* Step 1: Sum WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
0() -> n__0()
U11(tt(),V2) -> U12(isNat(activate(V2)))
U12(tt()) -> tt()
U21(tt()) -> tt()
U31(tt(),N) -> activate(N)
U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
activate(X) -> X
activate(n__0()) -> 0()
activate(n__plus(X1,X2)) -> plus(X1,X2)
activate(n__s(X)) -> s(X)
isNat(n__0()) -> tt()
isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
isNat(n__s(V1)) -> U21(isNat(activate(V1)))
plus(N,0()) -> U31(isNat(N),N)
plus(N,s(M)) -> U41(isNat(M),M,N)
plus(X1,X2) -> n__plus(X1,X2)
s(X) -> n__s(X)
- Signature:
{0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
,s} and constructors {n__0,n__plus,n__s,tt}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: InnermostRuleRemoval WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
0() -> n__0()
U11(tt(),V2) -> U12(isNat(activate(V2)))
U12(tt()) -> tt()
U21(tt()) -> tt()
U31(tt(),N) -> activate(N)
U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
activate(X) -> X
activate(n__0()) -> 0()
activate(n__plus(X1,X2)) -> plus(X1,X2)
activate(n__s(X)) -> s(X)
isNat(n__0()) -> tt()
isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
isNat(n__s(V1)) -> U21(isNat(activate(V1)))
plus(N,0()) -> U31(isNat(N),N)
plus(N,s(M)) -> U41(isNat(M),M,N)
plus(X1,X2) -> n__plus(X1,X2)
s(X) -> n__s(X)
- Signature:
{0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
,s} and constructors {n__0,n__plus,n__s,tt}
+ Applied Processor:
InnermostRuleRemoval
+ Details:
Arguments of following rules are not normal-forms.
plus(N,0()) -> U31(isNat(N),N)
plus(N,s(M)) -> U41(isNat(M),M,N)
All above mentioned rules can be savely removed.
* Step 3: WeightGap WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
0() -> n__0()
U11(tt(),V2) -> U12(isNat(activate(V2)))
U12(tt()) -> tt()
U21(tt()) -> tt()
U31(tt(),N) -> activate(N)
U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
activate(X) -> X
activate(n__0()) -> 0()
activate(n__plus(X1,X2)) -> plus(X1,X2)
activate(n__s(X)) -> s(X)
isNat(n__0()) -> tt()
isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
isNat(n__s(V1)) -> U21(isNat(activate(V1)))
plus(X1,X2) -> n__plus(X1,X2)
s(X) -> n__s(X)
- Signature:
{0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
,s} and constructors {n__0,n__plus,n__s,tt}
+ Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
+ Details:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(U11) = {1,2},
uargs(U12) = {1},
uargs(U21) = {1},
uargs(U42) = {1,2,3},
uargs(isNat) = {1},
uargs(plus) = {1,2},
uargs(s) = {1}
Following symbols are considered usable:
all
TcT has computed the following interpretation:
p(0) = [0]
p(U11) = [1] x1 + [1] x2 + [0]
p(U12) = [1] x1 + [0]
p(U21) = [1] x1 + [0]
p(U31) = [1] x2 + [0]
p(U41) = [1] x2 + [2] x3 + [0]
p(U42) = [1] x1 + [1] x2 + [1] x3 + [9]
p(activate) = [1] x1 + [0]
p(isNat) = [1] x1 + [8]
p(n__0) = [9]
p(n__plus) = [1] x1 + [1] x2 + [0]
p(n__s) = [1] x1 + [0]
p(plus) = [1] x1 + [1] x2 + [5]
p(s) = [1] x1 + [12]
p(tt) = [8]
Following rules are strictly oriented:
activate(n__0()) = [9]
> [0]
= 0()
isNat(n__0()) = [17]
> [8]
= tt()
plus(X1,X2) = [1] X1 + [1] X2 + [5]
> [1] X1 + [1] X2 + [0]
= n__plus(X1,X2)
s(X) = [1] X + [12]
> [1] X + [0]
= n__s(X)
Following rules are (at-least) weakly oriented:
0() = [0]
>= [9]
= n__0()
U11(tt(),V2) = [1] V2 + [8]
>= [1] V2 + [8]
= U12(isNat(activate(V2)))
U12(tt()) = [8]
>= [8]
= tt()
U21(tt()) = [8]
>= [8]
= tt()
U31(tt(),N) = [1] N + [0]
>= [1] N + [0]
= activate(N)
U41(tt(),M,N) = [1] M + [2] N + [0]
>= [1] M + [2] N + [17]
= U42(isNat(activate(N)),activate(M),activate(N))
U42(tt(),M,N) = [1] M + [1] N + [17]
>= [1] M + [1] N + [17]
= s(plus(activate(N),activate(M)))
activate(X) = [1] X + [0]
>= [1] X + [0]
= X
activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [0]
>= [1] X1 + [1] X2 + [5]
= plus(X1,X2)
activate(n__s(X)) = [1] X + [0]
>= [1] X + [12]
= s(X)
isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [8]
>= [1] V1 + [1] V2 + [8]
= U11(isNat(activate(V1)),activate(V2))
isNat(n__s(V1)) = [1] V1 + [8]
>= [1] V1 + [8]
= U21(isNat(activate(V1)))
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 4: WeightGap WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
0() -> n__0()
U11(tt(),V2) -> U12(isNat(activate(V2)))
U12(tt()) -> tt()
U21(tt()) -> tt()
U31(tt(),N) -> activate(N)
U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
activate(X) -> X
activate(n__plus(X1,X2)) -> plus(X1,X2)
activate(n__s(X)) -> s(X)
isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
isNat(n__s(V1)) -> U21(isNat(activate(V1)))
- Weak TRS:
activate(n__0()) -> 0()
isNat(n__0()) -> tt()
plus(X1,X2) -> n__plus(X1,X2)
s(X) -> n__s(X)
- Signature:
{0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
,s} and constructors {n__0,n__plus,n__s,tt}
+ Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
+ Details:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(U11) = {1,2},
uargs(U12) = {1},
uargs(U21) = {1},
uargs(U42) = {1,2,3},
uargs(isNat) = {1},
uargs(plus) = {1,2},
uargs(s) = {1}
Following symbols are considered usable:
all
TcT has computed the following interpretation:
p(0) = [1]
p(U11) = [1] x1 + [1] x2 + [13]
p(U12) = [1] x1 + [0]
p(U21) = [1] x1 + [0]
p(U31) = [1] x2 + [0]
p(U41) = [1] x2 + [2] x3 + [0]
p(U42) = [1] x1 + [1] x2 + [1] x3 + [15]
p(activate) = [1] x1 + [0]
p(isNat) = [1] x1 + [2]
p(n__0) = [1]
p(n__plus) = [1] x1 + [1] x2 + [3]
p(n__s) = [1] x1 + [15]
p(plus) = [1] x1 + [1] x2 + [3]
p(s) = [1] x1 + [15]
p(tt) = [3]
Following rules are strictly oriented:
U11(tt(),V2) = [1] V2 + [16]
> [1] V2 + [2]
= U12(isNat(activate(V2)))
isNat(n__s(V1)) = [1] V1 + [17]
> [1] V1 + [2]
= U21(isNat(activate(V1)))
Following rules are (at-least) weakly oriented:
0() = [1]
>= [1]
= n__0()
U12(tt()) = [3]
>= [3]
= tt()
U21(tt()) = [3]
>= [3]
= tt()
U31(tt(),N) = [1] N + [0]
>= [1] N + [0]
= activate(N)
U41(tt(),M,N) = [1] M + [2] N + [0]
>= [1] M + [2] N + [17]
= U42(isNat(activate(N)),activate(M),activate(N))
U42(tt(),M,N) = [1] M + [1] N + [18]
>= [1] M + [1] N + [18]
= s(plus(activate(N),activate(M)))
activate(X) = [1] X + [0]
>= [1] X + [0]
= X
activate(n__0()) = [1]
>= [1]
= 0()
activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [3]
>= [1] X1 + [1] X2 + [3]
= plus(X1,X2)
activate(n__s(X)) = [1] X + [15]
>= [1] X + [15]
= s(X)
isNat(n__0()) = [3]
>= [3]
= tt()
isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [5]
>= [1] V1 + [1] V2 + [15]
= U11(isNat(activate(V1)),activate(V2))
plus(X1,X2) = [1] X1 + [1] X2 + [3]
>= [1] X1 + [1] X2 + [3]
= n__plus(X1,X2)
s(X) = [1] X + [15]
>= [1] X + [15]
= n__s(X)
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 5: WeightGap WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
0() -> n__0()
U12(tt()) -> tt()
U21(tt()) -> tt()
U31(tt(),N) -> activate(N)
U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
activate(X) -> X
activate(n__plus(X1,X2)) -> plus(X1,X2)
activate(n__s(X)) -> s(X)
isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
- Weak TRS:
U11(tt(),V2) -> U12(isNat(activate(V2)))
activate(n__0()) -> 0()
isNat(n__0()) -> tt()
isNat(n__s(V1)) -> U21(isNat(activate(V1)))
plus(X1,X2) -> n__plus(X1,X2)
s(X) -> n__s(X)
- Signature:
{0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
,s} and constructors {n__0,n__plus,n__s,tt}
+ Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
+ Details:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(U11) = {1,2},
uargs(U12) = {1},
uargs(U21) = {1},
uargs(U42) = {1,2,3},
uargs(isNat) = {1},
uargs(plus) = {1,2},
uargs(s) = {1}
Following symbols are considered usable:
all
TcT has computed the following interpretation:
p(0) = [0]
p(U11) = [1] x1 + [1] x2 + [7]
p(U12) = [1] x1 + [0]
p(U21) = [1] x1 + [1]
p(U31) = [2] x1 + [4] x2 + [0]
p(U41) = [3] x2 + [2] x3 + [0]
p(U42) = [1] x1 + [1] x2 + [1] x3 + [7]
p(activate) = [1] x1 + [0]
p(isNat) = [1] x1 + [2]
p(n__0) = [2]
p(n__plus) = [1] x1 + [1] x2 + [1]
p(n__s) = [1] x1 + [1]
p(plus) = [1] x1 + [1] x2 + [1]
p(s) = [1] x1 + [1]
p(tt) = [4]
Following rules are strictly oriented:
U21(tt()) = [5]
> [4]
= tt()
U31(tt(),N) = [4] N + [8]
> [1] N + [0]
= activate(N)
U42(tt(),M,N) = [1] M + [1] N + [11]
> [1] M + [1] N + [2]
= s(plus(activate(N),activate(M)))
Following rules are (at-least) weakly oriented:
0() = [0]
>= [2]
= n__0()
U11(tt(),V2) = [1] V2 + [11]
>= [1] V2 + [2]
= U12(isNat(activate(V2)))
U12(tt()) = [4]
>= [4]
= tt()
U41(tt(),M,N) = [3] M + [2] N + [0]
>= [1] M + [2] N + [9]
= U42(isNat(activate(N)),activate(M),activate(N))
activate(X) = [1] X + [0]
>= [1] X + [0]
= X
activate(n__0()) = [2]
>= [0]
= 0()
activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [1]
>= [1] X1 + [1] X2 + [1]
= plus(X1,X2)
activate(n__s(X)) = [1] X + [1]
>= [1] X + [1]
= s(X)
isNat(n__0()) = [4]
>= [4]
= tt()
isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [3]
>= [1] V1 + [1] V2 + [9]
= U11(isNat(activate(V1)),activate(V2))
isNat(n__s(V1)) = [1] V1 + [3]
>= [1] V1 + [3]
= U21(isNat(activate(V1)))
plus(X1,X2) = [1] X1 + [1] X2 + [1]
>= [1] X1 + [1] X2 + [1]
= n__plus(X1,X2)
s(X) = [1] X + [1]
>= [1] X + [1]
= n__s(X)
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 6: WeightGap WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
0() -> n__0()
U12(tt()) -> tt()
U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
activate(X) -> X
activate(n__plus(X1,X2)) -> plus(X1,X2)
activate(n__s(X)) -> s(X)
isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
- Weak TRS:
U11(tt(),V2) -> U12(isNat(activate(V2)))
U21(tt()) -> tt()
U31(tt(),N) -> activate(N)
U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
activate(n__0()) -> 0()
isNat(n__0()) -> tt()
isNat(n__s(V1)) -> U21(isNat(activate(V1)))
plus(X1,X2) -> n__plus(X1,X2)
s(X) -> n__s(X)
- Signature:
{0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
,s} and constructors {n__0,n__plus,n__s,tt}
+ Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
+ Details:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(U11) = {1,2},
uargs(U12) = {1},
uargs(U21) = {1},
uargs(U42) = {1,2,3},
uargs(isNat) = {1},
uargs(plus) = {1,2},
uargs(s) = {1}
Following symbols are considered usable:
all
TcT has computed the following interpretation:
p(0) = [0]
p(U11) = [1] x1 + [1] x2 + [0]
p(U12) = [1] x1 + [0]
p(U21) = [1] x1 + [1]
p(U31) = [4] x2 + [4]
p(U41) = [1] x2 + [2] x3 + [2]
p(U42) = [1] x1 + [1] x2 + [1] x3 + [1]
p(activate) = [1] x1 + [0]
p(isNat) = [1] x1 + [0]
p(n__0) = [0]
p(n__plus) = [1] x1 + [1] x2 + [0]
p(n__s) = [1] x1 + [1]
p(plus) = [1] x1 + [1] x2 + [0]
p(s) = [1] x1 + [1]
p(tt) = [0]
Following rules are strictly oriented:
U41(tt(),M,N) = [1] M + [2] N + [2]
> [1] M + [2] N + [1]
= U42(isNat(activate(N)),activate(M),activate(N))
Following rules are (at-least) weakly oriented:
0() = [0]
>= [0]
= n__0()
U11(tt(),V2) = [1] V2 + [0]
>= [1] V2 + [0]
= U12(isNat(activate(V2)))
U12(tt()) = [0]
>= [0]
= tt()
U21(tt()) = [1]
>= [0]
= tt()
U31(tt(),N) = [4] N + [4]
>= [1] N + [0]
= activate(N)
U42(tt(),M,N) = [1] M + [1] N + [1]
>= [1] M + [1] N + [1]
= s(plus(activate(N),activate(M)))
activate(X) = [1] X + [0]
>= [1] X + [0]
= X
activate(n__0()) = [0]
>= [0]
= 0()
activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [0]
>= [1] X1 + [1] X2 + [0]
= plus(X1,X2)
activate(n__s(X)) = [1] X + [1]
>= [1] X + [1]
= s(X)
isNat(n__0()) = [0]
>= [0]
= tt()
isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [0]
>= [1] V1 + [1] V2 + [0]
= U11(isNat(activate(V1)),activate(V2))
isNat(n__s(V1)) = [1] V1 + [1]
>= [1] V1 + [1]
= U21(isNat(activate(V1)))
plus(X1,X2) = [1] X1 + [1] X2 + [0]
>= [1] X1 + [1] X2 + [0]
= n__plus(X1,X2)
s(X) = [1] X + [1]
>= [1] X + [1]
= n__s(X)
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 7: WeightGap WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
0() -> n__0()
U12(tt()) -> tt()
activate(X) -> X
activate(n__plus(X1,X2)) -> plus(X1,X2)
activate(n__s(X)) -> s(X)
isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
- Weak TRS:
U11(tt(),V2) -> U12(isNat(activate(V2)))
U21(tt()) -> tt()
U31(tt(),N) -> activate(N)
U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
activate(n__0()) -> 0()
isNat(n__0()) -> tt()
isNat(n__s(V1)) -> U21(isNat(activate(V1)))
plus(X1,X2) -> n__plus(X1,X2)
s(X) -> n__s(X)
- Signature:
{0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
,s} and constructors {n__0,n__plus,n__s,tt}
+ Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
+ Details:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(U11) = {1,2},
uargs(U12) = {1},
uargs(U21) = {1},
uargs(U42) = {1,2,3},
uargs(isNat) = {1},
uargs(plus) = {1,2},
uargs(s) = {1}
Following symbols are considered usable:
all
TcT has computed the following interpretation:
p(0) = [0]
p(U11) = [1] x1 + [1] x2 + [0]
p(U12) = [1] x1 + [1]
p(U21) = [1] x1 + [0]
p(U31) = [1] x2 + [2]
p(U41) = [2] x2 + [2] x3 + [3]
p(U42) = [1] x1 + [1] x2 + [1] x3 + [3]
p(activate) = [1] x1 + [0]
p(isNat) = [1] x1 + [0]
p(n__0) = [3]
p(n__plus) = [1] x1 + [1] x2 + [0]
p(n__s) = [1] x1 + [1]
p(plus) = [1] x1 + [1] x2 + [0]
p(s) = [1] x1 + [1]
p(tt) = [2]
Following rules are strictly oriented:
U12(tt()) = [3]
> [2]
= tt()
Following rules are (at-least) weakly oriented:
0() = [0]
>= [3]
= n__0()
U11(tt(),V2) = [1] V2 + [2]
>= [1] V2 + [1]
= U12(isNat(activate(V2)))
U21(tt()) = [2]
>= [2]
= tt()
U31(tt(),N) = [1] N + [2]
>= [1] N + [0]
= activate(N)
U41(tt(),M,N) = [2] M + [2] N + [3]
>= [1] M + [2] N + [3]
= U42(isNat(activate(N)),activate(M),activate(N))
U42(tt(),M,N) = [1] M + [1] N + [5]
>= [1] M + [1] N + [1]
= s(plus(activate(N),activate(M)))
activate(X) = [1] X + [0]
>= [1] X + [0]
= X
activate(n__0()) = [3]
>= [0]
= 0()
activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [0]
>= [1] X1 + [1] X2 + [0]
= plus(X1,X2)
activate(n__s(X)) = [1] X + [1]
>= [1] X + [1]
= s(X)
isNat(n__0()) = [3]
>= [2]
= tt()
isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [0]
>= [1] V1 + [1] V2 + [0]
= U11(isNat(activate(V1)),activate(V2))
isNat(n__s(V1)) = [1] V1 + [1]
>= [1] V1 + [0]
= U21(isNat(activate(V1)))
plus(X1,X2) = [1] X1 + [1] X2 + [0]
>= [1] X1 + [1] X2 + [0]
= n__plus(X1,X2)
s(X) = [1] X + [1]
>= [1] X + [1]
= n__s(X)
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 8: WeightGap WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
0() -> n__0()
activate(X) -> X
activate(n__plus(X1,X2)) -> plus(X1,X2)
activate(n__s(X)) -> s(X)
isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
- Weak TRS:
U11(tt(),V2) -> U12(isNat(activate(V2)))
U12(tt()) -> tt()
U21(tt()) -> tt()
U31(tt(),N) -> activate(N)
U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
activate(n__0()) -> 0()
isNat(n__0()) -> tt()
isNat(n__s(V1)) -> U21(isNat(activate(V1)))
plus(X1,X2) -> n__plus(X1,X2)
s(X) -> n__s(X)
- Signature:
{0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
,s} and constructors {n__0,n__plus,n__s,tt}
+ Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
+ Details:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(U11) = {1,2},
uargs(U12) = {1},
uargs(U21) = {1},
uargs(U42) = {1,2,3},
uargs(isNat) = {1},
uargs(plus) = {1,2},
uargs(s) = {1}
Following symbols are considered usable:
all
TcT has computed the following interpretation:
p(0) = [0]
p(U11) = [1] x1 + [1] x2 + [0]
p(U12) = [1] x1 + [0]
p(U21) = [1] x1 + [0]
p(U31) = [1] x1 + [4] x2 + [7]
p(U41) = [1] x2 + [4] x3 + [1]
p(U42) = [1] x1 + [1] x2 + [1] x3 + [0]
p(activate) = [1] x1 + [0]
p(isNat) = [1] x1 + [0]
p(n__0) = [5]
p(n__plus) = [1] x1 + [1] x2 + [1]
p(n__s) = [1] x1 + [0]
p(plus) = [1] x1 + [1] x2 + [1]
p(s) = [1] x1 + [0]
p(tt) = [1]
Following rules are strictly oriented:
isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [1]
> [1] V1 + [1] V2 + [0]
= U11(isNat(activate(V1)),activate(V2))
Following rules are (at-least) weakly oriented:
0() = [0]
>= [5]
= n__0()
U11(tt(),V2) = [1] V2 + [1]
>= [1] V2 + [0]
= U12(isNat(activate(V2)))
U12(tt()) = [1]
>= [1]
= tt()
U21(tt()) = [1]
>= [1]
= tt()
U31(tt(),N) = [4] N + [8]
>= [1] N + [0]
= activate(N)
U41(tt(),M,N) = [1] M + [4] N + [1]
>= [1] M + [2] N + [0]
= U42(isNat(activate(N)),activate(M),activate(N))
U42(tt(),M,N) = [1] M + [1] N + [1]
>= [1] M + [1] N + [1]
= s(plus(activate(N),activate(M)))
activate(X) = [1] X + [0]
>= [1] X + [0]
= X
activate(n__0()) = [5]
>= [0]
= 0()
activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [1]
>= [1] X1 + [1] X2 + [1]
= plus(X1,X2)
activate(n__s(X)) = [1] X + [0]
>= [1] X + [0]
= s(X)
isNat(n__0()) = [5]
>= [1]
= tt()
isNat(n__s(V1)) = [1] V1 + [0]
>= [1] V1 + [0]
= U21(isNat(activate(V1)))
plus(X1,X2) = [1] X1 + [1] X2 + [1]
>= [1] X1 + [1] X2 + [1]
= n__plus(X1,X2)
s(X) = [1] X + [0]
>= [1] X + [0]
= n__s(X)
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 9: WeightGap WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
0() -> n__0()
activate(X) -> X
activate(n__plus(X1,X2)) -> plus(X1,X2)
activate(n__s(X)) -> s(X)
- Weak TRS:
U11(tt(),V2) -> U12(isNat(activate(V2)))
U12(tt()) -> tt()
U21(tt()) -> tt()
U31(tt(),N) -> activate(N)
U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
activate(n__0()) -> 0()
isNat(n__0()) -> tt()
isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
isNat(n__s(V1)) -> U21(isNat(activate(V1)))
plus(X1,X2) -> n__plus(X1,X2)
s(X) -> n__s(X)
- Signature:
{0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
,s} and constructors {n__0,n__plus,n__s,tt}
+ Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
+ Details:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(U11) = {1,2},
uargs(U12) = {1},
uargs(U21) = {1},
uargs(U42) = {1,2,3},
uargs(isNat) = {1},
uargs(plus) = {1,2},
uargs(s) = {1}
Following symbols are considered usable:
all
TcT has computed the following interpretation:
p(0) = [0]
p(U11) = [1] x1 + [1] x2 + [0]
p(U12) = [1] x1 + [0]
p(U21) = [1] x1 + [0]
p(U31) = [1] x2 + [1]
p(U41) = [1] x2 + [2] x3 + [7]
p(U42) = [1] x1 + [1] x2 + [1] x3 + [1]
p(activate) = [1] x1 + [1]
p(isNat) = [1] x1 + [3]
p(n__0) = [4]
p(n__plus) = [1] x1 + [1] x2 + [2]
p(n__s) = [1] x1 + [1]
p(plus) = [1] x1 + [1] x2 + [2]
p(s) = [1] x1 + [1]
p(tt) = [4]
Following rules are strictly oriented:
activate(X) = [1] X + [1]
> [1] X + [0]
= X
activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [3]
> [1] X1 + [1] X2 + [2]
= plus(X1,X2)
activate(n__s(X)) = [1] X + [2]
> [1] X + [1]
= s(X)
Following rules are (at-least) weakly oriented:
0() = [0]
>= [4]
= n__0()
U11(tt(),V2) = [1] V2 + [4]
>= [1] V2 + [4]
= U12(isNat(activate(V2)))
U12(tt()) = [4]
>= [4]
= tt()
U21(tt()) = [4]
>= [4]
= tt()
U31(tt(),N) = [1] N + [1]
>= [1] N + [1]
= activate(N)
U41(tt(),M,N) = [1] M + [2] N + [7]
>= [1] M + [2] N + [7]
= U42(isNat(activate(N)),activate(M),activate(N))
U42(tt(),M,N) = [1] M + [1] N + [5]
>= [1] M + [1] N + [5]
= s(plus(activate(N),activate(M)))
activate(n__0()) = [5]
>= [0]
= 0()
isNat(n__0()) = [7]
>= [4]
= tt()
isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [5]
>= [1] V1 + [1] V2 + [5]
= U11(isNat(activate(V1)),activate(V2))
isNat(n__s(V1)) = [1] V1 + [4]
>= [1] V1 + [4]
= U21(isNat(activate(V1)))
plus(X1,X2) = [1] X1 + [1] X2 + [2]
>= [1] X1 + [1] X2 + [2]
= n__plus(X1,X2)
s(X) = [1] X + [1]
>= [1] X + [1]
= n__s(X)
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 10: WeightGap WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
0() -> n__0()
- Weak TRS:
U11(tt(),V2) -> U12(isNat(activate(V2)))
U12(tt()) -> tt()
U21(tt()) -> tt()
U31(tt(),N) -> activate(N)
U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
activate(X) -> X
activate(n__0()) -> 0()
activate(n__plus(X1,X2)) -> plus(X1,X2)
activate(n__s(X)) -> s(X)
isNat(n__0()) -> tt()
isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
isNat(n__s(V1)) -> U21(isNat(activate(V1)))
plus(X1,X2) -> n__plus(X1,X2)
s(X) -> n__s(X)
- Signature:
{0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
,s} and constructors {n__0,n__plus,n__s,tt}
+ Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
+ Details:
The weightgap principle applies using the following nonconstant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(U11) = {1,2},
uargs(U12) = {1},
uargs(U21) = {1},
uargs(U42) = {1,2,3},
uargs(isNat) = {1},
uargs(plus) = {1,2},
uargs(s) = {1}
Following symbols are considered usable:
all
TcT has computed the following interpretation:
p(0) = [4]
p(U11) = [1] x1 + [1] x2 + [1]
p(U12) = [1] x1 + [1]
p(U21) = [1] x1 + [0]
p(U31) = [2] x2 + [2]
p(U41) = [1] x1 + [4] x2 + [4] x3 + [7]
p(U42) = [1] x1 + [1] x2 + [1] x3 + [6]
p(activate) = [1] x1 + [1]
p(isNat) = [1] x1 + [0]
p(n__0) = [3]
p(n__plus) = [1] x1 + [1] x2 + [3]
p(n__s) = [1] x1 + [1]
p(plus) = [1] x1 + [1] x2 + [4]
p(s) = [1] x1 + [1]
p(tt) = [2]
Following rules are strictly oriented:
0() = [4]
> [3]
= n__0()
Following rules are (at-least) weakly oriented:
U11(tt(),V2) = [1] V2 + [3]
>= [1] V2 + [2]
= U12(isNat(activate(V2)))
U12(tt()) = [3]
>= [2]
= tt()
U21(tt()) = [2]
>= [2]
= tt()
U31(tt(),N) = [2] N + [2]
>= [1] N + [1]
= activate(N)
U41(tt(),M,N) = [4] M + [4] N + [9]
>= [1] M + [2] N + [9]
= U42(isNat(activate(N)),activate(M),activate(N))
U42(tt(),M,N) = [1] M + [1] N + [8]
>= [1] M + [1] N + [7]
= s(plus(activate(N),activate(M)))
activate(X) = [1] X + [1]
>= [1] X + [0]
= X
activate(n__0()) = [4]
>= [4]
= 0()
activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [4]
>= [1] X1 + [1] X2 + [4]
= plus(X1,X2)
activate(n__s(X)) = [1] X + [2]
>= [1] X + [1]
= s(X)
isNat(n__0()) = [3]
>= [2]
= tt()
isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [3]
>= [1] V1 + [1] V2 + [3]
= U11(isNat(activate(V1)),activate(V2))
isNat(n__s(V1)) = [1] V1 + [1]
>= [1] V1 + [1]
= U21(isNat(activate(V1)))
plus(X1,X2) = [1] X1 + [1] X2 + [4]
>= [1] X1 + [1] X2 + [3]
= n__plus(X1,X2)
s(X) = [1] X + [1]
>= [1] X + [1]
= n__s(X)
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 11: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Weak TRS:
0() -> n__0()
U11(tt(),V2) -> U12(isNat(activate(V2)))
U12(tt()) -> tt()
U21(tt()) -> tt()
U31(tt(),N) -> activate(N)
U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
activate(X) -> X
activate(n__0()) -> 0()
activate(n__plus(X1,X2)) -> plus(X1,X2)
activate(n__s(X)) -> s(X)
isNat(n__0()) -> tt()
isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
isNat(n__s(V1)) -> U21(isNat(activate(V1)))
plus(X1,X2) -> n__plus(X1,X2)
s(X) -> n__s(X)
- Signature:
{0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
,s} and constructors {n__0,n__plus,n__s,tt}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
WORST_CASE(?,O(n^1))