = x1 + x2
           p(c_13) = 1 + x1 
           p(c_14) = 0      
           p(c_15) = 0      
           p(c_16) = x1     
           p(c_17) = 0      
           p(c_18) = 0      
           p(c_19) = 0      
           p(c_20) = 0      
           p(c_21) = 0      
           p(c_22) = 0      
           p(c_23) = 0      
           p(c_24) = 0      
           p(c_25) = 0      
           p(c_26) = 0      
           p(c_27) = 0      
           p(c_28) = 0      
           p(c_29) = 0      
           p(c_30) = 0      
           p(c_31) = 0      
           p(c_32) = 0      
           p(c_33) = 0      
           p(c_34) = 0      
           p(c_35) = 0      
           p(c_36) = 0      
           p(c_37) = 0      
           p(c_38) = 0      
           p(c_39) = 0      
           p(c_40) = 0      
           p(c_41) = 0      
           p(c_42) = 0      
           p(c_43) = 0      
        
        Following rules are strictly oriented:
        -#(O(x),I(y)) = 1 + x + x*y + y                
                      > x + x*y + y                    
                      = c_12(-#(-(x,y),I(1())),-#(x,y))
        
        
        Following rules are (at-least) weakly oriented:
          -#(I(x),I(y)) =  1 + x + x*y + y                       
                        >= 1 + x*y                               
                        =  c_10(-#(x,y))                         
        
          -#(I(x),O(y)) =  1 + x + x*y + y                       
                        >= 1 + x*y                               
                        =  c_11(-#(x,y))                         
        
          -#(O(x),O(y)) =  1 + x + x*y + y                       
                        >= 1 + x*y                               
                        =  c_13(-#(x,y))                         
        
                Log#(x) =  x                                     
                        >= x                                     
                        =  c_16(-#(Log'(x),I(0())))              
        
            +(x,+(y,z)) =  x + y + z                             
                        >= x + y + z                             
                        =  +(+(x,y),z)                           
        
               +(x,0()) =  x                                     
                        >= x                                     
                        =  x                                     
        
               +(0(),x) =  x                                     
                        >= x                                     
                        =  x                                     
        
           +(I(x),I(y)) =  2 + x + y                             
                        >= 2 + x + y                             
                        =  O(+(+(x,y),I(0())))                   
        
           +(I(x),O(y)) =  2 + x + y                             
                        >= 1 + x + y                             
                        =  I(+(x,y))                             
        
           +(O(x),I(y)) =  2 + x + y                             
                        >= 1 + x + y                             
                        =  I(+(x,y))                             
        
           +(O(x),O(y)) =  2 + x + y                             
                        >= 1 + x + y                             
                        =  O(+(x,y))                             
        
               -(x,0()) =  x                                     
                        >= x                                     
                        =  x                                     
        
               -(0(),x) =  x                                     
                        >= 0                                     
                        =  0()                                   
        
           -(I(x),I(y)) =  2 + x + y                             
                        >= 1 + x + y                             
                        =  O(-(x,y))                             
        
           -(I(x),O(y)) =  2 + x + y                             
                        >= 1 + x + y                             
                        =  I(-(x,y))                             
        
           -(O(x),I(y)) =  2 + x + y                             
                        >= 2 + x + y                             
                        =  I(-(-(x,y),I(1())))                   
        
           -(O(x),O(y)) =  2 + x + y                             
                        >= 1 + x + y                             
                        =  O(-(x,y))                             
        
              Log'(0()) =  0                                     
                        >= 0                                     
                        =  0()                                   
        
             Log'(I(x)) =  1 + x                                 
                        >= 1 + x                                 
                        =  +(Log'(x),I(0()))                     
        
             Log'(O(x)) =  1 + x                                 
                        >= 1 + x                                 
                        =  if(ge(x,I(0())),+(Log'(x),I(0())),0())
        
                 O(0()) =  1                                     
                        >= 0                                     
                        =  0()                                   
        
        if(false(),x,y) =  x + y                                 
                        >= y                                     
                        =  y                                     
        
         if(true(),x,y) =  x + y                                 
                        >= x                                     
                        =  x                                     
        
******* Step 1.b:8.b:3.a:3.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
            Log#(x) -> c_16(-#(Log'(x),I(0())))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******* Step 1.b:8.b:3.a:3.b:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
            Log#(x) -> c_16(-#(Log'(x),I(0())))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:-#(I(x),I(y)) -> c_10(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          2:W:-#(I(x),O(y)) -> c_11(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          3:W:-#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
             -->_2 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_2 -#(I(x),I(y)) -> c_10(-#(x,y)):1
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          4:W:-#(O(x),O(y)) -> c_13(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):4
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):2
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
          5:W:Log#(x) -> c_16(-#(Log'(x),I(0())))
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):3
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          5: Log#(x) -> c_16(-#(Log'(x),I(0())))
          1: -#(I(x),I(y)) -> c_10(-#(x,y))
          4: -#(O(x),O(y)) -> c_13(-#(x,y))
          3: -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
          2: -#(I(x),O(y)) -> c_11(-#(x,y))
******* Step 1.b:8.b:3.a:3.b:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

**** Step 1.b:8.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
            Log'#(I(x)) -> c_18(Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
        - Weak DPs:
            -#(I(x),I(y)) -> c_10(-#(x,y))
            -#(I(x),O(y)) -> c_11(-#(x,y))
            -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
            -#(O(x),O(y)) -> c_13(-#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/2,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):11
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):9
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):3
             -->_2 Log'#(I(x)) -> c_18(Log'#(x)):2
          
          2:S:Log'#(I(x)) -> c_18(Log'#(x))
             -->_1 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):3
             -->_1 Log'#(I(x)) -> c_18(Log'#(x)):2
          
          3:S:Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):3
             -->_2 Log'#(I(x)) -> c_18(Log'#(x)):2
          
          4:S:ge#(0(),O(x)) -> c_35(ge#(0(),x))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
          
          5:S:ge#(I(x),I(y)) -> c_36(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
          
          6:S:ge#(I(x),O(y)) -> c_37(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
          
          7:S:ge#(O(x),I(y)) -> c_38(ge#(y,x))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
          
          8:S:ge#(O(x),O(y)) -> c_39(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
          
          9:W:-#(I(x),I(y)) -> c_10(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):12
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):11
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):10
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):9
          
          10:W:-#(I(x),O(y)) -> c_11(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):12
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):11
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):10
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):9
          
          11:W:-#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
             -->_2 -#(O(x),O(y)) -> c_13(-#(x,y)):12
             -->_2 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):11
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):11
             -->_2 -#(I(x),O(y)) -> c_11(-#(x,y)):10
             -->_2 -#(I(x),I(y)) -> c_10(-#(x,y)):9
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):9
          
          12:W:-#(O(x),O(y)) -> c_13(-#(x,y))
             -->_1 -#(O(x),O(y)) -> c_13(-#(x,y)):12
             -->_1 -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y)):11
             -->_1 -#(I(x),O(y)) -> c_11(-#(x,y)):10
             -->_1 -#(I(x),I(y)) -> c_10(-#(x,y)):9
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          11: -#(O(x),I(y)) -> c_12(-#(-(x,y),I(1())),-#(x,y))
          12: -#(O(x),O(y)) -> c_13(-#(x,y))
          10: -#(I(x),O(y)) -> c_11(-#(x,y))
          9: -#(I(x),I(y)) -> c_10(-#(x,y))
**** Step 1.b:8.b:3.b:2: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
            Log'#(I(x)) -> c_18(Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/2,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:Log#(x) -> c_16(-#(Log'(x),I(0())),Log'#(x))
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):3
             -->_2 Log'#(I(x)) -> c_18(Log'#(x)):2
          
          2:S:Log'#(I(x)) -> c_18(Log'#(x))
             -->_1 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):3
             -->_1 Log'#(I(x)) -> c_18(Log'#(x)):2
          
          3:S:Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):3
             -->_2 Log'#(I(x)) -> c_18(Log'#(x)):2
          
          4:S:ge#(0(),O(x)) -> c_35(ge#(0(),x))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
          
          5:S:ge#(I(x),I(y)) -> c_36(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
          
          6:S:ge#(I(x),O(y)) -> c_37(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
          
          7:S:ge#(O(x),I(y)) -> c_38(ge#(y,x))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
          
          8:S:ge#(O(x),O(y)) -> c_39(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          Log#(x) -> c_16(Log'#(x))
**** Step 1.b:8.b:3.b:3: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
        - Weak TRS:
            +(x,+(y,z)) -> +(+(x,y),z)
            +(x,0()) -> x
            +(0(),x) -> x
            +(I(x),I(y)) -> O(+(+(x,y),I(0())))
            +(I(x),O(y)) -> I(+(x,y))
            +(O(x),I(y)) -> I(+(x,y))
            +(O(x),O(y)) -> O(+(x,y))
            -(x,0()) -> x
            -(0(),x) -> 0()
            -(I(x),I(y)) -> O(-(x,y))
            -(I(x),O(y)) -> I(-(x,y))
            -(O(x),I(y)) -> I(-(-(x,y),I(1())))
            -(O(x),O(y)) -> O(-(x,y))
            Log'(0()) -> 0()
            Log'(I(x)) -> +(Log'(x),I(0()))
            Log'(O(x)) -> if(ge(x,I(0())),+(Log'(x),I(0())),0())
            O(0()) -> 0()
            ge(x,0()) -> true()
            ge(0(),I(x)) -> false()
            ge(0(),O(x)) -> ge(0(),x)
            ge(I(x),I(y)) -> ge(x,y)
            ge(I(x),O(y)) -> ge(x,y)
            ge(O(x),I(y)) -> not(ge(y,x))
            ge(O(x),O(y)) -> ge(x,y)
            if(false(),x,y) -> y
            if(true(),x,y) -> x
            not(false()) -> true()
            not(true()) -> false()
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          Log#(x) -> c_16(Log'#(x))
          Log'#(I(x)) -> c_18(Log'#(x))
          Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
          ge#(0(),O(x)) -> c_35(ge#(0(),x))
          ge#(I(x),I(y)) -> c_36(ge#(x,y))
          ge#(I(x),O(y)) -> c_37(ge#(x,y))
          ge#(O(x),I(y)) -> c_38(ge#(y,x))
          ge#(O(x),O(y)) -> c_39(ge#(x,y))
**** Step 1.b:8.b:3.b:4: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: Log'#(I(x)) -> c_18(Log'#(x))
          3: Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
          4: ge#(0(),O(x)) -> c_35(ge#(0(),x))
          5: ge#(I(x),I(y)) -> c_36(ge#(x,y))
          6: ge#(I(x),O(y)) -> c_37(ge#(x,y))
          7: ge#(O(x),I(y)) -> c_38(ge#(y,x))
          8: ge#(O(x),O(y)) -> c_39(ge#(x,y))
          
        Consider the set of all dependency pairs
          1: Log#(x) -> c_16(Log'#(x))
          2: Log'#(I(x)) -> c_18(Log'#(x))
          3: Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
          4: ge#(0(),O(x)) -> c_35(ge#(0(),x))
          5: ge#(I(x),I(y)) -> c_36(ge#(x,y))
          6: ge#(I(x),O(y)) -> c_37(ge#(x,y))
          7: ge#(O(x),I(y)) -> c_38(ge#(y,x))
          8: ge#(O(x),O(y)) -> c_39(ge#(x,y))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {2,3,4,5,6,7,8}
        These cover all (indirect) predecessors of dependency pairs
          {1,2,3,4,5,6,7,8}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
***** Step 1.b:8.b:3.b:4.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_16) = {1},
          uargs(c_18) = {1},
          uargs(c_19) = {1,2},
          uargs(c_35) = {1},
          uargs(c_36) = {1},
          uargs(c_37) = {1},
          uargs(c_38) = {1},
          uargs(c_39) = {1}
        
        Following symbols are considered usable:
          {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#,if#,not#}
        TcT has computed the following interpretation:
              p(+) = [0]                                                                           
              p(-) = [0]                                                                           
              p(0) = [0]                                                                           
              p(1) = [0]                                                                           
             p(BS) = [0]                                                                           
              p(I) = [1] x1 + [4]                                                                  
              p(L) = [1] x1 + [0]                                                                  
            p(Log) = [0]                                                                           
           p(Log') = [0]                                                                           
            p(Max) = [1] x1 + [0]                                                                  
            p(Min) = [1] x1 + [0]                                                                  
              p(N) = [0]                                                                           
              p(O) = [4] x1 + [5]                                                                  
           p(Size) = [2] x1 + [2]                                                                  
            p(Val) = [2] x1 + [2]                                                                  
             p(WB) = [4]                                                                           
            p(and) = [1] x1 + [0]                                                                  
          p(false) = [0]                                                                           
             p(ge) = [1]                                                                           
             p(if) = [1] x1 + [1]                                                                  
              p(l) = [1]                                                                           
            p(not) = [0]                                                                           
              p(r) = [8]                                                                           
           p(true) = [1]                                                                           
             p(+#) = [1]                                                                           
             p(-#) = [1] x1 + [0]                                                                  
            p(BS#) = [4] x1 + [1]                                                                  
           p(Log#) = [8] x1 + [8]                                                                  
          p(Log'#) = [4] x1 + [2]                                                                  
           p(Max#) = [1] x1 + [8]                                                                  
           p(Min#) = [1]                                                                           
             p(O#) = [2] x1 + [0]                                                                  
          p(Size#) = [2] x1 + [1]                                                                  
           p(Val#) = [1] x1 + [4]                                                                  
            p(WB#) = [1]                                                                           
           p(and#) = [2] x1 + [0]                                                                  
            p(ge#) = [2] x1 + [4] x2 + [0]                                                         
            p(if#) = [1] x1 + [8] x2 + [1]                                                         
           p(not#) = [2] x1 + [4]                                                                  
            p(c_1) = [0]                                                                           
            p(c_2) = [2]                                                                           
            p(c_3) = [2]                                                                           
            p(c_4) = [0]                                                                           
            p(c_5) = [2] x1 + [1]                                                                  
            p(c_6) = [1]                                                                           
            p(c_7) = [1] x1 + [0]                                                                  
            p(c_8) = [2]                                                                           
            p(c_9) = [2]                                                                           
           p(c_10) = [0]                                                                           
           p(c_11) = [1] x1 + [8]                                                                  
           p(c_12) = [8] x1 + [4]                                                                  
           p(c_13) = [1]                                                                           
           p(c_14) = [0]                                                                           
           p(c_15) = [1] x2 + [1] x3 + [2] x4 + [1] x7 + [1]                                       
           p(c_16) = [2] x1 + [4]                                                                  
           p(c_17) = [1]                                                                           
           p(c_18) = [1] x1 + [5]                                                                  
           p(c_19) = [1] x1 + [1] x2 + [1]                                                         
           p(c_20) = [4]                                                                           
           p(c_21) = [0]                                                                           
           p(c_22) = [2]                                                                           
           p(c_23) = [4] x1 + [1]                                                                  
           p(c_24) = [0]                                                                           
           p(c_25) = [0]                                                                           
           p(c_26) = [2] x1 + [1] x2 + [1] x3 + [1]                                                
           p(c_27) = [0]                                                                           
           p(c_28) = [2]                                                                           
           p(c_29) = [2]                                                                           
           p(c_30) = [1] x1 + [2] x3 + [1] x4 + [1] x6 + [2] x7 + [1] x10 + [1] x14 + [1] x15 + [0]
           p(c_31) = [1]                                                                           
           p(c_32) = [0]                                                                           
           p(c_33) = [1]                                                                           
           p(c_34) = [2]                                                                           
           p(c_35) = [4] x1 + [14]                                                                 
           p(c_36) = [1] x1 + [12]                                                                 
           p(c_37) = [1] x1 + [14]                                                                 
           p(c_38) = [1] x1 + [1]                                                                  
           p(c_39) = [1] x1 + [1]                                                                  
           p(c_40) = [4]                                                                           
           p(c_41) = [2]                                                                           
           p(c_42) = [0]                                                                           
           p(c_43) = [2]                                                                           
        
        Following rules are strictly oriented:
           Log'#(I(x)) = [4] x + [18]                
                       > [4] x + [7]                 
                       = c_18(Log'#(x))              
        
           Log'#(O(x)) = [16] x + [22]               
                       > [6] x + [19]                
                       = c_19(ge#(x,I(0())),Log'#(x))
        
         ge#(0(),O(x)) = [16] x + [20]               
                       > [16] x + [14]               
                       = c_35(ge#(0(),x))            
        
        ge#(I(x),I(y)) = [2] x + [4] y + [24]        
                       > [2] x + [4] y + [12]        
                       = c_36(ge#(x,y))              
        
        ge#(I(x),O(y)) = [2] x + [16] y + [28]       
                       > [2] x + [4] y + [14]        
                       = c_37(ge#(x,y))              
        
        ge#(O(x),I(y)) = [8] x + [4] y + [26]        
                       > [4] x + [2] y + [1]         
                       = c_38(ge#(y,x))              
        
        ge#(O(x),O(y)) = [8] x + [16] y + [30]       
                       > [2] x + [4] y + [1]         
                       = c_39(ge#(x,y))              
        
        
        Following rules are (at-least) weakly oriented:
        Log#(x) =  [8] x + [8]   
                >= [8] x + [8]   
                =  c_16(Log'#(x))
        
***** Step 1.b:8.b:3.b:4.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            Log#(x) -> c_16(Log'#(x))
        - Weak DPs:
            Log'#(I(x)) -> c_18(Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:8.b:3.b:4.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            Log#(x) -> c_16(Log'#(x))
            Log'#(I(x)) -> c_18(Log'#(x))
            Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
            ge#(0(),O(x)) -> c_35(ge#(0(),x))
            ge#(I(x),I(y)) -> c_36(ge#(x,y))
            ge#(I(x),O(y)) -> c_37(ge#(x,y))
            ge#(O(x),I(y)) -> c_38(ge#(y,x))
            ge#(O(x),O(y)) -> c_39(ge#(x,y))
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:Log#(x) -> c_16(Log'#(x))
             -->_1 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):3
             -->_1 Log'#(I(x)) -> c_18(Log'#(x)):2
          
          2:W:Log'#(I(x)) -> c_18(Log'#(x))
             -->_1 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):3
             -->_1 Log'#(I(x)) -> c_18(Log'#(x)):2
          
          3:W:Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
             -->_2 Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x)):3
             -->_2 Log'#(I(x)) -> c_18(Log'#(x)):2
          
          4:W:ge#(0(),O(x)) -> c_35(ge#(0(),x))
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
          
          5:W:ge#(I(x),I(y)) -> c_36(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
          
          6:W:ge#(I(x),O(y)) -> c_37(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
          
          7:W:ge#(O(x),I(y)) -> c_38(ge#(y,x))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
          
          8:W:ge#(O(x),O(y)) -> c_39(ge#(x,y))
             -->_1 ge#(O(x),O(y)) -> c_39(ge#(x,y)):8
             -->_1 ge#(O(x),I(y)) -> c_38(ge#(y,x)):7
             -->_1 ge#(I(x),O(y)) -> c_37(ge#(x,y)):6
             -->_1 ge#(I(x),I(y)) -> c_36(ge#(x,y)):5
             -->_1 ge#(0(),O(x)) -> c_35(ge#(0(),x)):4
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: Log#(x) -> c_16(Log'#(x))
          3: Log'#(O(x)) -> c_19(ge#(x,I(0())),Log'#(x))
          2: Log'#(I(x)) -> c_18(Log'#(x))
          7: ge#(O(x),I(y)) -> c_38(ge#(y,x))
          8: ge#(O(x),O(y)) -> c_39(ge#(x,y))
          6: ge#(I(x),O(y)) -> c_37(ge#(x,y))
          5: ge#(I(x),I(y)) -> c_36(ge#(x,y))
          4: ge#(0(),O(x)) -> c_35(ge#(0(),x))
***** Step 1.b:8.b:3.b:4.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {+/2,-/2,BS/1,Log/1,Log'/1,Max/1,Min/1,O/1,Size/1,Val/1,WB/1,and/2,ge/2,if/3,not/1,+#/2,-#/2,BS#/1,Log#/1
            ,Log'#/1,Max#/1,Min#/1,O#/1,Size#/1,Val#/1,WB#/1,and#/2,ge#/2,if#/3,not#/1} / {0/0,1/0,I/1,L/1,N/3,false/0
            ,l/0,r/0,true/0,c_1/2,c_2/0,c_3/0,c_4/2,c_5/1,c_6/1,c_7/1,c_8/0,c_9/0,c_10/1,c_11/1,c_12/2,c_13/1,c_14/0
            ,c_15/9,c_16/1,c_17/0,c_18/1,c_19/2,c_20/0,c_21/1,c_22/0,c_23/1,c_24/0,c_25/0,c_26/4,c_27/0,c_28/0,c_29/0
            ,c_30/16,c_31/0,c_32/0,c_33/0,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/1,c_40/0,c_41/0,c_42/0,c_43/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {+#,-#,BS#,Log#,Log'#,Max#,Min#,O#,Size#,Val#,WB#,and#,ge#
            ,if#,not#} and constructors {0,1,I,L,N,false,l,r,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^2))