* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            and(tt(),X) -> activate(X)
            isNat(X) -> n__isNat(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            isNat(n__s(V1)) -> isNat(activate(V1))
            plus(N,0()) -> U11(isNat(N),N)
            plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,activate,and,isNat,plus
            ,s} and constructors {n__0,n__isNat,n__plus,n__s,tt}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            and(tt(),X) -> activate(X)
            isNat(X) -> n__isNat(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            isNat(n__s(V1)) -> isNat(activate(V1))
            plus(N,0()) -> U11(isNat(N),N)
            plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,activate,and,isNat,plus
            ,s} and constructors {n__0,n__isNat,n__plus,n__s,tt}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          activate(x){x -> n__plus(x,y)} =
            activate(n__plus(x,y)) ->^+ plus(activate(x),activate(y))
              = C[activate(x) = activate(x){}]

** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            and(tt(),X) -> activate(X)
            isNat(X) -> n__isNat(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            isNat(n__s(V1)) -> isNat(activate(V1))
            plus(N,0()) -> U11(isNat(N),N)
            plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,activate,and,isNat,plus
            ,s} and constructors {n__0,n__isNat,n__plus,n__s,tt}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          plus(N,0()) -> U11(isNat(N),N)
          plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N)
        All above mentioned rules can be savely removed.
** Step 1.b:2: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            and(tt(),X) -> activate(X)
            isNat(X) -> n__isNat(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            isNat(n__s(V1)) -> isNat(activate(V1))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,activate,and,isNat,plus
            ,s} and constructors {n__0,n__isNat,n__plus,n__s,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(isNat) = {1},
            uargs(n__isNat) = {1},
            uargs(plus) = {1,2},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
                 p(U11) = [1] x2 + [0]         
                 p(U21) = [1] x2 + [1] x3 + [0]
            p(activate) = [1] x1 + [9]         
                 p(and) = [1] x1 + [1] x2 + [7]
               p(isNat) = [1] x1 + [0]         
                p(n__0) = [9]                  
            p(n__isNat) = [1] x1 + [0]         
             p(n__plus) = [1] x1 + [1] x2 + [1]
                p(n__s) = [1] x1 + [0]         
                p(plus) = [1] x1 + [1] x2 + [3]
                   p(s) = [1] x1 + [0]         
                  p(tt) = [0]                  
          
          Following rules are strictly oriented:
                    activate(X) = [1] X + [9]          
                                > [1] X + [0]          
                                = X                    
          
               activate(n__0()) = [18]                 
                                > [0]                  
                                = 0()                  
          
          activate(n__isNat(X)) = [1] X + [9]          
                                > [1] X + [0]          
                                = isNat(X)             
          
                  isNat(n__0()) = [9]                  
                                > [0]                  
                                = tt()                 
          
                    plus(X1,X2) = [1] X1 + [1] X2 + [3]
                                > [1] X1 + [1] X2 + [1]
                                = n__plus(X1,X2)       
          
          
          Following rules are (at-least) weakly oriented:
                               0() =  [0]                                            
                                   >= [9]                                            
                                   =  n__0()                                         
          
                       U11(tt(),N) =  [1] N + [0]                                    
                                   >= [1] N + [9]                                    
                                   =  activate(N)                                    
          
                     U21(tt(),M,N) =  [1] M + [1] N + [0]                            
                                   >= [1] M + [1] N + [21]                           
                                   =  s(plus(activate(N),activate(M)))               
          
          activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [10]                         
                                   >= [1] X1 + [1] X2 + [21]                         
                                   =  plus(activate(X1),activate(X2))                
          
                 activate(n__s(X)) =  [1] X + [9]                                    
                                   >= [1] X + [9]                                    
                                   =  s(activate(X))                                 
          
                       and(tt(),X) =  [1] X + [7]                                    
                                   >= [1] X + [9]                                    
                                   =  activate(X)                                    
          
                          isNat(X) =  [1] X + [0]                                    
                                   >= [1] X + [0]                                    
                                   =  n__isNat(X)                                    
          
             isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [1]                          
                                   >= [1] V1 + [1] V2 + [25]                         
                                   =  and(isNat(activate(V1)),n__isNat(activate(V2)))
          
                   isNat(n__s(V1)) =  [1] V1 + [0]                                   
                                   >= [1] V1 + [9]                                   
                                   =  isNat(activate(V1))                            
          
                              s(X) =  [1] X + [0]                                    
                                   >= [1] X + [0]                                    
                                   =  n__s(X)                                        
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:3: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            and(tt(),X) -> activate(X)
            isNat(X) -> n__isNat(X)
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            isNat(n__s(V1)) -> isNat(activate(V1))
            s(X) -> n__s(X)
        - Weak TRS:
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            isNat(n__0()) -> tt()
            plus(X1,X2) -> n__plus(X1,X2)
        - Signature:
            {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,activate,and,isNat,plus
            ,s} and constructors {n__0,n__isNat,n__plus,n__s,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(isNat) = {1},
            uargs(n__isNat) = {1},
            uargs(plus) = {1,2},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [1]                  
                 p(U11) = [1] x1 + [9] x2 + [9]
                 p(U21) = [9] x2 + [3] x3 + [2]
            p(activate) = [1] x1 + [2]         
                 p(and) = [1] x1 + [1] x2 + [2]
               p(isNat) = [1] x1 + [2]         
                p(n__0) = [9]                  
            p(n__isNat) = [1] x1 + [14]        
             p(n__plus) = [1] x1 + [1] x2 + [1]
                p(n__s) = [1] x1 + [10]        
                p(plus) = [1] x1 + [1] x2 + [1]
                   p(s) = [1] x1 + [2]         
                  p(tt) = [8]                  
          
          Following rules are strictly oriented:
                U11(tt(),N) = [9] N + [17]       
                            > [1] N + [2]        
                            = activate(N)        
          
          activate(n__s(X)) = [1] X + [12]       
                            > [1] X + [4]        
                            = s(activate(X))     
          
                and(tt(),X) = [1] X + [10]       
                            > [1] X + [2]        
                            = activate(X)        
          
            isNat(n__s(V1)) = [1] V1 + [12]      
                            > [1] V1 + [4]       
                            = isNat(activate(V1))
          
          
          Following rules are (at-least) weakly oriented:
                               0() =  [1]                                            
                                   >= [9]                                            
                                   =  n__0()                                         
          
                     U21(tt(),M,N) =  [9] M + [3] N + [2]                            
                                   >= [1] M + [1] N + [7]                            
                                   =  s(plus(activate(N),activate(M)))               
          
                       activate(X) =  [1] X + [2]                                    
                                   >= [1] X + [0]                                    
                                   =  X                                              
          
                  activate(n__0()) =  [11]                                           
                                   >= [1]                                            
                                   =  0()                                            
          
             activate(n__isNat(X)) =  [1] X + [16]                                   
                                   >= [1] X + [2]                                    
                                   =  isNat(X)                                       
          
          activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [3]                          
                                   >= [1] X1 + [1] X2 + [5]                          
                                   =  plus(activate(X1),activate(X2))                
          
                          isNat(X) =  [1] X + [2]                                    
                                   >= [1] X + [14]                                   
                                   =  n__isNat(X)                                    
          
                     isNat(n__0()) =  [11]                                           
                                   >= [8]                                            
                                   =  tt()                                           
          
             isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [3]                          
                                   >= [1] V1 + [1] V2 + [22]                         
                                   =  and(isNat(activate(V1)),n__isNat(activate(V2)))
          
                       plus(X1,X2) =  [1] X1 + [1] X2 + [1]                          
                                   >= [1] X1 + [1] X2 + [1]                          
                                   =  n__plus(X1,X2)                                 
          
                              s(X) =  [1] X + [2]                                    
                                   >= [1] X + [10]                                   
                                   =  n__s(X)                                        
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:4: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            isNat(X) -> n__isNat(X)
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            s(X) -> n__s(X)
        - Weak TRS:
            U11(tt(),N) -> activate(N)
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__s(X)) -> s(activate(X))
            and(tt(),X) -> activate(X)
            isNat(n__0()) -> tt()
            isNat(n__s(V1)) -> isNat(activate(V1))
            plus(X1,X2) -> n__plus(X1,X2)
        - Signature:
            {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,activate,and,isNat,plus
            ,s} and constructors {n__0,n__isNat,n__plus,n__s,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(isNat) = {1},
            uargs(n__isNat) = {1},
            uargs(plus) = {1,2},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
                 p(U11) = [8] x2 + [0]         
                 p(U21) = [1] x2 + [8] x3 + [9]
            p(activate) = [1] x1 + [0]         
                 p(and) = [1] x1 + [1] x2 + [4]
               p(isNat) = [1] x1 + [0]         
                p(n__0) = [3]                  
            p(n__isNat) = [1] x1 + [4]         
             p(n__plus) = [1] x1 + [1] x2 + [0]
                p(n__s) = [1] x1 + [1]         
                p(plus) = [1] x1 + [1] x2 + [3]
                   p(s) = [1] x1 + [0]         
                  p(tt) = [1]                  
          
          Following rules are strictly oriented:
          U21(tt(),M,N) = [1] M + [8] N + [9]             
                        > [1] M + [1] N + [3]             
                        = s(plus(activate(N),activate(M)))
          
          
          Following rules are (at-least) weakly oriented:
                               0() =  [0]                                            
                                   >= [3]                                            
                                   =  n__0()                                         
          
                       U11(tt(),N) =  [8] N + [0]                                    
                                   >= [1] N + [0]                                    
                                   =  activate(N)                                    
          
                       activate(X) =  [1] X + [0]                                    
                                   >= [1] X + [0]                                    
                                   =  X                                              
          
                  activate(n__0()) =  [3]                                            
                                   >= [0]                                            
                                   =  0()                                            
          
             activate(n__isNat(X)) =  [1] X + [4]                                    
                                   >= [1] X + [0]                                    
                                   =  isNat(X)                                       
          
          activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]                          
                                   >= [1] X1 + [1] X2 + [3]                          
                                   =  plus(activate(X1),activate(X2))                
          
                 activate(n__s(X)) =  [1] X + [1]                                    
                                   >= [1] X + [0]                                    
                                   =  s(activate(X))                                 
          
                       and(tt(),X) =  [1] X + [5]                                    
                                   >= [1] X + [0]                                    
                                   =  activate(X)                                    
          
                          isNat(X) =  [1] X + [0]                                    
                                   >= [1] X + [4]                                    
                                   =  n__isNat(X)                                    
          
                     isNat(n__0()) =  [3]                                            
                                   >= [1]                                            
                                   =  tt()                                           
          
             isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [0]                          
                                   >= [1] V1 + [1] V2 + [8]                          
                                   =  and(isNat(activate(V1)),n__isNat(activate(V2)))
          
                   isNat(n__s(V1)) =  [1] V1 + [1]                                   
                                   >= [1] V1 + [0]                                   
                                   =  isNat(activate(V1))                            
          
                       plus(X1,X2) =  [1] X1 + [1] X2 + [3]                          
                                   >= [1] X1 + [1] X2 + [0]                          
                                   =  n__plus(X1,X2)                                 
          
                              s(X) =  [1] X + [0]                                    
                                   >= [1] X + [1]                                    
                                   =  n__s(X)                                        
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:5: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            isNat(X) -> n__isNat(X)
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            s(X) -> n__s(X)
        - Weak TRS:
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__s(X)) -> s(activate(X))
            and(tt(),X) -> activate(X)
            isNat(n__0()) -> tt()
            isNat(n__s(V1)) -> isNat(activate(V1))
            plus(X1,X2) -> n__plus(X1,X2)
        - Signature:
            {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,activate,and,isNat,plus
            ,s} and constructors {n__0,n__isNat,n__plus,n__s,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(isNat) = {1},
            uargs(n__isNat) = {1},
            uargs(plus) = {1,2},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                           
                 p(U11) = [4] x2 + [2]                  
                 p(U21) = [1] x1 + [1] x2 + [3] x3 + [1]
            p(activate) = [1] x1 + [0]                  
                 p(and) = [1] x1 + [1] x2 + [0]         
               p(isNat) = [1] x1 + [0]                  
                p(n__0) = [3]                           
            p(n__isNat) = [1] x1 + [0]                  
             p(n__plus) = [1] x1 + [1] x2 + [1]         
                p(n__s) = [1] x1 + [0]                  
                p(plus) = [1] x1 + [1] x2 + [1]         
                   p(s) = [1] x1 + [0]                  
                  p(tt) = [0]                           
          
          Following rules are strictly oriented:
          isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [1]                          
                                > [1] V1 + [1] V2 + [0]                          
                                = and(isNat(activate(V1)),n__isNat(activate(V2)))
          
          
          Following rules are (at-least) weakly oriented:
                               0() =  [0]                             
                                   >= [3]                             
                                   =  n__0()                          
          
                       U11(tt(),N) =  [4] N + [2]                     
                                   >= [1] N + [0]                     
                                   =  activate(N)                     
          
                     U21(tt(),M,N) =  [1] M + [3] N + [1]             
                                   >= [1] M + [1] N + [1]             
                                   =  s(plus(activate(N),activate(M)))
          
                       activate(X) =  [1] X + [0]                     
                                   >= [1] X + [0]                     
                                   =  X                               
          
                  activate(n__0()) =  [3]                             
                                   >= [0]                             
                                   =  0()                             
          
             activate(n__isNat(X)) =  [1] X + [0]                     
                                   >= [1] X + [0]                     
                                   =  isNat(X)                        
          
          activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [1]           
                                   >= [1] X1 + [1] X2 + [1]           
                                   =  plus(activate(X1),activate(X2)) 
          
                 activate(n__s(X)) =  [1] X + [0]                     
                                   >= [1] X + [0]                     
                                   =  s(activate(X))                  
          
                       and(tt(),X) =  [1] X + [0]                     
                                   >= [1] X + [0]                     
                                   =  activate(X)                     
          
                          isNat(X) =  [1] X + [0]                     
                                   >= [1] X + [0]                     
                                   =  n__isNat(X)                     
          
                     isNat(n__0()) =  [3]                             
                                   >= [0]                             
                                   =  tt()                            
          
                   isNat(n__s(V1)) =  [1] V1 + [0]                    
                                   >= [1] V1 + [0]                    
                                   =  isNat(activate(V1))             
          
                       plus(X1,X2) =  [1] X1 + [1] X2 + [1]           
                                   >= [1] X1 + [1] X2 + [1]           
                                   =  n__plus(X1,X2)                  
          
                              s(X) =  [1] X + [0]                     
                                   >= [1] X + [0]                     
                                   =  n__s(X)                         
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:6: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            isNat(X) -> n__isNat(X)
            s(X) -> n__s(X)
        - Weak TRS:
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__s(X)) -> s(activate(X))
            and(tt(),X) -> activate(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            isNat(n__s(V1)) -> isNat(activate(V1))
            plus(X1,X2) -> n__plus(X1,X2)
        - Signature:
            {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,activate,and,isNat,plus
            ,s} and constructors {n__0,n__isNat,n__plus,n__s,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(isNat) = {1},
            uargs(n__isNat) = {1},
            uargs(plus) = {1,2},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [3]                           
                 p(U11) = [5] x2 + [4]                  
                 p(U21) = [5] x1 + [1] x2 + [4] x3 + [0]
            p(activate) = [1] x1 + [2]                  
                 p(and) = [1] x1 + [1] x2 + [0]         
               p(isNat) = [1] x1 + [1]                  
                p(n__0) = [2]                           
            p(n__isNat) = [1] x1 + [0]                  
             p(n__plus) = [1] x1 + [1] x2 + [7]         
                p(n__s) = [1] x1 + [4]                  
                p(plus) = [1] x1 + [1] x2 + [7]         
                   p(s) = [1] x1 + [0]                  
                  p(tt) = [3]                           
          
          Following rules are strictly oriented:
               0() = [3]        
                   > [2]        
                   = n__0()     
          
          isNat(X) = [1] X + [1]
                   > [1] X + [0]
                   = n__isNat(X)
          
          
          Following rules are (at-least) weakly oriented:
                       U11(tt(),N) =  [5] N + [4]                                    
                                   >= [1] N + [2]                                    
                                   =  activate(N)                                    
          
                     U21(tt(),M,N) =  [1] M + [4] N + [15]                           
                                   >= [1] M + [1] N + [11]                           
                                   =  s(plus(activate(N),activate(M)))               
          
                       activate(X) =  [1] X + [2]                                    
                                   >= [1] X + [0]                                    
                                   =  X                                              
          
                  activate(n__0()) =  [4]                                            
                                   >= [3]                                            
                                   =  0()                                            
          
             activate(n__isNat(X)) =  [1] X + [2]                                    
                                   >= [1] X + [1]                                    
                                   =  isNat(X)                                       
          
          activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [9]                          
                                   >= [1] X1 + [1] X2 + [11]                         
                                   =  plus(activate(X1),activate(X2))                
          
                 activate(n__s(X)) =  [1] X + [6]                                    
                                   >= [1] X + [2]                                    
                                   =  s(activate(X))                                 
          
                       and(tt(),X) =  [1] X + [3]                                    
                                   >= [1] X + [2]                                    
                                   =  activate(X)                                    
          
                     isNat(n__0()) =  [3]                                            
                                   >= [3]                                            
                                   =  tt()                                           
          
             isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [8]                          
                                   >= [1] V1 + [1] V2 + [5]                          
                                   =  and(isNat(activate(V1)),n__isNat(activate(V2)))
          
                   isNat(n__s(V1)) =  [1] V1 + [5]                                   
                                   >= [1] V1 + [3]                                   
                                   =  isNat(activate(V1))                            
          
                       plus(X1,X2) =  [1] X1 + [1] X2 + [7]                          
                                   >= [1] X1 + [1] X2 + [7]                          
                                   =  n__plus(X1,X2)                                 
          
                              s(X) =  [1] X + [0]                                    
                                   >= [1] X + [4]                                    
                                   =  n__s(X)                                        
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:7: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            s(X) -> n__s(X)
        - Weak TRS:
            0() -> n__0()
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__s(X)) -> s(activate(X))
            and(tt(),X) -> activate(X)
            isNat(X) -> n__isNat(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            isNat(n__s(V1)) -> isNat(activate(V1))
            plus(X1,X2) -> n__plus(X1,X2)
        - Signature:
            {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,activate,and,isNat,plus
            ,s} and constructors {n__0,n__isNat,n__plus,n__s,tt}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isNat) = {1},
          uargs(n__isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {0,U11,U21,activate,and,isNat,plus,s}
        TcT has computed the following interpretation:
                 p(0) = [0]                                    
                        [0]                                    
               p(U11) = [0 0] x_1 + [2 1] x_2 + [5]            
                        [1 0]       [0 1]       [0]            
               p(U21) = [0 6] x_1 + [4 3] x_2 + [1 7] x_3 + [0]
                        [1 0]       [0 4]       [4 4]       [4]
          p(activate) = [1 1] x_1 + [0]                        
                        [0 1]       [0]                        
               p(and) = [1 4] x_1 + [1 1] x_2 + [2]            
                        [0 0]       [0 1]       [0]            
             p(isNat) = [1 4] x_1 + [0]                        
                        [0 0]       [2]                        
              p(n__0) = [0]                                    
                        [0]                                    
          p(n__isNat) = [1 4] x_1 + [0]                        
                        [0 0]       [2]                        
           p(n__plus) = [1 4] x_1 + [1 1] x_2 + [4]            
                        [0 1]       [0 1]       [2]            
              p(n__s) = [1 1] x_1 + [0]                        
                        [0 1]       [0]                        
              p(plus) = [1 4] x_1 + [1 1] x_2 + [5]            
                        [0 1]       [0 1]       [2]            
                 p(s) = [1 1] x_1 + [0]                        
                        [0 1]       [0]                        
                p(tt) = [0]                                    
                        [2]                                    
        
        Following rules are strictly oriented:
        activate(n__plus(X1,X2)) = [1 5] X1 + [1 2] X2 + [6]      
                                   [0 1]      [0 1]      [2]      
                                 > [1 5] X1 + [1 2] X2 + [5]      
                                   [0 1]      [0 1]      [2]      
                                 = plus(activate(X1),activate(X2))
        
        
        Following rules are (at-least) weakly oriented:
                          0() =  [0]                                            
                                 [0]                                            
                              >= [0]                                            
                                 [0]                                            
                              =  n__0()                                         
        
                  U11(tt(),N) =  [2 1] N + [5]                                  
                                 [0 1]     [0]                                  
                              >= [1 1] N + [0]                                  
                                 [0 1]     [0]                                  
                              =  activate(N)                                    
        
                U21(tt(),M,N) =  [4 3] M + [1 7] N + [12]                       
                                 [0 4]     [4 4]     [4]                        
                              >= [1 3] M + [1 6] N + [7]                        
                                 [0 1]     [0 1]     [2]                        
                              =  s(plus(activate(N),activate(M)))               
        
                  activate(X) =  [1 1] X + [0]                                  
                                 [0 1]     [0]                                  
                              >= [1 0] X + [0]                                  
                                 [0 1]     [0]                                  
                              =  X                                              
        
             activate(n__0()) =  [0]                                            
                                 [0]                                            
                              >= [0]                                            
                                 [0]                                            
                              =  0()                                            
        
        activate(n__isNat(X)) =  [1 4] X + [2]                                  
                                 [0 0]     [2]                                  
                              >= [1 4] X + [0]                                  
                                 [0 0]     [2]                                  
                              =  isNat(X)                                       
        
            activate(n__s(X)) =  [1 2] X + [0]                                  
                                 [0 1]     [0]                                  
                              >= [1 2] X + [0]                                  
                                 [0 1]     [0]                                  
                              =  s(activate(X))                                 
        
                  and(tt(),X) =  [1 1] X + [10]                                 
                                 [0 1]     [0]                                  
                              >= [1 1] X + [0]                                  
                                 [0 1]     [0]                                  
                              =  activate(X)                                    
        
                     isNat(X) =  [1 4] X + [0]                                  
                                 [0 0]     [2]                                  
                              >= [1 4] X + [0]                                  
                                 [0 0]     [2]                                  
                              =  n__isNat(X)                                    
        
                isNat(n__0()) =  [0]                                            
                                 [2]                                            
                              >= [0]                                            
                                 [2]                                            
                              =  tt()                                           
        
        isNat(n__plus(V1,V2)) =  [1 8] V1 + [1 5] V2 + [12]                     
                                 [0 0]      [0 0]      [2]                      
                              >= [1 5] V1 + [1 5] V2 + [12]                     
                                 [0 0]      [0 0]      [2]                      
                              =  and(isNat(activate(V1)),n__isNat(activate(V2)))
        
              isNat(n__s(V1)) =  [1 5] V1 + [0]                                 
                                 [0 0]      [2]                                 
                              >= [1 5] V1 + [0]                                 
                                 [0 0]      [2]                                 
                              =  isNat(activate(V1))                            
        
                  plus(X1,X2) =  [1 4] X1 + [1 1] X2 + [5]                      
                                 [0 1]      [0 1]      [2]                      
                              >= [1 4] X1 + [1 1] X2 + [4]                      
                                 [0 1]      [0 1]      [2]                      
                              =  n__plus(X1,X2)                                 
        
                         s(X) =  [1 1] X + [0]                                  
                                 [0 1]     [0]                                  
                              >= [1 1] X + [0]                                  
                                 [0 1]     [0]                                  
                              =  n__s(X)                                        
        
** Step 1.b:8: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            s(X) -> n__s(X)
        - Weak TRS:
            0() -> n__0()
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            and(tt(),X) -> activate(X)
            isNat(X) -> n__isNat(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            isNat(n__s(V1)) -> isNat(activate(V1))
            plus(X1,X2) -> n__plus(X1,X2)
        - Signature:
            {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,activate,and,isNat,plus
            ,s} and constructors {n__0,n__isNat,n__plus,n__s,tt}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isNat) = {1},
          uargs(n__isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {0,U11,U21,activate,and,isNat,plus,s}
        TcT has computed the following interpretation:
                 p(0) = [6]                                    
                        [1]                                    
               p(U11) = [2 1] x_1 + [1 2] x_2 + [1]            
                        [0 4]       [4 1]       [3]            
               p(U21) = [4 0] x_1 + [4 6] x_2 + [4 4] x_3 + [6]
                        [7 0]       [0 4]       [0 4]       [0]
          p(activate) = [1 1] x_1 + [0]                        
                        [0 1]       [0]                        
               p(and) = [1 4] x_1 + [1 4] x_2 + [3]            
                        [0 1]       [0 1]       [0]            
             p(isNat) = [1 0] x_1 + [0]                        
                        [0 0]       [0]                        
              p(n__0) = [5]                                    
                        [1]                                    
          p(n__isNat) = [1 0] x_1 + [0]                        
                        [0 0]       [0]                        
           p(n__plus) = [1 1] x_1 + [1 1] x_2 + [3]            
                        [0 1]       [0 1]       [0]            
              p(n__s) = [1 2] x_1 + [0]                        
                        [0 1]       [1]                        
              p(plus) = [1 1] x_1 + [1 1] x_2 + [3]            
                        [0 1]       [0 1]       [0]            
                 p(s) = [1 2] x_1 + [1]                        
                        [0 1]       [1]                        
                p(tt) = [2]                                    
                        [0]                                    
        
        Following rules are strictly oriented:
        s(X) = [1 2] X + [1]
               [0 1]     [1]
             > [1 2] X + [0]
               [0 1]     [1]
             = n__s(X)      
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [6]                                            
                                    [1]                                            
                                 >= [5]                                            
                                    [1]                                            
                                 =  n__0()                                         
        
                     U11(tt(),N) =  [1 2] N + [5]                                  
                                    [4 1]     [3]                                  
                                 >= [1 1] N + [0]                                  
                                    [0 1]     [0]                                  
                                 =  activate(N)                                    
        
                   U21(tt(),M,N) =  [4 6] M + [4 4] N + [14]                       
                                    [0 4]     [0 4]     [14]                       
                                 >= [1 4] M + [1 4] N + [4]                        
                                    [0 1]     [0 1]     [1]                        
                                 =  s(plus(activate(N),activate(M)))               
        
                     activate(X) =  [1 1] X + [0]                                  
                                    [0 1]     [0]                                  
                                 >= [1 0] X + [0]                                  
                                    [0 1]     [0]                                  
                                 =  X                                              
        
                activate(n__0()) =  [6]                                            
                                    [1]                                            
                                 >= [6]                                            
                                    [1]                                            
                                 =  0()                                            
        
           activate(n__isNat(X)) =  [1 0] X + [0]                                  
                                    [0 0]     [0]                                  
                                 >= [1 0] X + [0]                                  
                                    [0 0]     [0]                                  
                                 =  isNat(X)                                       
        
        activate(n__plus(X1,X2)) =  [1 2] X1 + [1 2] X2 + [3]                      
                                    [0 1]      [0 1]      [0]                      
                                 >= [1 2] X1 + [1 2] X2 + [3]                      
                                    [0 1]      [0 1]      [0]                      
                                 =  plus(activate(X1),activate(X2))                
        
               activate(n__s(X)) =  [1 3] X + [1]                                  
                                    [0 1]     [1]                                  
                                 >= [1 3] X + [1]                                  
                                    [0 1]     [1]                                  
                                 =  s(activate(X))                                 
        
                     and(tt(),X) =  [1 4] X + [5]                                  
                                    [0 1]     [0]                                  
                                 >= [1 1] X + [0]                                  
                                    [0 1]     [0]                                  
                                 =  activate(X)                                    
        
                        isNat(X) =  [1 0] X + [0]                                  
                                    [0 0]     [0]                                  
                                 >= [1 0] X + [0]                                  
                                    [0 0]     [0]                                  
                                 =  n__isNat(X)                                    
        
                   isNat(n__0()) =  [5]                                            
                                    [0]                                            
                                 >= [2]                                            
                                    [0]                                            
                                 =  tt()                                           
        
           isNat(n__plus(V1,V2)) =  [1 1] V1 + [1 1] V2 + [3]                      
                                    [0 0]      [0 0]      [0]                      
                                 >= [1 1] V1 + [1 1] V2 + [3]                      
                                    [0 0]      [0 0]      [0]                      
                                 =  and(isNat(activate(V1)),n__isNat(activate(V2)))
        
                 isNat(n__s(V1)) =  [1 2] V1 + [0]                                 
                                    [0 0]      [0]                                 
                                 >= [1 1] V1 + [0]                                 
                                    [0 0]      [0]                                 
                                 =  isNat(activate(V1))                            
        
                     plus(X1,X2) =  [1 1] X1 + [1 1] X2 + [3]                      
                                    [0 1]      [0 1]      [0]                      
                                 >= [1 1] X1 + [1 1] X2 + [3]                      
                                    [0 1]      [0 1]      [0]                      
                                 =  n__plus(X1,X2)                                 
        
** Step 1.b:9: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            0() -> n__0()
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            and(tt(),X) -> activate(X)
            isNat(X) -> n__isNat(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            isNat(n__s(V1)) -> isNat(activate(V1))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/2,U21/3,activate/1,and/2,isNat/1,plus/2,s/1} / {n__0/0,n__isNat/1,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,activate,and,isNat,plus
            ,s} and constructors {n__0,n__isNat,n__plus,n__s,tt}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^2))