* Step 1: Sum WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U13,U14,U15,U16,U21,U22,U23,U31,U32,U41,U51,U52
            ,U61,U62,U63,U64,activate,isNat,isNatKind,plus,s} and constructors {n__0,n__plus,n__s,tt}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: InnermostRuleRemoval WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(N,0()) -> U51(isNat(N),N)
            plus(N,s(M)) -> U61(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U13,U14,U15,U16,U21,U22,U23,U31,U32,U41,U51,U52
            ,U61,U62,U63,U64,activate,isNat,isNatKind,plus,s} and constructors {n__0,n__plus,n__s,tt}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          plus(N,0()) -> U51(isNat(N),N)
          plus(N,s(M)) -> U61(isNat(M),M,N)
        All above mentioned rules can be savely removed.
* Step 3: DependencyPairs WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1} / {n__0/0,n__plus/2,n__s/1,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U13,U14,U15,U16,U21,U22,U23,U31,U32,U41,U51,U52
            ,U61,U62,U63,U64,activate,isNat,isNatKind,plus,s} and constructors {n__0,n__plus,n__s,tt}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          0#() -> c_1()
          U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                 ,isNatKind#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V1)
                                 ,activate#(V2))
          U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                 ,isNatKind#(activate(V2))
                                 ,activate#(V2)
                                 ,activate#(V1)
                                 ,activate#(V2))
          U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                 ,isNatKind#(activate(V2))
                                 ,activate#(V2)
                                 ,activate#(V1)
                                 ,activate#(V2))
          U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                 ,isNat#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V2))
          U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          U16#(tt()) -> c_7()
          U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                              ,isNatKind#(activate(V1))
                              ,activate#(V1)
                              ,activate#(V1))
          U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
          U23#(tt()) -> c_10()
          U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
          U32#(tt()) -> c_12()
          U41#(tt()) -> c_13()
          U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                              ,isNatKind#(activate(N))
                              ,activate#(N)
                              ,activate#(N))
          U52#(tt(),N) -> c_15(activate#(N))
          U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                ,isNatKind#(activate(M))
                                ,activate#(M)
                                ,activate#(M)
                                ,activate#(N))
          U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                ,isNat#(activate(N))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                ,plus#(activate(N),activate(M))
                                ,activate#(N)
                                ,activate#(M))
          activate#(X) -> c_20()
          activate#(n__0()) -> c_21(0#())
          activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2))
          activate#(n__s(X)) -> c_23(s#(X))
          isNat#(n__0()) -> c_24()
          isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                        ,isNatKind#(activate(V1))
                                        ,activate#(V1)
                                        ,activate#(V1)
                                        ,activate#(V2))
          isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                  ,isNatKind#(activate(V1))
                                  ,activate#(V1)
                                  ,activate#(V1))
          isNatKind#(n__0()) -> c_27()
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2))
          isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
          plus#(X1,X2) -> c_30()
          s#(X) -> c_31()
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 4: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            0#() -> c_1()
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U16#(tt()) -> c_7()
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                ,isNatKind#(activate(V1))
                                ,activate#(V1)
                                ,activate#(V1))
            U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            U23#(tt()) -> c_10()
            U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
            U32#(tt()) -> c_12()
            U41#(tt()) -> c_13()
            U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(N))
            U52#(tt(),N) -> c_15(activate#(N))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                  ,plus#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M))
            activate#(X) -> c_20()
            activate#(n__0()) -> c_21(0#())
            activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2))
            activate#(n__s(X)) -> c_23(s#(X))
            isNat#(n__0()) -> c_24()
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNatKind#(n__0()) -> c_27()
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
            plus#(X1,X2) -> c_30()
            s#(X) -> c_31()
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            U51(tt(),N) -> U52(isNatKind(activate(N)),activate(N))
            U52(tt(),N) -> activate(N)
            U61(tt(),M,N) -> U62(isNatKind(activate(M)),activate(M),activate(N))
            U62(tt(),M,N) -> U63(isNat(activate(N)),activate(M),activate(N))
            U63(tt(),M,N) -> U64(isNatKind(activate(N)),activate(M),activate(N))
            U64(tt(),M,N) -> s(plus(activate(N),activate(M)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/3,c_7/0,c_8/4
            ,c_9/3,c_10/0,c_11/3,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/3,c_30/0,c_31/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V2) -> U32(isNatKind(activate(V2)))
          U32(tt()) -> tt()
          U41(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(X1,X2)
          activate(n__s(X)) -> s(X)
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
          0#() -> c_1()
          U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                 ,isNatKind#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V1)
                                 ,activate#(V2))
          U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                 ,isNatKind#(activate(V2))
                                 ,activate#(V2)
                                 ,activate#(V1)
                                 ,activate#(V2))
          U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                 ,isNatKind#(activate(V2))
                                 ,activate#(V2)
                                 ,activate#(V1)
                                 ,activate#(V2))
          U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                 ,isNat#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V2))
          U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          U16#(tt()) -> c_7()
          U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                              ,isNatKind#(activate(V1))
                              ,activate#(V1)
                              ,activate#(V1))
          U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
          U23#(tt()) -> c_10()
          U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
          U32#(tt()) -> c_12()
          U41#(tt()) -> c_13()
          U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                              ,isNatKind#(activate(N))
                              ,activate#(N)
                              ,activate#(N))
          U52#(tt(),N) -> c_15(activate#(N))
          U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                ,isNatKind#(activate(M))
                                ,activate#(M)
                                ,activate#(M)
                                ,activate#(N))
          U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                ,isNat#(activate(N))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                ,plus#(activate(N),activate(M))
                                ,activate#(N)
                                ,activate#(M))
          activate#(X) -> c_20()
          activate#(n__0()) -> c_21(0#())
          activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2))
          activate#(n__s(X)) -> c_23(s#(X))
          isNat#(n__0()) -> c_24()
          isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                        ,isNatKind#(activate(V1))
                                        ,activate#(V1)
                                        ,activate#(V1)
                                        ,activate#(V2))
          isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                  ,isNatKind#(activate(V1))
                                  ,activate#(V1)
                                  ,activate#(V1))
          isNatKind#(n__0()) -> c_27()
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2))
          isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
          plus#(X1,X2) -> c_30()
          s#(X) -> c_31()
* Step 5: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            0#() -> c_1()
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U16#(tt()) -> c_7()
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                ,isNatKind#(activate(V1))
                                ,activate#(V1)
                                ,activate#(V1))
            U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            U23#(tt()) -> c_10()
            U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
            U32#(tt()) -> c_12()
            U41#(tt()) -> c_13()
            U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(N))
            U52#(tt(),N) -> c_15(activate#(N))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                  ,plus#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M))
            activate#(X) -> c_20()
            activate#(n__0()) -> c_21(0#())
            activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2))
            activate#(n__s(X)) -> c_23(s#(X))
            isNat#(n__0()) -> c_24()
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNatKind#(n__0()) -> c_27()
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
            plus#(X1,X2) -> c_30()
            s#(X) -> c_31()
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/3,c_7/0,c_8/4
            ,c_9/3,c_10/0,c_11/3,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/3,c_30/0,c_31/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,7,10,12,13,20,24,27,30,31}
        by application of
          Pre({1,7,10,12,13,20,24,27,30,31}) = {2,3,4,5,6,8,9,11,14,15,16,17,18,19,21,22,23,25,26,28,29}.
        Here rules are labelled as follows:
          1: 0#() -> c_1()
          2: U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1)
                                    ,activate#(V2))
          3: U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
          4: U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
          5: U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                    ,isNat#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V2))
          6: U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          7: U16#(tt()) -> c_7()
          8: U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                 ,isNatKind#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V1))
          9: U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
          10: U23#(tt()) -> c_10()
          11: U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
          12: U32#(tt()) -> c_12()
          13: U41#(tt()) -> c_13()
          14: U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(N))
          15: U52#(tt(),N) -> c_15(activate#(N))
          16: U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                    ,isNatKind#(activate(M))
                                    ,activate#(M)
                                    ,activate#(M)
                                    ,activate#(N))
          17: U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                    ,isNat#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          18: U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                    ,isNatKind#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          19: U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                    ,plus#(activate(N),activate(M))
                                    ,activate#(N)
                                    ,activate#(M))
          20: activate#(X) -> c_20()
          21: activate#(n__0()) -> c_21(0#())
          22: activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2))
          23: activate#(n__s(X)) -> c_23(s#(X))
          24: isNat#(n__0()) -> c_24()
          25: isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V1)
                                            ,activate#(V2))
          26: isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                      ,isNatKind#(activate(V1))
                                      ,activate#(V1)
                                      ,activate#(V1))
          27: isNatKind#(n__0()) -> c_27()
          28: isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                ,isNatKind#(activate(V1))
                                                ,activate#(V1)
                                                ,activate#(V2))
          29: isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
          30: plus#(X1,X2) -> c_30()
          31: s#(X) -> c_31()
* Step 6: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                ,isNatKind#(activate(V1))
                                ,activate#(V1)
                                ,activate#(V1))
            U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
            U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(N))
            U52#(tt(),N) -> c_15(activate#(N))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                  ,plus#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M))
            activate#(n__0()) -> c_21(0#())
            activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2))
            activate#(n__s(X)) -> c_23(s#(X))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        - Weak DPs:
            0#() -> c_1()
            U16#(tt()) -> c_7()
            U23#(tt()) -> c_10()
            U32#(tt()) -> c_12()
            U41#(tt()) -> c_13()
            activate#(X) -> c_20()
            isNat#(n__0()) -> c_24()
            isNatKind#(n__0()) -> c_27()
            plus#(X1,X2) -> c_30()
            s#(X) -> c_31()
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/3,c_7/0,c_8/4
            ,c_9/3,c_10/0,c_11/3,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/3,c_30/0,c_31/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {15,16,17}
        by application of
          Pre({15,16,17}) = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,18,19,20,21}.
        Here rules are labelled as follows:
          1: U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1)
                                    ,activate#(V2))
          2: U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
          3: U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
          4: U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                    ,isNat#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V2))
          5: U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          6: U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                 ,isNatKind#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V1))
          7: U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
          8: U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
          9: U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                 ,isNatKind#(activate(N))
                                 ,activate#(N)
                                 ,activate#(N))
          10: U52#(tt(),N) -> c_15(activate#(N))
          11: U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                    ,isNatKind#(activate(M))
                                    ,activate#(M)
                                    ,activate#(M)
                                    ,activate#(N))
          12: U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                    ,isNat#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          13: U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                    ,isNatKind#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          14: U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                    ,plus#(activate(N),activate(M))
                                    ,activate#(N)
                                    ,activate#(M))
          15: activate#(n__0()) -> c_21(0#())
          16: activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2))
          17: activate#(n__s(X)) -> c_23(s#(X))
          18: isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V1)
                                            ,activate#(V2))
          19: isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                      ,isNatKind#(activate(V1))
                                      ,activate#(V1)
                                      ,activate#(V1))
          20: isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                ,isNatKind#(activate(V1))
                                                ,activate#(V1)
                                                ,activate#(V2))
          21: isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
          22: 0#() -> c_1()
          23: U16#(tt()) -> c_7()
          24: U23#(tt()) -> c_10()
          25: U32#(tt()) -> c_12()
          26: U41#(tt()) -> c_13()
          27: activate#(X) -> c_20()
          28: isNat#(n__0()) -> c_24()
          29: isNatKind#(n__0()) -> c_27()
          30: plus#(X1,X2) -> c_30()
          31: s#(X) -> c_31()
* Step 7: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                ,isNatKind#(activate(V1))
                                ,activate#(V1)
                                ,activate#(V1))
            U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
            U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(N))
            U52#(tt(),N) -> c_15(activate#(N))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                  ,plus#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        - Weak DPs:
            0#() -> c_1()
            U16#(tt()) -> c_7()
            U23#(tt()) -> c_10()
            U32#(tt()) -> c_12()
            U41#(tt()) -> c_13()
            activate#(X) -> c_20()
            activate#(n__0()) -> c_21(0#())
            activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2))
            activate#(n__s(X)) -> c_23(s#(X))
            isNat#(n__0()) -> c_24()
            isNatKind#(n__0()) -> c_27()
            plus#(X1,X2) -> c_30()
            s#(X) -> c_31()
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/3,c_7/0,c_8/4
            ,c_9/3,c_10/0,c_11/3,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/3,c_30/0,c_31/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {10,14}
        by application of
          Pre({10,14}) = {9,13}.
        Here rules are labelled as follows:
          1: U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1)
                                    ,activate#(V2))
          2: U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
          3: U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
          4: U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                    ,isNat#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V2))
          5: U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          6: U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                 ,isNatKind#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V1))
          7: U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
          8: U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
          9: U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                 ,isNatKind#(activate(N))
                                 ,activate#(N)
                                 ,activate#(N))
          10: U52#(tt(),N) -> c_15(activate#(N))
          11: U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                    ,isNatKind#(activate(M))
                                    ,activate#(M)
                                    ,activate#(M)
                                    ,activate#(N))
          12: U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                    ,isNat#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          13: U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                    ,isNatKind#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          14: U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                    ,plus#(activate(N),activate(M))
                                    ,activate#(N)
                                    ,activate#(M))
          15: isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V1)
                                            ,activate#(V2))
          16: isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                      ,isNatKind#(activate(V1))
                                      ,activate#(V1)
                                      ,activate#(V1))
          17: isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                ,isNatKind#(activate(V1))
                                                ,activate#(V1)
                                                ,activate#(V2))
          18: isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
          19: 0#() -> c_1()
          20: U16#(tt()) -> c_7()
          21: U23#(tt()) -> c_10()
          22: U32#(tt()) -> c_12()
          23: U41#(tt()) -> c_13()
          24: activate#(X) -> c_20()
          25: activate#(n__0()) -> c_21(0#())
          26: activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2))
          27: activate#(n__s(X)) -> c_23(s#(X))
          28: isNat#(n__0()) -> c_24()
          29: isNatKind#(n__0()) -> c_27()
          30: plus#(X1,X2) -> c_30()
          31: s#(X) -> c_31()
* Step 8: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                ,isNatKind#(activate(V1))
                                ,activate#(V1)
                                ,activate#(V1))
            U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
            U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(N))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        - Weak DPs:
            0#() -> c_1()
            U16#(tt()) -> c_7()
            U23#(tt()) -> c_10()
            U32#(tt()) -> c_12()
            U41#(tt()) -> c_13()
            U52#(tt(),N) -> c_15(activate#(N))
            U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                  ,plus#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M))
            activate#(X) -> c_20()
            activate#(n__0()) -> c_21(0#())
            activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2))
            activate#(n__s(X)) -> c_23(s#(X))
            isNat#(n__0()) -> c_24()
            isNatKind#(n__0()) -> c_27()
            plus#(X1,X2) -> c_30()
            s#(X) -> c_31()
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/3,c_7/0,c_8/4
            ,c_9/3,c_10/0,c_11/3,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/3,c_30/0,c_31/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_5 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_5 activate#(n__0()) -> c_21(0#()):25
             -->_4 activate#(n__0()) -> c_21(0#()):25
             -->_3 activate#(n__0()) -> c_21(0#()):25
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
             -->_1 U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2)):2
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_5 activate#(X) -> c_20():24
             -->_4 activate#(X) -> c_20():24
             -->_3 activate#(X) -> c_20():24
          
          2:S:U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2))
                                     ,activate#(V2)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_5 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_5 activate#(n__0()) -> c_21(0#()):25
             -->_4 activate#(n__0()) -> c_21(0#()):25
             -->_3 activate#(n__0()) -> c_21(0#()):25
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
             -->_1 U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2)):3
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_5 activate#(X) -> c_20():24
             -->_4 activate#(X) -> c_20():24
             -->_3 activate#(X) -> c_20():24
          
          3:S:U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2))
                                     ,activate#(V2)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_5 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_5 activate#(n__0()) -> c_21(0#()):25
             -->_4 activate#(n__0()) -> c_21(0#()):25
             -->_3 activate#(n__0()) -> c_21(0#()):25
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
             -->_1 U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2)):4
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_5 activate#(X) -> c_20():24
             -->_4 activate#(X) -> c_20():24
             -->_3 activate#(X) -> c_20():24
          
          4:S:U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                     ,isNat#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_4 activate#(n__0()) -> c_21(0#()):25
             -->_3 activate#(n__0()) -> c_21(0#()):25
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):14
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):13
             -->_1 U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):5
             -->_2 isNat#(n__0()) -> c_24():28
             -->_4 activate#(X) -> c_20():24
             -->_3 activate#(X) -> c_20():24
          
          5:S:U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
             -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_3 activate#(n__0()) -> c_21(0#()):25
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):14
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):13
             -->_2 isNat#(n__0()) -> c_24():28
             -->_3 activate#(X) -> c_20():24
             -->_1 U16#(tt()) -> c_7():18
          
          6:S:U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                  ,isNatKind#(activate(V1))
                                  ,activate#(V1)
                                  ,activate#(V1))
             -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_4 activate#(n__0()) -> c_21(0#()):25
             -->_3 activate#(n__0()) -> c_21(0#()):25
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
             -->_1 U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):7
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_4 activate#(X) -> c_20():24
             -->_3 activate#(X) -> c_20():24
          
          7:S:U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
             -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_3 activate#(n__0()) -> c_21(0#()):25
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):14
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):13
             -->_2 isNat#(n__0()) -> c_24():28
             -->_3 activate#(X) -> c_20():24
             -->_1 U23#(tt()) -> c_10():19
          
          8:S:U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
             -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_3 activate#(n__0()) -> c_21(0#()):25
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_3 activate#(X) -> c_20():24
             -->_1 U32#(tt()) -> c_12():20
          
          9:S:U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(N))
             -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_4 activate#(n__0()) -> c_21(0#()):25
             -->_3 activate#(n__0()) -> c_21(0#()):25
             -->_1 U52#(tt(),N) -> c_15(activate#(N)):22
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_4 activate#(X) -> c_20():24
             -->_3 activate#(X) -> c_20():24
          
          10:S:U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                     ,isNatKind#(activate(M))
                                     ,activate#(M)
                                     ,activate#(M)
                                     ,activate#(N))
             -->_5 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_5 activate#(n__0()) -> c_21(0#()):25
             -->_4 activate#(n__0()) -> c_21(0#()):25
             -->_3 activate#(n__0()) -> c_21(0#()):25
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
             -->_1 U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                         ,isNat#(activate(N))
                                         ,activate#(N)
                                         ,activate#(M)
                                         ,activate#(N)):11
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_5 activate#(X) -> c_20():24
             -->_4 activate#(X) -> c_20():24
             -->_3 activate#(X) -> c_20():24
          
          11:S:U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                     ,isNat#(activate(N))
                                     ,activate#(N)
                                     ,activate#(M)
                                     ,activate#(N))
             -->_5 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_5 activate#(n__0()) -> c_21(0#()):25
             -->_4 activate#(n__0()) -> c_21(0#()):25
             -->_3 activate#(n__0()) -> c_21(0#()):25
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):14
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):13
             -->_1 U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                         ,isNatKind#(activate(N))
                                         ,activate#(N)
                                         ,activate#(M)
                                         ,activate#(N)):12
             -->_2 isNat#(n__0()) -> c_24():28
             -->_5 activate#(X) -> c_20():24
             -->_4 activate#(X) -> c_20():24
             -->_3 activate#(X) -> c_20():24
          
          12:S:U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                     ,isNatKind#(activate(N))
                                     ,activate#(N)
                                     ,activate#(M)
                                     ,activate#(N))
             -->_5 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_5 activate#(n__0()) -> c_21(0#()):25
             -->_4 activate#(n__0()) -> c_21(0#()):25
             -->_3 activate#(n__0()) -> c_21(0#()):25
             -->_1 U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                         ,plus#(activate(N),activate(M))
                                         ,activate#(N)
                                         ,activate#(M)):23
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_5 activate#(X) -> c_20():24
             -->_4 activate#(X) -> c_20():24
             -->_3 activate#(X) -> c_20():24
          
          13:S:isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                             ,isNatKind#(activate(V1))
                                             ,activate#(V1)
                                             ,activate#(V1)
                                             ,activate#(V2))
             -->_5 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_5 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_5 activate#(n__0()) -> c_21(0#()):25
             -->_4 activate#(n__0()) -> c_21(0#()):25
             -->_3 activate#(n__0()) -> c_21(0#()):25
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_5 activate#(X) -> c_20():24
             -->_4 activate#(X) -> c_20():24
             -->_3 activate#(X) -> c_20():24
             -->_1 U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2)):1
          
          14:S:isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1))
             -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_4 activate#(n__0()) -> c_21(0#()):25
             -->_3 activate#(n__0()) -> c_21(0#()):25
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_4 activate#(X) -> c_20():24
             -->_3 activate#(X) -> c_20():24
             -->_1 U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1)):6
          
          15:S:isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2))
             -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_4 activate#(n__0()) -> c_21(0#()):25
             -->_3 activate#(n__0()) -> c_21(0#()):25
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_4 activate#(X) -> c_20():24
             -->_3 activate#(X) -> c_20():24
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
             -->_1 U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2)):8
          
          16:S:isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
             -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_3 activate#(n__0()) -> c_21(0#()):25
             -->_2 isNatKind#(n__0()) -> c_27():29
             -->_3 activate#(X) -> c_20():24
             -->_1 U41#(tt()) -> c_13():21
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
          
          17:W:0#() -> c_1()
             
          
          18:W:U16#(tt()) -> c_7()
             
          
          19:W:U23#(tt()) -> c_10()
             
          
          20:W:U32#(tt()) -> c_12()
             
          
          21:W:U41#(tt()) -> c_13()
             
          
          22:W:U52#(tt(),N) -> c_15(activate#(N))
             -->_1 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_1 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_1 activate#(n__0()) -> c_21(0#()):25
             -->_1 activate#(X) -> c_20():24
          
          23:W:U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                     ,plus#(activate(N),activate(M))
                                     ,activate#(N)
                                     ,activate#(M))
             -->_4 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_3 activate#(n__s(X)) -> c_23(s#(X)):27
             -->_4 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_3 activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2)):26
             -->_4 activate#(n__0()) -> c_21(0#()):25
             -->_3 activate#(n__0()) -> c_21(0#()):25
             -->_1 s#(X) -> c_31():31
             -->_2 plus#(X1,X2) -> c_30():30
             -->_4 activate#(X) -> c_20():24
             -->_3 activate#(X) -> c_20():24
          
          24:W:activate#(X) -> c_20()
             
          
          25:W:activate#(n__0()) -> c_21(0#())
             -->_1 0#() -> c_1():17
          
          26:W:activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2))
             -->_1 plus#(X1,X2) -> c_30():30
          
          27:W:activate#(n__s(X)) -> c_23(s#(X))
             -->_1 s#(X) -> c_31():31
          
          28:W:isNat#(n__0()) -> c_24()
             
          
          29:W:isNatKind#(n__0()) -> c_27()
             
          
          30:W:plus#(X1,X2) -> c_30()
             
          
          31:W:s#(X) -> c_31()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          23: U64#(tt(),M,N) -> c_19(s#(plus(activate(N),activate(M)))
                                    ,plus#(activate(N),activate(M))
                                    ,activate#(N)
                                    ,activate#(M))
          22: U52#(tt(),N) -> c_15(activate#(N))
          18: U16#(tt()) -> c_7()
          19: U23#(tt()) -> c_10()
          28: isNat#(n__0()) -> c_24()
          20: U32#(tt()) -> c_12()
          21: U41#(tt()) -> c_13()
          24: activate#(X) -> c_20()
          29: isNatKind#(n__0()) -> c_27()
          25: activate#(n__0()) -> c_21(0#())
          17: 0#() -> c_1()
          26: activate#(n__plus(X1,X2)) -> c_22(plus#(X1,X2))
          30: plus#(X1,X2) -> c_30()
          27: activate#(n__s(X)) -> c_23(s#(X))
          31: s#(X) -> c_31()
* Step 9: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                ,isNatKind#(activate(V1))
                                ,activate#(V1)
                                ,activate#(V1))
            U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
            U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(N))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/4,c_6/3,c_7/0,c_8/4
            ,c_9/3,c_10/0,c_11/3,c_12/0,c_13/0,c_14/4,c_15/1,c_16/5,c_17/5,c_18/5,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1
            ,c_24/0,c_25/5,c_26/4,c_27/0,c_28/4,c_29/3,c_30/0,c_31/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
             -->_1 U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2)):2
          
          2:S:U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2))
                                     ,activate#(V2)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
             -->_1 U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2)):3
          
          3:S:U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2))
                                     ,activate#(V2)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
             -->_1 U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2)):4
          
          4:S:U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2))
                                     ,isNat#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):14
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):13
             -->_1 U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):5
          
          5:S:U15#(tt(),V2) -> c_6(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):14
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):13
          
          6:S:U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                  ,isNatKind#(activate(V1))
                                  ,activate#(V1)
                                  ,activate#(V1))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
             -->_1 U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):7
          
          7:S:U22#(tt(),V1) -> c_9(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):14
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):13
          
          8:S:U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
          
          9:S:U51#(tt(),N) -> c_14(U52#(isNatKind(activate(N)),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(N))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
          
          10:S:U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N))
                                     ,isNatKind#(activate(M))
                                     ,activate#(M)
                                     ,activate#(M)
                                     ,activate#(N))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
             -->_1 U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                         ,isNat#(activate(N))
                                         ,activate#(N)
                                         ,activate#(M)
                                         ,activate#(N)):11
          
          11:S:U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N))
                                     ,isNat#(activate(N))
                                     ,activate#(N)
                                     ,activate#(M)
                                     ,activate#(N))
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):14
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):13
             -->_1 U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                         ,isNatKind#(activate(N))
                                         ,activate#(N)
                                         ,activate#(M)
                                         ,activate#(N)):12
          
          12:S:U63#(tt(),M,N) -> c_18(U64#(isNatKind(activate(N)),activate(M),activate(N))
                                     ,isNatKind#(activate(N))
                                     ,activate#(N)
                                     ,activate#(M)
                                     ,activate#(N))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
          
          13:S:isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                             ,isNatKind#(activate(V1))
                                             ,activate#(V1)
                                             ,activate#(V1)
                                             ,activate#(V2))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
             -->_1 U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2)):1
          
          14:S:isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
             -->_1 U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1)):6
          
          15:S:isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
             -->_1 U31#(tt(),V2) -> c_11(U32#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2)):8
          
          16:S:isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
             -->_2 isNatKind#(n__s(V1)) -> c_29(U41#(isNatKind(activate(V1)))
                                               ,isNatKind#(activate(V1))
                                               ,activate#(V1)):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):15
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
          U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
          U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
          U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
          U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
          isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                        ,isNatKind#(activate(V1)))
          isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
* Step 10: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
            U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2
            ,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1
            ,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
              U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
              U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
              U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
              isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1)))
              isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
              isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
              isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
          - Weak DPs:
              U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
              U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
              U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
              U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
          - Weak TRS:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V2) -> U32(isNatKind(activate(V2)))
              U32(tt()) -> tt()
              U41(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(X1,X2)
              activate(n__s(X)) -> s(X)
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
          - Signature:
              {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
              ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
              ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
              ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0
              ,c_8/2,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1
              ,c_23/1,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#
              ,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0
              ,n__plus,n__s,tt}
        
        Problem (S)
          - Strict DPs:
              U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
              U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
              U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
              U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
          - Weak DPs:
              U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
              U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
              U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
              U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
              isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1)))
              isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
              isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
              isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
          - Weak TRS:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V2) -> U32(isNatKind(activate(V2)))
              U32(tt()) -> tt()
              U41(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(X1,X2)
              activate(n__s(X)) -> s(X)
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
          - Signature:
              {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
              ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
              ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
              ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0
              ,c_8/2,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1
              ,c_23/1,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#
              ,U32#,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0
              ,n__plus,n__s,tt}
** Step 10.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        - Weak DPs:
            U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2
            ,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1
            ,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          8: U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
          13: isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1)))
          14: isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          16: isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
          
        Consider the set of all dependency pairs
          1: U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V1)))
          2: U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          3: U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          4: U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          5: U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
          6: U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          7: U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
          8: U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
          9: U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
          10: U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          11: U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          12: U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
          13: isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1)))
          14: isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          15: isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          16: isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {8,13,14,16}
        These cover all (indirect) predecessors of dependency pairs
          {1,2,3,4,5,6,7,8,9,10,11,12,13,14,16}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
*** Step 10.a:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        - Weak DPs:
            U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2
            ,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1
            ,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_2) = {1,2},
          uargs(c_3) = {1,2},
          uargs(c_4) = {1,2},
          uargs(c_5) = {1,2},
          uargs(c_6) = {1},
          uargs(c_8) = {1,2},
          uargs(c_9) = {1},
          uargs(c_11) = {1},
          uargs(c_14) = {1},
          uargs(c_16) = {1,2},
          uargs(c_17) = {1,2},
          uargs(c_18) = {1},
          uargs(c_25) = {1,2},
          uargs(c_26) = {1,2},
          uargs(c_28) = {1,2},
          uargs(c_29) = {1}
        
        Following symbols are considered usable:
          {0,U31,U32,U41,activate,isNatKind,plus,s,0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#
          ,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}
        TcT has computed the following interpretation:
                   p(0) = 1                                           
                 p(U11) = x1*x3 + x3                                  
                 p(U12) = 1                                           
                 p(U13) = x2                                          
                 p(U14) = 1 + x1 + x1*x2 + x1^2 + x2*x3 + x3 + x3^2   
                 p(U15) = 0                                           
                 p(U16) = 0                                           
                 p(U21) = x1*x2                                       
                 p(U22) = x1*x2 + x1^2                                
                 p(U23) = x1^2                                        
                 p(U31) = x2                                          
                 p(U32) = x1                                          
                 p(U41) = x1                                          
                 p(U51) = 0                                           
                 p(U52) = 0                                           
                 p(U61) = 0                                           
                 p(U62) = 0                                           
                 p(U63) = 0                                           
                 p(U64) = 0                                           
            p(activate) = x1                                          
               p(isNat) = 0                                           
           p(isNatKind) = x1                                          
                p(n__0) = 1                                           
             p(n__plus) = 1 + x1 + x2                                 
                p(n__s) = 1 + x1                                      
                p(plus) = 1 + x1 + x2                                 
                   p(s) = 1 + x1                                      
                  p(tt) = 1                                           
                  p(0#) = 0                                           
                p(U11#) = x1*x3 + x2 + x2*x3 + x2^2 + x3 + x3^2       
                p(U12#) = x1*x3 + x2^2 + x3 + x3^2                    
                p(U13#) = x2^2 + x3 + x3^2                            
                p(U14#) = x2^2 + x3^2                                 
                p(U15#) = x2^2                                        
                p(U16#) = 0                                           
                p(U21#) = x2 + x2^2                                   
                p(U22#) = x2^2                                        
                p(U23#) = 0                                           
                p(U31#) = 1 + x2                                      
                p(U32#) = 0                                           
                p(U41#) = 0                                           
                p(U51#) = x1*x2 + x2 + x2^2                           
                p(U52#) = 0                                           
                p(U61#) = 1 + x1*x2 + x1*x3 + x1^2 + x2 + x2*x3 + x3^2
                p(U62#) = 1 + x2 + x2*x3 + x3 + x3^2                  
                p(U63#) = x3                                          
                p(U64#) = 0                                           
           p(activate#) = 0                                           
              p(isNat#) = x1^2                                        
          p(isNatKind#) = x1                                          
               p(plus#) = 0                                           
                  p(s#) = 0                                           
                 p(c_1) = 0                                           
                 p(c_2) = x1 + x2                                     
                 p(c_3) = x1 + x2                                     
                 p(c_4) = x1 + x2                                     
                 p(c_5) = x1 + x2                                     
                 p(c_6) = x1                                          
                 p(c_7) = 0                                           
                 p(c_8) = x1 + x2                                     
                 p(c_9) = x1                                          
                p(c_10) = 0                                           
                p(c_11) = x1                                          
                p(c_12) = 0                                           
                p(c_13) = 0                                           
                p(c_14) = x1                                          
                p(c_15) = 0                                           
                p(c_16) = x1 + x2                                     
                p(c_17) = x1 + x2                                     
                p(c_18) = x1                                          
                p(c_19) = 0                                           
                p(c_20) = 0                                           
                p(c_21) = 0                                           
                p(c_22) = 0                                           
                p(c_23) = 0                                           
                p(c_24) = 0                                           
                p(c_25) = x1 + x2                                     
                p(c_26) = x1 + x2                                     
                p(c_27) = 0                                           
                p(c_28) = x1 + x2                                     
                p(c_29) = x1                                          
                p(c_30) = 0                                           
                p(c_31) = 0                                           
        
        Following rules are strictly oriented:
                 U31#(tt(),V2) = 1 + V2                                                                                
                               > V2                                                                                    
                               = c_11(isNatKind#(activate(V2)))                                                        
        
        isNat#(n__plus(V1,V2)) = 1 + 2*V1 + 2*V1*V2 + V1^2 + 2*V2 + V2^2                                               
                               > 2*V1 + 2*V1*V2 + V1^2 + V2 + V2^2                                                     
                               = c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        
              isNat#(n__s(V1)) = 1 + 2*V1 + V1^2                                                                       
                               > 2*V1 + V1^2                                                                           
                               = c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))             
        
          isNatKind#(n__s(V1)) = 1 + V1                                                                                
                               > V1                                                                                    
                               = c_29(isNatKind#(activate(V1)))                                                        
        
        
        Following rules are (at-least) weakly oriented:
                  U11#(tt(),V1,V2) =  V1 + V1*V2 + V1^2 + 2*V2 + V2^2                                                      
                                   >= V1 + V1*V2 + V1^2 + V2 + V2^2                                                        
                                   =  c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        
                  U12#(tt(),V1,V2) =  V1^2 + 2*V2 + V2^2                                                                   
                                   >= V1^2 + 2*V2 + V2^2                                                                   
                                   =  c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
        
                  U13#(tt(),V1,V2) =  V1^2 + V2 + V2^2                                                                     
                                   >= V1^2 + V2 + V2^2                                                                     
                                   =  c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
        
                  U14#(tt(),V1,V2) =  V1^2 + V2^2                                                                          
                                   >= V1^2 + V2^2                                                                          
                                   =  c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))                     
        
                     U15#(tt(),V2) =  V2^2                                                                                 
                                   >= V2^2                                                                                 
                                   =  c_6(isNat#(activate(V2)))                                                            
        
                     U21#(tt(),V1) =  V1 + V1^2                                                                            
                                   >= V1 + V1^2                                                                            
                                   =  c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))             
        
                     U22#(tt(),V1) =  V1^2                                                                                 
                                   >= V1^2                                                                                 
                                   =  c_9(isNat#(activate(V1)))                                                            
        
                      U51#(tt(),N) =  2*N + N^2                                                                            
                                   >= N                                                                                    
                                   =  c_14(isNatKind#(activate(N)))                                                        
        
                    U61#(tt(),M,N) =  2 + 2*M + M*N + N + N^2                                                              
                                   >= 1 + 2*M + M*N + N + N^2                                                              
                                   =  c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))   
        
                    U62#(tt(),M,N) =  1 + M + M*N + N + N^2                                                                
                                   >= N + N^2                                                                              
                                   =  c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))           
        
                    U63#(tt(),M,N) =  N                                                                                    
                                   >= N                                                                                    
                                   =  c_18(isNatKind#(activate(N)))                                                        
        
        isNatKind#(n__plus(V1,V2)) =  1 + V1 + V2                                                                          
                                   >= 1 + V1 + V2                                                                          
                                   =  c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))            
        
                               0() =  1                                                                                    
                                   >= 1                                                                                    
                                   =  n__0()                                                                               
        
                      U31(tt(),V2) =  V2                                                                                   
                                   >= V2                                                                                   
                                   =  U32(isNatKind(activate(V2)))                                                         
        
                         U32(tt()) =  1                                                                                    
                                   >= 1                                                                                    
                                   =  tt()                                                                                 
        
                         U41(tt()) =  1                                                                                    
                                   >= 1                                                                                    
                                   =  tt()                                                                                 
        
                       activate(X) =  X                                                                                    
                                   >= X                                                                                    
                                   =  X                                                                                    
        
                  activate(n__0()) =  1                                                                                    
                                   >= 1                                                                                    
                                   =  0()                                                                                  
        
          activate(n__plus(X1,X2)) =  1 + X1 + X2                                                                          
                                   >= 1 + X1 + X2                                                                          
                                   =  plus(X1,X2)                                                                          
        
                 activate(n__s(X)) =  1 + X                                                                                
                                   >= 1 + X                                                                                
                                   =  s(X)                                                                                 
        
                 isNatKind(n__0()) =  1                                                                                    
                                   >= 1                                                                                    
                                   =  tt()                                                                                 
        
         isNatKind(n__plus(V1,V2)) =  1 + V1 + V2                                                                          
                                   >= V2                                                                                   
                                   =  U31(isNatKind(activate(V1)),activate(V2))                                            
        
               isNatKind(n__s(V1)) =  1 + V1                                                                               
                                   >= V1                                                                                   
                                   =  U41(isNatKind(activate(V1)))                                                         
        
                       plus(X1,X2) =  1 + X1 + X2                                                                          
                                   >= 1 + X1 + X2                                                                          
                                   =  n__plus(X1,X2)                                                                       
        
                              s(X) =  1 + X                                                                                
                                   >= 1 + X                                                                                
                                   =  n__s(X)                                                                              
        
*** Step 10.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        - Weak DPs:
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
            U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2
            ,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1
            ,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

*** Step 10.a:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        - Weak DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
            U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2
            ,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1
            ,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          
        Consider the set of all dependency pairs
          1: isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          2: U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          3: U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          4: U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          5: U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          6: U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
          7: U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          8: U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
          9: U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
          10: U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
          11: U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          12: U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          13: U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
          14: isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1)))
          15: isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          16: isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,9,10,11,12,13}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
**** Step 10.a:1.b:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        - Weak DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
            U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2
            ,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1
            ,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_2) = {1,2},
          uargs(c_3) = {1,2},
          uargs(c_4) = {1,2},
          uargs(c_5) = {1,2},
          uargs(c_6) = {1},
          uargs(c_8) = {1,2},
          uargs(c_9) = {1},
          uargs(c_11) = {1},
          uargs(c_14) = {1},
          uargs(c_16) = {1,2},
          uargs(c_17) = {1,2},
          uargs(c_18) = {1},
          uargs(c_25) = {1,2},
          uargs(c_26) = {1,2},
          uargs(c_28) = {1,2},
          uargs(c_29) = {1}
        
        Following symbols are considered usable:
          {0,U31,U32,U41,activate,isNatKind,plus,s,0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#,U41#
          ,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#}
        TcT has computed the following interpretation:
                   p(0) = 1                            
                 p(U11) = 1 + x1 + x3 + x3^2           
                 p(U12) = x1*x2 + x2 + x2^2 + x3       
                 p(U13) = x1*x3                        
                 p(U14) = 1 + x1*x3 + x1^2 + x3^2      
                 p(U15) = x1*x2 + x2                   
                 p(U16) = 1 + x1^2                     
                 p(U21) = x2 + x2^2                    
                 p(U22) = 1 + x1^2 + x2^2              
                 p(U23) = 0                            
                 p(U31) = 1                            
                 p(U32) = 1                            
                 p(U41) = x1                           
                 p(U51) = 0                            
                 p(U52) = 0                            
                 p(U61) = 0                            
                 p(U62) = 0                            
                 p(U63) = 0                            
                 p(U64) = 0                            
            p(activate) = x1                           
               p(isNat) = 0                            
           p(isNatKind) = x1                           
                p(n__0) = 1                            
             p(n__plus) = 1 + x1 + x2                  
                p(n__s) = 1 + x1                       
                p(plus) = 1 + x1 + x2                  
                   p(s) = 1 + x1                       
                  p(tt) = 1                            
                  p(0#) = 0                            
                p(U11#) = x2 + x2*x3 + x2^2 + x3 + x3^2
                p(U12#) = x1*x3 + x2^2 + x3 + x3^2     
                p(U13#) = x2^2 + x3 + x3^2             
                p(U14#) = x2^2 + x3^2                  
                p(U15#) = x2^2                         
                p(U16#) = 0                            
                p(U21#) = x2 + x2^2                    
                p(U22#) = x2^2                         
                p(U23#) = 0                            
                p(U31#) = x2                           
                p(U32#) = 0                            
                p(U41#) = 0                            
                p(U51#) = 1 + x2                       
                p(U52#) = 0                            
                p(U61#) = 1 + x1*x2 + x2 + x3 + x3^2   
                p(U62#) = 1 + x3 + x3^2                
                p(U63#) = 1 + x3                       
                p(U64#) = 0                            
           p(activate#) = 0                            
              p(isNat#) = x1^2                         
          p(isNatKind#) = x1                           
               p(plus#) = 0                            
                  p(s#) = 0                            
                 p(c_1) = 0                            
                 p(c_2) = x1 + x2                      
                 p(c_3) = x1 + x2                      
                 p(c_4) = x1 + x2                      
                 p(c_5) = x1 + x2                      
                 p(c_6) = x1                           
                 p(c_7) = 0                            
                 p(c_8) = x1 + x2                      
                 p(c_9) = x1                           
                p(c_10) = 0                            
                p(c_11) = x1                           
                p(c_12) = 0                            
                p(c_13) = 0                            
                p(c_14) = 1 + x1                       
                p(c_15) = 0                            
                p(c_16) = x1 + x2                      
                p(c_17) = x1 + x2                      
                p(c_18) = 1 + x1                       
                p(c_19) = 0                            
                p(c_20) = 0                            
                p(c_21) = 0                            
                p(c_22) = 0                            
                p(c_23) = 0                            
                p(c_24) = 0                            
                p(c_25) = 1 + x1 + x2                  
                p(c_26) = x1 + x2                      
                p(c_27) = 0                            
                p(c_28) = x1 + x2                      
                p(c_29) = x1                           
                p(c_30) = 0                            
                p(c_31) = 0                            
        
        Following rules are strictly oriented:
        isNatKind#(n__plus(V1,V2)) = 1 + V1 + V2                                                              
                                   > V1 + V2                                                                  
                                   = c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        
        
        Following rules are (at-least) weakly oriented:
                 U11#(tt(),V1,V2) =  V1 + V1*V2 + V1^2 + V2 + V2^2                                                         
                                  >= V1 + V1*V2 + V1^2 + V2 + V2^2                                                         
                                  =  c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))) 
        
                 U12#(tt(),V1,V2) =  V1^2 + 2*V2 + V2^2                                                                    
                                  >= V1^2 + 2*V2 + V2^2                                                                    
                                  =  c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2))) 
        
                 U13#(tt(),V1,V2) =  V1^2 + V2 + V2^2                                                                      
                                  >= V1^2 + V2 + V2^2                                                                      
                                  =  c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2))) 
        
                 U14#(tt(),V1,V2) =  V1^2 + V2^2                                                                           
                                  >= V1^2 + V2^2                                                                           
                                  =  c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))                      
        
                    U15#(tt(),V2) =  V2^2                                                                                  
                                  >= V2^2                                                                                  
                                  =  c_6(isNat#(activate(V2)))                                                             
        
                    U21#(tt(),V1) =  V1 + V1^2                                                                             
                                  >= V1 + V1^2                                                                             
                                  =  c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))              
        
                    U22#(tt(),V1) =  V1^2                                                                                  
                                  >= V1^2                                                                                  
                                  =  c_9(isNat#(activate(V1)))                                                             
        
                    U31#(tt(),V2) =  V2                                                                                    
                                  >= V2                                                                                    
                                  =  c_11(isNatKind#(activate(V2)))                                                        
        
                     U51#(tt(),N) =  1 + N                                                                                 
                                  >= 1 + N                                                                                 
                                  =  c_14(isNatKind#(activate(N)))                                                         
        
                   U61#(tt(),M,N) =  1 + 2*M + N + N^2                                                                     
                                  >= 1 + M + N + N^2                                                                       
                                  =  c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))    
        
                   U62#(tt(),M,N) =  1 + N + N^2                                                                           
                                  >= 1 + N + N^2                                                                           
                                  =  c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))            
        
                   U63#(tt(),M,N) =  1 + N                                                                                 
                                  >= 1 + N                                                                                 
                                  =  c_18(isNatKind#(activate(N)))                                                         
        
           isNat#(n__plus(V1,V2)) =  1 + 2*V1 + 2*V1*V2 + V1^2 + 2*V2 + V2^2                                               
                                  >= 1 + 2*V1 + V1*V2 + V1^2 + V2 + V2^2                                                   
                                  =  c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        
                 isNat#(n__s(V1)) =  1 + 2*V1 + V1^2                                                                       
                                  >= 2*V1 + V1^2                                                                           
                                  =  c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))             
        
             isNatKind#(n__s(V1)) =  1 + V1                                                                                
                                  >= V1                                                                                    
                                  =  c_29(isNatKind#(activate(V1)))                                                        
        
                              0() =  1                                                                                     
                                  >= 1                                                                                     
                                  =  n__0()                                                                                
        
                     U31(tt(),V2) =  1                                                                                     
                                  >= 1                                                                                     
                                  =  U32(isNatKind(activate(V2)))                                                          
        
                        U32(tt()) =  1                                                                                     
                                  >= 1                                                                                     
                                  =  tt()                                                                                  
        
                        U41(tt()) =  1                                                                                     
                                  >= 1                                                                                     
                                  =  tt()                                                                                  
        
                      activate(X) =  X                                                                                     
                                  >= X                                                                                     
                                  =  X                                                                                     
        
                 activate(n__0()) =  1                                                                                     
                                  >= 1                                                                                     
                                  =  0()                                                                                   
        
         activate(n__plus(X1,X2)) =  1 + X1 + X2                                                                           
                                  >= 1 + X1 + X2                                                                           
                                  =  plus(X1,X2)                                                                           
        
                activate(n__s(X)) =  1 + X                                                                                 
                                  >= 1 + X                                                                                 
                                  =  s(X)                                                                                  
        
                isNatKind(n__0()) =  1                                                                                     
                                  >= 1                                                                                     
                                  =  tt()                                                                                  
        
        isNatKind(n__plus(V1,V2)) =  1 + V1 + V2                                                                           
                                  >= 1                                                                                     
                                  =  U31(isNatKind(activate(V1)),activate(V2))                                             
        
              isNatKind(n__s(V1)) =  1 + V1                                                                                
                                  >= V1                                                                                    
                                  =  U41(isNatKind(activate(V1)))                                                          
        
                      plus(X1,X2) =  1 + X1 + X2                                                                           
                                  >= 1 + X1 + X2                                                                           
                                  =  n__plus(X1,X2)                                                                        
        
                             s(X) =  1 + X                                                                                 
                                  >= 1 + X                                                                                 
                                  =  n__s(X)                                                                               
        
**** Step 10.a:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
            U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2
            ,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1
            ,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 10.a:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
            U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2
            ,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1
            ,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
             -->_1 U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))):2
          
          2:W:U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
             -->_1 U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))):3
          
          3:W:U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
             -->_1 U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):4
          
          4:W:U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):14
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):13
             -->_1 U15#(tt(),V2) -> c_6(isNat#(activate(V2))):5
          
          5:W:U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
             -->_1 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):14
             -->_1 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):13
          
          6:W:U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
             -->_1 U22#(tt(),V1) -> c_9(isNat#(activate(V1))):7
          
          7:W:U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
             -->_1 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):14
             -->_1 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):13
          
          8:W:U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
          
          9:W:U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
          
          10:W:U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
             -->_1 U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N))):11
          
          11:W:U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):14
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):13
             -->_1 U63#(tt(),M,N) -> c_18(isNatKind#(activate(N))):12
          
          12:W:U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
          
          13:W:isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                             ,isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
             -->_1 U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))):1
          
          14:W:isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
             -->_1 U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):6
          
          15:W:isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
             -->_1 U31#(tt(),V2) -> c_11(isNatKind#(activate(V2))):8
          
          16:W:isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          10: U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          11: U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          12: U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
          9: U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
          1: U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          13: isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1)))
          7: U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
          6: U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          14: isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          5: U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
          4: U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          3: U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          2: U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          16: isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
          15: isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          8: U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
**** Step 10.a:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2
            ,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1
            ,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

** Step 10.b:1: PredecessorEstimation WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
        - Weak DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2
            ,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1
            ,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,4}
        by application of
          Pre({1,4}) = {3}.
        Here rules are labelled as follows:
          1: U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
          2: U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          3: U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          4: U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
          5: U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          6: U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          7: U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          8: U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          9: U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
          10: U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          11: U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
          12: U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
          13: isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1)))
          14: isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          15: isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          16: isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
** Step 10.b:2: PredecessorEstimation WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
        - Weak DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
            U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
            U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2
            ,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1
            ,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {2}
        by application of
          Pre({2}) = {1}.
        Here rules are labelled as follows:
          1: U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          2: U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          3: U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          4: U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          5: U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          6: U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          7: U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
          8: U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          9: U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
          10: U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
          11: U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
          12: U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
          13: isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1)))
          14: isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          15: isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          16: isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
** Step 10.b:3: PredecessorEstimation WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
        - Weak DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
            U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2
            ,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1
            ,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1}
        by application of
          Pre({1}) = {}.
        Here rules are labelled as follows:
          1: U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          2: U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          3: U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          4: U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          5: U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          6: U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
          7: U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          8: U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
          9: U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
          10: U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
          11: U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          12: U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
          13: isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1)))
          14: isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          15: isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          16: isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
** Step 10.b:4: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
            U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
            U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
            U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2
            ,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1
            ,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
             -->_1 U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))):2
          
          2:W:U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
             -->_1 U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))):3
          
          3:W:U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
             -->_1 U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):4
          
          4:W:U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):14
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):13
             -->_1 U15#(tt(),V2) -> c_6(isNat#(activate(V2))):5
          
          5:W:U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
             -->_1 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):14
             -->_1 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):13
          
          6:W:U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
             -->_1 U22#(tt(),V1) -> c_9(isNat#(activate(V1))):7
          
          7:W:U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
             -->_1 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):14
             -->_1 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):13
          
          8:W:U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
          
          9:W:U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
          
          10:W:U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
             -->_1 U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N))):11
          
          11:W:U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
             -->_2 isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):14
             -->_2 isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):13
             -->_1 U63#(tt(),M,N) -> c_18(isNatKind#(activate(N))):12
          
          12:W:U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
          
          13:W:isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                             ,isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
             -->_1 U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))):1
          
          14:W:isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
             -->_1 U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):6
          
          15:W:isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
             -->_1 U31#(tt(),V2) -> c_11(isNatKind#(activate(V2))):8
          
          16:W:isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
             -->_1 isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1))):16
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):15
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          10: U61#(tt(),M,N) -> c_16(U62#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          11: U62#(tt(),M,N) -> c_17(U63#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          12: U63#(tt(),M,N) -> c_18(isNatKind#(activate(N)))
          9: U51#(tt(),N) -> c_14(isNatKind#(activate(N)))
          1: U11#(tt(),V1,V2) -> c_2(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          13: isNat#(n__plus(V1,V2)) -> c_25(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1)))
          7: U22#(tt(),V1) -> c_9(isNat#(activate(V1)))
          6: U21#(tt(),V1) -> c_8(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          14: isNat#(n__s(V1)) -> c_26(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          5: U15#(tt(),V2) -> c_6(isNat#(activate(V2)))
          4: U14#(tt(),V1,V2) -> c_5(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          3: U13#(tt(),V1,V2) -> c_4(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          2: U12#(tt(),V1,V2) -> c_3(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          16: isNatKind#(n__s(V1)) -> c_29(isNatKind#(activate(V1)))
          15: isNatKind#(n__plus(V1,V2)) -> c_28(U31#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          8: U31#(tt(),V2) -> c_11(isNatKind#(activate(V2)))
** Step 10.b:5: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V2) -> U32(isNatKind(activate(V2)))
            U32(tt()) -> tt()
            U41(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U41(isNatKind(activate(V1)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/2,U32/1,U41/1,U51/2,U52/2,U61/3,U62/3,U63/3
            ,U64/3,activate/1,isNat/1,isNatKind/1,plus/2,s/1,0#/0,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2,U16#/1,U21#/2
            ,U22#/2,U23#/1,U31#/2,U32#/1,U41#/1,U51#/2,U52#/2,U61#/3,U62#/3,U63#/3,U64#/3,activate#/1,isNat#/1
            ,isNatKind#/1,plus#/2,s#/1} / {n__0/0,n__plus/2,n__s/1,tt/0,c_1/0,c_2/2,c_3/2,c_4/2,c_5/2,c_6/1,c_7/0,c_8/2
            ,c_9/1,c_10/0,c_11/1,c_12/0,c_13/0,c_14/1,c_15/1,c_16/2,c_17/2,c_18/1,c_19/4,c_20/0,c_21/1,c_22/1,c_23/1
            ,c_24/0,c_25/2,c_26/2,c_27/0,c_28/2,c_29/1,c_30/0,c_31/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
            ,U41#,U51#,U52#,U61#,U62#,U63#,U64#,activate#,isNat#,isNatKind#,plus#,s#} and constructors {n__0,n__plus
            ,n__s,tt}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^2))