* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),N) -> activate(N)
            U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
            U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            plus(N,0()) -> U31(isNat(N),N)
            plus(N,s(M)) -> U41(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
            ,s} and constructors {n__0,n__plus,n__s,tt}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),N) -> activate(N)
            U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
            U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            plus(N,0()) -> U31(isNat(N),N)
            plus(N,s(M)) -> U41(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
            ,s} and constructors {n__0,n__plus,n__s,tt}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          activate(x){x -> n__plus(x,y)} =
            activate(n__plus(x,y)) ->^+ plus(activate(x),activate(y))
              = C[activate(x) = activate(x){}]

** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),N) -> activate(N)
            U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
            U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            plus(N,0()) -> U31(isNat(N),N)
            plus(N,s(M)) -> U41(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
            ,s} and constructors {n__0,n__plus,n__s,tt}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          plus(N,0()) -> U31(isNat(N),N)
          plus(N,s(M)) -> U41(isNat(M),M,N)
        All above mentioned rules can be savely removed.
** Step 1.b:2: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),N) -> activate(N)
            U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
            U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
            ,s} and constructors {n__0,n__plus,n__s,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(U11) = {1,2},
            uargs(U12) = {1},
            uargs(U21) = {1},
            uargs(U42) = {1,2,3},
            uargs(isNat) = {1},
            uargs(plus) = {1,2},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                           
                 p(U11) = [1] x1 + [1] x2 + [0]         
                 p(U12) = [1] x1 + [0]                  
                 p(U21) = [1] x1 + [0]                  
                 p(U31) = [1] x2 + [3]                  
                 p(U41) = [1] x2 + [2] x3 + [0]         
                 p(U42) = [1] x1 + [1] x2 + [1] x3 + [9]
            p(activate) = [1] x1 + [0]                  
               p(isNat) = [1] x1 + [8]                  
                p(n__0) = [10]                          
             p(n__plus) = [1] x1 + [1] x2 + [0]         
                p(n__s) = [1] x1 + [0]                  
                p(plus) = [1] x1 + [1] x2 + [0]         
                   p(s) = [1] x1 + [3]                  
                  p(tt) = [0]                           
          
          Following rules are strictly oriented:
               U31(tt(),N) = [1] N + [3]                     
                           > [1] N + [0]                     
                           = activate(N)                     
          
             U42(tt(),M,N) = [1] M + [1] N + [9]             
                           > [1] M + [1] N + [3]             
                           = s(plus(activate(N),activate(M)))
          
          activate(n__0()) = [10]                            
                           > [0]                             
                           = 0()                             
          
             isNat(n__0()) = [18]                            
                           > [0]                             
                           = tt()                            
          
                      s(X) = [1] X + [3]                     
                           > [1] X + [0]                     
                           = n__s(X)                         
          
          
          Following rules are (at-least) weakly oriented:
                               0() =  [0]                                            
                                   >= [10]                                           
                                   =  n__0()                                         
          
                      U11(tt(),V2) =  [1] V2 + [0]                                   
                                   >= [1] V2 + [8]                                   
                                   =  U12(isNat(activate(V2)))                       
          
                         U12(tt()) =  [0]                                            
                                   >= [0]                                            
                                   =  tt()                                           
          
                         U21(tt()) =  [0]                                            
                                   >= [0]                                            
                                   =  tt()                                           
          
                     U41(tt(),M,N) =  [1] M + [2] N + [0]                            
                                   >= [1] M + [2] N + [17]                           
                                   =  U42(isNat(activate(N)),activate(M),activate(N))
          
                       activate(X) =  [1] X + [0]                                    
                                   >= [1] X + [0]                                    
                                   =  X                                              
          
          activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]                          
                                   >= [1] X1 + [1] X2 + [0]                          
                                   =  plus(activate(X1),activate(X2))                
          
                 activate(n__s(X)) =  [1] X + [0]                                    
                                   >= [1] X + [3]                                    
                                   =  s(activate(X))                                 
          
             isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [8]                          
                                   >= [1] V1 + [1] V2 + [8]                          
                                   =  U11(isNat(activate(V1)),activate(V2))          
          
                   isNat(n__s(V1)) =  [1] V1 + [8]                                   
                                   >= [1] V1 + [8]                                   
                                   =  U21(isNat(activate(V1)))                       
          
                       plus(X1,X2) =  [1] X1 + [1] X2 + [0]                          
                                   >= [1] X1 + [1] X2 + [0]                          
                                   =  n__plus(X1,X2)                                 
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:3: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
            activate(X) -> X
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
        - Weak TRS:
            U31(tt(),N) -> activate(N)
            U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(n__0()) -> 0()
            isNat(n__0()) -> tt()
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
            ,s} and constructors {n__0,n__plus,n__s,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(U11) = {1,2},
            uargs(U12) = {1},
            uargs(U21) = {1},
            uargs(U42) = {1,2,3},
            uargs(isNat) = {1},
            uargs(plus) = {1,2},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                           
                 p(U11) = [1] x1 + [1] x2 + [2]         
                 p(U12) = [1] x1 + [0]                  
                 p(U21) = [1] x1 + [0]                  
                 p(U31) = [1] x2 + [0]                  
                 p(U41) = [1] x2 + [2] x3 + [0]         
                 p(U42) = [1] x1 + [1] x2 + [1] x3 + [1]
            p(activate) = [1] x1 + [0]                  
               p(isNat) = [1] x1 + [0]                  
                p(n__0) = [0]                           
             p(n__plus) = [1] x1 + [1] x2 + [4]         
                p(n__s) = [1] x1 + [0]                  
                p(plus) = [1] x1 + [1] x2 + [1]         
                   p(s) = [1] x1 + [0]                  
                  p(tt) = [0]                           
          
          Following rules are strictly oriented:
                      U11(tt(),V2) = [1] V2 + [2]                         
                                   > [1] V2 + [0]                         
                                   = U12(isNat(activate(V2)))             
          
          activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [4]                
                                   > [1] X1 + [1] X2 + [1]                
                                   = plus(activate(X1),activate(X2))      
          
             isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [4]                
                                   > [1] V1 + [1] V2 + [2]                
                                   = U11(isNat(activate(V1)),activate(V2))
          
          
          Following rules are (at-least) weakly oriented:
                        0() =  [0]                                            
                            >= [0]                                            
                            =  n__0()                                         
          
                  U12(tt()) =  [0]                                            
                            >= [0]                                            
                            =  tt()                                           
          
                  U21(tt()) =  [0]                                            
                            >= [0]                                            
                            =  tt()                                           
          
                U31(tt(),N) =  [1] N + [0]                                    
                            >= [1] N + [0]                                    
                            =  activate(N)                                    
          
              U41(tt(),M,N) =  [1] M + [2] N + [0]                            
                            >= [1] M + [2] N + [1]                            
                            =  U42(isNat(activate(N)),activate(M),activate(N))
          
              U42(tt(),M,N) =  [1] M + [1] N + [1]                            
                            >= [1] M + [1] N + [1]                            
                            =  s(plus(activate(N),activate(M)))               
          
                activate(X) =  [1] X + [0]                                    
                            >= [1] X + [0]                                    
                            =  X                                              
          
           activate(n__0()) =  [0]                                            
                            >= [0]                                            
                            =  0()                                            
          
          activate(n__s(X)) =  [1] X + [0]                                    
                            >= [1] X + [0]                                    
                            =  s(activate(X))                                 
          
              isNat(n__0()) =  [0]                                            
                            >= [0]                                            
                            =  tt()                                           
          
            isNat(n__s(V1)) =  [1] V1 + [0]                                   
                            >= [1] V1 + [0]                                   
                            =  U21(isNat(activate(V1)))                       
          
                plus(X1,X2) =  [1] X1 + [1] X2 + [1]                          
                            >= [1] X1 + [1] X2 + [4]                          
                            =  n__plus(X1,X2)                                 
          
                       s(X) =  [1] X + [0]                                    
                            >= [1] X + [0]                                    
                            =  n__s(X)                                        
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:4: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
            activate(X) -> X
            activate(n__s(X)) -> s(activate(X))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
        - Weak TRS:
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U31(tt(),N) -> activate(N)
            U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
            ,s} and constructors {n__0,n__plus,n__s,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(U11) = {1,2},
            uargs(U12) = {1},
            uargs(U21) = {1},
            uargs(U42) = {1,2,3},
            uargs(isNat) = {1},
            uargs(plus) = {1,2},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                           
                 p(U11) = [1] x1 + [1] x2 + [2]         
                 p(U12) = [1] x1 + [2]                  
                 p(U21) = [1] x1 + [0]                  
                 p(U31) = [1] x2 + [0]                  
                 p(U41) = [1] x2 + [2] x3 + [0]         
                 p(U42) = [1] x1 + [1] x2 + [1] x3 + [5]
            p(activate) = [1] x1 + [0]                  
               p(isNat) = [1] x1 + [4]                  
                p(n__0) = [0]                           
             p(n__plus) = [1] x1 + [1] x2 + [2]         
                p(n__s) = [1] x1 + [2]                  
                p(plus) = [1] x1 + [1] x2 + [2]         
                   p(s) = [1] x1 + [7]                  
                  p(tt) = [4]                           
          
          Following rules are strictly oriented:
                U12(tt()) = [6]                     
                          > [4]                     
                          = tt()                    
          
          isNat(n__s(V1)) = [1] V1 + [6]            
                          > [1] V1 + [4]            
                          = U21(isNat(activate(V1)))
          
          
          Following rules are (at-least) weakly oriented:
                               0() =  [0]                                            
                                   >= [0]                                            
                                   =  n__0()                                         
          
                      U11(tt(),V2) =  [1] V2 + [6]                                   
                                   >= [1] V2 + [6]                                   
                                   =  U12(isNat(activate(V2)))                       
          
                         U21(tt()) =  [4]                                            
                                   >= [4]                                            
                                   =  tt()                                           
          
                       U31(tt(),N) =  [1] N + [0]                                    
                                   >= [1] N + [0]                                    
                                   =  activate(N)                                    
          
                     U41(tt(),M,N) =  [1] M + [2] N + [0]                            
                                   >= [1] M + [2] N + [9]                            
                                   =  U42(isNat(activate(N)),activate(M),activate(N))
          
                     U42(tt(),M,N) =  [1] M + [1] N + [9]                            
                                   >= [1] M + [1] N + [9]                            
                                   =  s(plus(activate(N),activate(M)))               
          
                       activate(X) =  [1] X + [0]                                    
                                   >= [1] X + [0]                                    
                                   =  X                                              
          
                  activate(n__0()) =  [0]                                            
                                   >= [0]                                            
                                   =  0()                                            
          
          activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [2]                          
                                   >= [1] X1 + [1] X2 + [2]                          
                                   =  plus(activate(X1),activate(X2))                
          
                 activate(n__s(X)) =  [1] X + [2]                                    
                                   >= [1] X + [7]                                    
                                   =  s(activate(X))                                 
          
                     isNat(n__0()) =  [4]                                            
                                   >= [4]                                            
                                   =  tt()                                           
          
             isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [6]                          
                                   >= [1] V1 + [1] V2 + [6]                          
                                   =  U11(isNat(activate(V1)),activate(V2))          
          
                       plus(X1,X2) =  [1] X1 + [1] X2 + [2]                          
                                   >= [1] X1 + [1] X2 + [2]                          
                                   =  n__plus(X1,X2)                                 
          
                              s(X) =  [1] X + [7]                                    
                                   >= [1] X + [2]                                    
                                   =  n__s(X)                                        
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:5: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U21(tt()) -> tt()
            U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
            activate(X) -> X
            activate(n__s(X)) -> s(activate(X))
            plus(X1,X2) -> n__plus(X1,X2)
        - Weak TRS:
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U31(tt(),N) -> activate(N)
            U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
            ,s} and constructors {n__0,n__plus,n__s,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(U11) = {1,2},
            uargs(U12) = {1},
            uargs(U21) = {1},
            uargs(U42) = {1,2,3},
            uargs(isNat) = {1},
            uargs(plus) = {1,2},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                           
                 p(U11) = [1] x1 + [1] x2 + [5]         
                 p(U12) = [1] x1 + [0]                  
                 p(U21) = [1] x1 + [2]                  
                 p(U31) = [5] x1 + [5] x2 + [4]         
                 p(U41) = [1] x2 + [3] x3 + [0]         
                 p(U42) = [1] x1 + [1] x2 + [1] x3 + [1]
            p(activate) = [1] x1 + [0]                  
               p(isNat) = [1] x1 + [0]                  
                p(n__0) = [1]                           
             p(n__plus) = [1] x1 + [1] x2 + [5]         
                p(n__s) = [1] x1 + [2]                  
                p(plus) = [1] x1 + [1] x2 + [0]         
                   p(s) = [1] x1 + [2]                  
                  p(tt) = [1]                           
          
          Following rules are strictly oriented:
          U21(tt()) = [3] 
                    > [1] 
                    = tt()
          
          
          Following rules are (at-least) weakly oriented:
                               0() =  [0]                                            
                                   >= [1]                                            
                                   =  n__0()                                         
          
                      U11(tt(),V2) =  [1] V2 + [6]                                   
                                   >= [1] V2 + [0]                                   
                                   =  U12(isNat(activate(V2)))                       
          
                         U12(tt()) =  [1]                                            
                                   >= [1]                                            
                                   =  tt()                                           
          
                       U31(tt(),N) =  [5] N + [9]                                    
                                   >= [1] N + [0]                                    
                                   =  activate(N)                                    
          
                     U41(tt(),M,N) =  [1] M + [3] N + [0]                            
                                   >= [1] M + [2] N + [1]                            
                                   =  U42(isNat(activate(N)),activate(M),activate(N))
          
                     U42(tt(),M,N) =  [1] M + [1] N + [2]                            
                                   >= [1] M + [1] N + [2]                            
                                   =  s(plus(activate(N),activate(M)))               
          
                       activate(X) =  [1] X + [0]                                    
                                   >= [1] X + [0]                                    
                                   =  X                                              
          
                  activate(n__0()) =  [1]                                            
                                   >= [0]                                            
                                   =  0()                                            
          
          activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [5]                          
                                   >= [1] X1 + [1] X2 + [0]                          
                                   =  plus(activate(X1),activate(X2))                
          
                 activate(n__s(X)) =  [1] X + [2]                                    
                                   >= [1] X + [2]                                    
                                   =  s(activate(X))                                 
          
                     isNat(n__0()) =  [1]                                            
                                   >= [1]                                            
                                   =  tt()                                           
          
             isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [5]                          
                                   >= [1] V1 + [1] V2 + [5]                          
                                   =  U11(isNat(activate(V1)),activate(V2))          
          
                   isNat(n__s(V1)) =  [1] V1 + [2]                                   
                                   >= [1] V1 + [2]                                   
                                   =  U21(isNat(activate(V1)))                       
          
                       plus(X1,X2) =  [1] X1 + [1] X2 + [0]                          
                                   >= [1] X1 + [1] X2 + [5]                          
                                   =  n__plus(X1,X2)                                 
          
                              s(X) =  [1] X + [2]                                    
                                   >= [1] X + [2]                                    
                                   =  n__s(X)                                        
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:6: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
            activate(X) -> X
            activate(n__s(X)) -> s(activate(X))
            plus(X1,X2) -> n__plus(X1,X2)
        - Weak TRS:
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),N) -> activate(N)
            U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
            ,s} and constructors {n__0,n__plus,n__s,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(U11) = {1,2},
            uargs(U12) = {1},
            uargs(U21) = {1},
            uargs(U42) = {1,2,3},
            uargs(isNat) = {1},
            uargs(plus) = {1,2},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                           
                 p(U11) = [1] x1 + [1] x2 + [0]         
                 p(U12) = [1] x1 + [0]                  
                 p(U21) = [1] x1 + [0]                  
                 p(U31) = [1] x2 + [1]                  
                 p(U41) = [1] x2 + [3] x3 + [5]         
                 p(U42) = [1] x1 + [1] x2 + [1] x3 + [4]
            p(activate) = [1] x1 + [0]                  
               p(isNat) = [1] x1 + [0]                  
                p(n__0) = [0]                           
             p(n__plus) = [1] x1 + [1] x2 + [7]         
                p(n__s) = [1] x1 + [3]                  
                p(plus) = [1] x1 + [1] x2 + [1]         
                   p(s) = [1] x1 + [3]                  
                  p(tt) = [0]                           
          
          Following rules are strictly oriented:
          U41(tt(),M,N) = [1] M + [3] N + [5]                            
                        > [1] M + [2] N + [4]                            
                        = U42(isNat(activate(N)),activate(M),activate(N))
          
          
          Following rules are (at-least) weakly oriented:
                               0() =  [0]                                  
                                   >= [0]                                  
                                   =  n__0()                               
          
                      U11(tt(),V2) =  [1] V2 + [0]                         
                                   >= [1] V2 + [0]                         
                                   =  U12(isNat(activate(V2)))             
          
                         U12(tt()) =  [0]                                  
                                   >= [0]                                  
                                   =  tt()                                 
          
                         U21(tt()) =  [0]                                  
                                   >= [0]                                  
                                   =  tt()                                 
          
                       U31(tt(),N) =  [1] N + [1]                          
                                   >= [1] N + [0]                          
                                   =  activate(N)                          
          
                     U42(tt(),M,N) =  [1] M + [1] N + [4]                  
                                   >= [1] M + [1] N + [4]                  
                                   =  s(plus(activate(N),activate(M)))     
          
                       activate(X) =  [1] X + [0]                          
                                   >= [1] X + [0]                          
                                   =  X                                    
          
                  activate(n__0()) =  [0]                                  
                                   >= [0]                                  
                                   =  0()                                  
          
          activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [7]                
                                   >= [1] X1 + [1] X2 + [1]                
                                   =  plus(activate(X1),activate(X2))      
          
                 activate(n__s(X)) =  [1] X + [3]                          
                                   >= [1] X + [3]                          
                                   =  s(activate(X))                       
          
                     isNat(n__0()) =  [0]                                  
                                   >= [0]                                  
                                   =  tt()                                 
          
             isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [7]                
                                   >= [1] V1 + [1] V2 + [0]                
                                   =  U11(isNat(activate(V1)),activate(V2))
          
                   isNat(n__s(V1)) =  [1] V1 + [3]                         
                                   >= [1] V1 + [0]                         
                                   =  U21(isNat(activate(V1)))             
          
                       plus(X1,X2) =  [1] X1 + [1] X2 + [1]                
                                   >= [1] X1 + [1] X2 + [7]                
                                   =  n__plus(X1,X2)                       
          
                              s(X) =  [1] X + [3]                          
                                   >= [1] X + [3]                          
                                   =  n__s(X)                              
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:7: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__s(X)) -> s(activate(X))
            plus(X1,X2) -> n__plus(X1,X2)
        - Weak TRS:
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),N) -> activate(N)
            U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
            U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
            ,s} and constructors {n__0,n__plus,n__s,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(U11) = {1,2},
            uargs(U12) = {1},
            uargs(U21) = {1},
            uargs(U42) = {1,2,3},
            uargs(isNat) = {1},
            uargs(plus) = {1,2},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [5]                           
                 p(U11) = [1] x1 + [1] x2 + [0]         
                 p(U12) = [1] x1 + [0]                  
                 p(U21) = [1] x1 + [0]                  
                 p(U31) = [1] x1 + [5] x2 + [5]         
                 p(U41) = [2] x1 + [1] x2 + [4] x3 + [0]
                 p(U42) = [1] x1 + [1] x2 + [1] x3 + [5]
            p(activate) = [1] x1 + [1]                  
               p(isNat) = [1] x1 + [0]                  
                p(n__0) = [4]                           
             p(n__plus) = [1] x1 + [1] x2 + [7]         
                p(n__s) = [1] x1 + [1]                  
                p(plus) = [1] x1 + [1] x2 + [5]         
                   p(s) = [1] x1 + [2]                  
                  p(tt) = [4]                           
          
          Following rules are strictly oriented:
                  0() = [5]        
                      > [4]        
                      = n__0()     
          
          activate(X) = [1] X + [1]
                      > [1] X + [0]
                      = X          
          
          
          Following rules are (at-least) weakly oriented:
                      U11(tt(),V2) =  [1] V2 + [4]                                   
                                   >= [1] V2 + [1]                                   
                                   =  U12(isNat(activate(V2)))                       
          
                         U12(tt()) =  [4]                                            
                                   >= [4]                                            
                                   =  tt()                                           
          
                         U21(tt()) =  [4]                                            
                                   >= [4]                                            
                                   =  tt()                                           
          
                       U31(tt(),N) =  [5] N + [9]                                    
                                   >= [1] N + [1]                                    
                                   =  activate(N)                                    
          
                     U41(tt(),M,N) =  [1] M + [4] N + [8]                            
                                   >= [1] M + [2] N + [8]                            
                                   =  U42(isNat(activate(N)),activate(M),activate(N))
          
                     U42(tt(),M,N) =  [1] M + [1] N + [9]                            
                                   >= [1] M + [1] N + [9]                            
                                   =  s(plus(activate(N),activate(M)))               
          
                  activate(n__0()) =  [5]                                            
                                   >= [5]                                            
                                   =  0()                                            
          
          activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [8]                          
                                   >= [1] X1 + [1] X2 + [7]                          
                                   =  plus(activate(X1),activate(X2))                
          
                 activate(n__s(X)) =  [1] X + [2]                                    
                                   >= [1] X + [3]                                    
                                   =  s(activate(X))                                 
          
                     isNat(n__0()) =  [4]                                            
                                   >= [4]                                            
                                   =  tt()                                           
          
             isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [7]                          
                                   >= [1] V1 + [1] V2 + [2]                          
                                   =  U11(isNat(activate(V1)),activate(V2))          
          
                   isNat(n__s(V1)) =  [1] V1 + [1]                                   
                                   >= [1] V1 + [1]                                   
                                   =  U21(isNat(activate(V1)))                       
          
                       plus(X1,X2) =  [1] X1 + [1] X2 + [5]                          
                                   >= [1] X1 + [1] X2 + [7]                          
                                   =  n__plus(X1,X2)                                 
          
                              s(X) =  [1] X + [2]                                    
                                   >= [1] X + [1]                                    
                                   =  n__s(X)                                        
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:8: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            activate(n__s(X)) -> s(activate(X))
            plus(X1,X2) -> n__plus(X1,X2)
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),N) -> activate(N)
            U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
            U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
            ,s} and constructors {n__0,n__plus,n__s,tt}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U42) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}
        TcT has computed the following interpretation:
                 p(0) = [0]                                    
                        [0]                                    
               p(U11) = [1 0] x_1 + [1 1] x_2 + [5]            
                        [0 0]       [0 0]       [0]            
               p(U12) = [1 4] x_1 + [1]                        
                        [0 0]       [0]                        
               p(U21) = [1 0] x_1 + [0]                        
                        [0 1]       [0]                        
               p(U31) = [4 4] x_2 + [2]                        
                        [0 1]       [0]                        
               p(U41) = [3 1] x_1 + [4 5] x_2 + [4 7] x_3 + [1]
                        [1 1]       [2 7]       [3 5]       [2]
               p(U42) = [1 0] x_1 + [1 4] x_2 + [1 5] x_3 + [2]
                        [0 1]       [2 5]       [3 2]       [2]
          p(activate) = [1 1] x_1 + [0]                        
                        [0 1]       [0]                        
             p(isNat) = [1 0] x_1 + [4]                        
                        [0 0]       [1]                        
              p(n__0) = [0]                                    
                        [0]                                    
           p(n__plus) = [1 3] x_1 + [1 2] x_2 + [5]            
                        [0 1]       [0 1]       [0]            
              p(n__s) = [1 1] x_1 + [0]                        
                        [0 1]       [2]                        
              p(plus) = [1 3] x_1 + [1 2] x_2 + [5]            
                        [0 1]       [0 1]       [0]            
                 p(s) = [1 1] x_1 + [0]                        
                        [0 1]       [2]                        
                p(tt) = [4]                                    
                        [0]                                    
        
        Following rules are strictly oriented:
        activate(n__s(X)) = [1 2] X + [2] 
                            [0 1]     [2] 
                          > [1 2] X + [0] 
                            [0 1]     [2] 
                          = s(activate(X))
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                                            
                                    [0]                                            
                                 >= [0]                                            
                                    [0]                                            
                                 =  n__0()                                         
        
                    U11(tt(),V2) =  [1 1] V2 + [9]                                 
                                    [0 0]      [0]                                 
                                 >= [1 1] V2 + [9]                                 
                                    [0 0]      [0]                                 
                                 =  U12(isNat(activate(V2)))                       
        
                       U12(tt()) =  [5]                                            
                                    [0]                                            
                                 >= [4]                                            
                                    [0]                                            
                                 =  tt()                                           
        
                       U21(tt()) =  [4]                                            
                                    [0]                                            
                                 >= [4]                                            
                                    [0]                                            
                                 =  tt()                                           
        
                     U31(tt(),N) =  [4 4] N + [2]                                  
                                    [0 1]     [0]                                  
                                 >= [1 1] N + [0]                                  
                                    [0 1]     [0]                                  
                                 =  activate(N)                                    
        
                   U41(tt(),M,N) =  [4 5] M + [4 7] N + [13]                       
                                    [2 7]     [3 5]     [6]                        
                                 >= [1 5] M + [2 7] N + [6]                        
                                    [2 7]     [3 5]     [3]                        
                                 =  U42(isNat(activate(N)),activate(M),activate(N))
        
                   U42(tt(),M,N) =  [1 4] M + [1 5] N + [6]                        
                                    [2 5]     [3 2]     [2]                        
                                 >= [1 4] M + [1 5] N + [5]                        
                                    [0 1]     [0 1]     [2]                        
                                 =  s(plus(activate(N),activate(M)))               
        
                     activate(X) =  [1 1] X + [0]                                  
                                    [0 1]     [0]                                  
                                 >= [1 0] X + [0]                                  
                                    [0 1]     [0]                                  
                                 =  X                                              
        
                activate(n__0()) =  [0]                                            
                                    [0]                                            
                                 >= [0]                                            
                                    [0]                                            
                                 =  0()                                            
        
        activate(n__plus(X1,X2)) =  [1 4] X1 + [1 3] X2 + [5]                      
                                    [0 1]      [0 1]      [0]                      
                                 >= [1 4] X1 + [1 3] X2 + [5]                      
                                    [0 1]      [0 1]      [0]                      
                                 =  plus(activate(X1),activate(X2))                
        
                   isNat(n__0()) =  [4]                                            
                                    [1]                                            
                                 >= [4]                                            
                                    [0]                                            
                                 =  tt()                                           
        
           isNat(n__plus(V1,V2)) =  [1 3] V1 + [1 2] V2 + [9]                      
                                    [0 0]      [0 0]      [1]                      
                                 >= [1 1] V1 + [1 2] V2 + [9]                      
                                    [0 0]      [0 0]      [0]                      
                                 =  U11(isNat(activate(V1)),activate(V2))          
        
                 isNat(n__s(V1)) =  [1 1] V1 + [4]                                 
                                    [0 0]      [1]                                 
                                 >= [1 1] V1 + [4]                                 
                                    [0 0]      [1]                                 
                                 =  U21(isNat(activate(V1)))                       
        
                     plus(X1,X2) =  [1 3] X1 + [1 2] X2 + [5]                      
                                    [0 1]      [0 1]      [0]                      
                                 >= [1 3] X1 + [1 2] X2 + [5]                      
                                    [0 1]      [0 1]      [0]                      
                                 =  n__plus(X1,X2)                                 
        
                            s(X) =  [1 1] X + [0]                                  
                                    [0 1]     [2]                                  
                                 >= [1 1] X + [0]                                  
                                    [0 1]     [2]                                  
                                 =  n__s(X)                                        
        
** Step 1.b:9: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            plus(X1,X2) -> n__plus(X1,X2)
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),N) -> activate(N)
            U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
            U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
            ,s} and constructors {n__0,n__plus,n__s,tt}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U42) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus,s}
        TcT has computed the following interpretation:
                 p(0) = [5]                                    
                        [5]                                    
               p(U11) = [1 0] x_1 + [2 2] x_2 + [0]            
                        [0 0]       [0 0]       [0]            
               p(U12) = [1 4] x_1 + [2]                        
                        [0 0]       [0]                        
               p(U21) = [1 0] x_1 + [3]                        
                        [0 0]       [0]                        
               p(U31) = [1 4] x_2 + [0]                        
                        [0 1]       [6]                        
               p(U41) = [0 4] x_1 + [1 7] x_2 + [3 7] x_3 + [5]
                        [1 4]       [4 7]       [0 1]       [6]
               p(U42) = [1 0] x_1 + [1 5] x_2 + [1 4] x_3 + [1]
                        [0 0]       [3 4]       [0 1]       [2]
          p(activate) = [1 1] x_1 + [0]                        
                        [0 1]       [0]                        
             p(isNat) = [2 0] x_1 + [4]                        
                        [0 0]       [0]                        
              p(n__0) = [3]                                    
                        [5]                                    
           p(n__plus) = [1 2] x_1 + [1 2] x_2 + [0]            
                        [0 1]       [0 1]       [1]            
              p(n__s) = [1 1] x_1 + [4]                        
                        [0 1]       [1]                        
              p(plus) = [1 2] x_1 + [1 2] x_2 + [1]            
                        [0 1]       [0 1]       [1]            
                 p(s) = [1 1] x_1 + [5]                        
                        [0 1]       [1]                        
                p(tt) = [6]                                    
                        [0]                                    
        
        Following rules are strictly oriented:
        plus(X1,X2) = [1 2] X1 + [1 2] X2 + [1]
                      [0 1]      [0 1]      [1]
                    > [1 2] X1 + [1 2] X2 + [0]
                      [0 1]      [0 1]      [1]
                    = n__plus(X1,X2)           
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [5]                                            
                                    [5]                                            
                                 >= [3]                                            
                                    [5]                                            
                                 =  n__0()                                         
        
                    U11(tt(),V2) =  [2 2] V2 + [6]                                 
                                    [0 0]      [0]                                 
                                 >= [2 2] V2 + [6]                                 
                                    [0 0]      [0]                                 
                                 =  U12(isNat(activate(V2)))                       
        
                       U12(tt()) =  [8]                                            
                                    [0]                                            
                                 >= [6]                                            
                                    [0]                                            
                                 =  tt()                                           
        
                       U21(tt()) =  [9]                                            
                                    [0]                                            
                                 >= [6]                                            
                                    [0]                                            
                                 =  tt()                                           
        
                     U31(tt(),N) =  [1 4] N + [0]                                  
                                    [0 1]     [6]                                  
                                 >= [1 1] N + [0]                                  
                                    [0 1]     [0]                                  
                                 =  activate(N)                                    
        
                   U41(tt(),M,N) =  [1 7] M + [3 7] N + [5]                        
                                    [4 7]     [0 1]     [12]                       
                                 >= [1 6] M + [3 7] N + [5]                        
                                    [3 7]     [0 1]     [2]                        
                                 =  U42(isNat(activate(N)),activate(M),activate(N))
        
                   U42(tt(),M,N) =  [1 5] M + [1 4] N + [7]                        
                                    [3 4]     [0 1]     [2]                        
                                 >= [1 4] M + [1 4] N + [7]                        
                                    [0 1]     [0 1]     [2]                        
                                 =  s(plus(activate(N),activate(M)))               
        
                     activate(X) =  [1 1] X + [0]                                  
                                    [0 1]     [0]                                  
                                 >= [1 0] X + [0]                                  
                                    [0 1]     [0]                                  
                                 =  X                                              
        
                activate(n__0()) =  [8]                                            
                                    [5]                                            
                                 >= [5]                                            
                                    [5]                                            
                                 =  0()                                            
        
        activate(n__plus(X1,X2)) =  [1 3] X1 + [1 3] X2 + [1]                      
                                    [0 1]      [0 1]      [1]                      
                                 >= [1 3] X1 + [1 3] X2 + [1]                      
                                    [0 1]      [0 1]      [1]                      
                                 =  plus(activate(X1),activate(X2))                
        
               activate(n__s(X)) =  [1 2] X + [5]                                  
                                    [0 1]     [1]                                  
                                 >= [1 2] X + [5]                                  
                                    [0 1]     [1]                                  
                                 =  s(activate(X))                                 
        
                   isNat(n__0()) =  [10]                                           
                                    [0]                                            
                                 >= [6]                                            
                                    [0]                                            
                                 =  tt()                                           
        
           isNat(n__plus(V1,V2)) =  [2 4] V1 + [2 4] V2 + [4]                      
                                    [0 0]      [0 0]      [0]                      
                                 >= [2 2] V1 + [2 4] V2 + [4]                      
                                    [0 0]      [0 0]      [0]                      
                                 =  U11(isNat(activate(V1)),activate(V2))          
        
                 isNat(n__s(V1)) =  [2 2] V1 + [12]                                
                                    [0 0]      [0]                                 
                                 >= [2 2] V1 + [7]                                 
                                    [0 0]      [0]                                 
                                 =  U21(isNat(activate(V1)))                       
        
                            s(X) =  [1 1] X + [5]                                  
                                    [0 1]     [1]                                  
                                 >= [1 1] X + [4]                                  
                                    [0 1]     [1]                                  
                                 =  n__s(X)                                        
        
** Step 1.b:10: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),N) -> activate(N)
            U41(tt(),M,N) -> U42(isNat(activate(N)),activate(M),activate(N))
            U42(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U41/3,U42/3,activate/1,isNat/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U41,U42,activate,isNat,plus
            ,s} and constructors {n__0,n__plus,n__s,tt}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^2))