* Step 1: Sum WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            __(X,nil()) -> X
            __(X1,X2) -> n____(X1,X2)
            __(__(X,Y),Z) -> __(X,__(Y,Z))
            __(nil(),X) -> X
            a() -> n__a()
            activate(X) -> X
            activate(n____(X1,X2)) -> __(X1,X2)
            activate(n__a()) -> a()
            activate(n__e()) -> e()
            activate(n__i()) -> i()
            activate(n__isList(X)) -> isList(X)
            activate(n__isNeList(X)) -> isNeList(X)
            activate(n__isPal(X)) -> isPal(X)
            activate(n__nil()) -> nil()
            activate(n__o()) -> o()
            activate(n__u()) -> u()
            and(tt(),X) -> activate(X)
            e() -> n__e()
            i() -> n__i()
            isList(V) -> isNeList(activate(V))
            isList(X) -> n__isList(X)
            isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
            isList(n__nil()) -> tt()
            isNeList(V) -> isQid(activate(V))
            isNeList(X) -> n__isNeList(X)
            isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
            isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
            isNePal(V) -> isQid(activate(V))
            isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P)))
            isPal(V) -> isNePal(activate(V))
            isPal(X) -> n__isPal(X)
            isPal(n__nil()) -> tt()
            isQid(n__a()) -> tt()
            isQid(n__e()) -> tt()
            isQid(n__i()) -> tt()
            isQid(n__o()) -> tt()
            isQid(n__u()) -> tt()
            nil() -> n__nil()
            o() -> n__o()
            u() -> n__u()
        - Signature:
            {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2
            ,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid
            ,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: InnermostRuleRemoval WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            __(X,nil()) -> X
            __(X1,X2) -> n____(X1,X2)
            __(__(X,Y),Z) -> __(X,__(Y,Z))
            __(nil(),X) -> X
            a() -> n__a()
            activate(X) -> X
            activate(n____(X1,X2)) -> __(X1,X2)
            activate(n__a()) -> a()
            activate(n__e()) -> e()
            activate(n__i()) -> i()
            activate(n__isList(X)) -> isList(X)
            activate(n__isNeList(X)) -> isNeList(X)
            activate(n__isPal(X)) -> isPal(X)
            activate(n__nil()) -> nil()
            activate(n__o()) -> o()
            activate(n__u()) -> u()
            and(tt(),X) -> activate(X)
            e() -> n__e()
            i() -> n__i()
            isList(V) -> isNeList(activate(V))
            isList(X) -> n__isList(X)
            isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
            isList(n__nil()) -> tt()
            isNeList(V) -> isQid(activate(V))
            isNeList(X) -> n__isNeList(X)
            isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
            isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
            isNePal(V) -> isQid(activate(V))
            isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P)))
            isPal(V) -> isNePal(activate(V))
            isPal(X) -> n__isPal(X)
            isPal(n__nil()) -> tt()
            isQid(n__a()) -> tt()
            isQid(n__e()) -> tt()
            isQid(n__i()) -> tt()
            isQid(n__o()) -> tt()
            isQid(n__u()) -> tt()
            nil() -> n__nil()
            o() -> n__o()
            u() -> n__u()
        - Signature:
            {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2
            ,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid
            ,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          __(X,nil()) -> X
          __(__(X,Y),Z) -> __(X,__(Y,Z))
          __(nil(),X) -> X
          isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P)))
        All above mentioned rules can be savely removed.
* Step 3: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            __(X1,X2) -> n____(X1,X2)
            a() -> n__a()
            activate(X) -> X
            activate(n____(X1,X2)) -> __(X1,X2)
            activate(n__a()) -> a()
            activate(n__e()) -> e()
            activate(n__i()) -> i()
            activate(n__isList(X)) -> isList(X)
            activate(n__isNeList(X)) -> isNeList(X)
            activate(n__isPal(X)) -> isPal(X)
            activate(n__nil()) -> nil()
            activate(n__o()) -> o()
            activate(n__u()) -> u()
            and(tt(),X) -> activate(X)
            e() -> n__e()
            i() -> n__i()
            isList(V) -> isNeList(activate(V))
            isList(X) -> n__isList(X)
            isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
            isList(n__nil()) -> tt()
            isNeList(V) -> isQid(activate(V))
            isNeList(X) -> n__isNeList(X)
            isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
            isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
            isNePal(V) -> isQid(activate(V))
            isPal(V) -> isNePal(activate(V))
            isPal(X) -> n__isPal(X)
            isPal(n__nil()) -> tt()
            isQid(n__a()) -> tt()
            isQid(n__e()) -> tt()
            isQid(n__i()) -> tt()
            isQid(n__o()) -> tt()
            isQid(n__u()) -> tt()
            nil() -> n__nil()
            o() -> n__o()
            u() -> n__u()
        - Signature:
            {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2
            ,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid
            ,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(isList) = {1},
            uargs(isNeList) = {1},
            uargs(isNePal) = {1},
            uargs(isQid) = {1},
            uargs(n__isList) = {1},
            uargs(n__isNeList) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                     p(__) = [1] x1 + [1] x2 + [0]
                      p(a) = [0]                  
               p(activate) = [1] x1 + [0]         
                    p(and) = [1] x1 + [1] x2 + [7]
                      p(e) = [0]                  
                      p(i) = [0]                  
                 p(isList) = [1] x1 + [3]         
               p(isNeList) = [1] x1 + [1]         
                p(isNePal) = [1] x1 + [0]         
                  p(isPal) = [1] x1 + [0]         
                  p(isQid) = [1] x1 + [5]         
                  p(n____) = [1] x1 + [1] x2 + [5]
                   p(n__a) = [0]                  
                   p(n__e) = [0]                  
                   p(n__i) = [0]                  
              p(n__isList) = [1] x1 + [0]         
            p(n__isNeList) = [1] x1 + [3]         
               p(n__isPal) = [1] x1 + [3]         
                 p(n__nil) = [0]                  
                   p(n__o) = [5]                  
                   p(n__u) = [0]                  
                    p(nil) = [0]                  
                      p(o) = [0]                  
                     p(tt) = [0]                  
                      p(u) = [1]                  
          
          Following rules are strictly oriented:
            activate(n____(X1,X2)) = [1] X1 + [1] X2 + [5]
                                   > [1] X1 + [1] X2 + [0]
                                   = __(X1,X2)            
          
          activate(n__isNeList(X)) = [1] X + [3]          
                                   > [1] X + [1]          
                                   = isNeList(X)          
          
             activate(n__isPal(X)) = [1] X + [3]          
                                   > [1] X + [0]          
                                   = isPal(X)             
          
                  activate(n__o()) = [5]                  
                                   > [0]                  
                                   = o()                  
          
                       and(tt(),X) = [1] X + [7]          
                                   > [1] X + [0]          
                                   = activate(X)          
          
                         isList(V) = [1] V + [3]          
                                   > [1] V + [1]          
                                   = isNeList(activate(V))
          
                         isList(X) = [1] X + [3]          
                                   > [1] X + [0]          
                                   = n__isList(X)         
          
                  isList(n__nil()) = [3]                  
                                   > [0]                  
                                   = tt()                 
          
                     isQid(n__a()) = [5]                  
                                   > [0]                  
                                   = tt()                 
          
                     isQid(n__e()) = [5]                  
                                   > [0]                  
                                   = tt()                 
          
                     isQid(n__i()) = [5]                  
                                   > [0]                  
                                   = tt()                 
          
                     isQid(n__o()) = [10]                 
                                   > [0]                  
                                   = tt()                 
          
                     isQid(n__u()) = [5]                  
                                   > [0]                  
                                   = tt()                 
          
                               u() = [1]                  
                                   > [0]                  
                                   = n__u()               
          
          
          Following rules are (at-least) weakly oriented:
                       __(X1,X2) =  [1] X1 + [1] X2 + [0]                              
                                 >= [1] X1 + [1] X2 + [5]                              
                                 =  n____(X1,X2)                                       
          
                             a() =  [0]                                                
                                 >= [0]                                                
                                 =  n__a()                                             
          
                     activate(X) =  [1] X + [0]                                        
                                 >= [1] X + [0]                                        
                                 =  X                                                  
          
                activate(n__a()) =  [0]                                                
                                 >= [0]                                                
                                 =  a()                                                
          
                activate(n__e()) =  [0]                                                
                                 >= [0]                                                
                                 =  e()                                                
          
                activate(n__i()) =  [0]                                                
                                 >= [0]                                                
                                 =  i()                                                
          
          activate(n__isList(X)) =  [1] X + [0]                                        
                                 >= [1] X + [3]                                        
                                 =  isList(X)                                          
          
              activate(n__nil()) =  [0]                                                
                                 >= [0]                                                
                                 =  nil()                                              
          
                activate(n__u()) =  [0]                                                
                                 >= [1]                                                
                                 =  u()                                                
          
                             e() =  [0]                                                
                                 >= [0]                                                
                                 =  n__e()                                             
          
                             i() =  [0]                                                
                                 >= [0]                                                
                                 =  n__i()                                             
          
            isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [8]                              
                                 >= [1] V1 + [1] V2 + [10]                             
                                 =  and(isList(activate(V1)),n__isList(activate(V2)))  
          
                     isNeList(V) =  [1] V + [1]                                        
                                 >= [1] V + [5]                                        
                                 =  isQid(activate(V))                                 
          
                     isNeList(X) =  [1] X + [1]                                        
                                 >= [1] X + [3]                                        
                                 =  n__isNeList(X)                                     
          
          isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [6]                              
                                 >= [1] V1 + [1] V2 + [13]                             
                                 =  and(isList(activate(V1)),n__isNeList(activate(V2)))
          
          isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [6]                              
                                 >= [1] V1 + [1] V2 + [8]                              
                                 =  and(isNeList(activate(V1)),n__isList(activate(V2)))
          
                      isNePal(V) =  [1] V + [0]                                        
                                 >= [1] V + [5]                                        
                                 =  isQid(activate(V))                                 
          
                        isPal(V) =  [1] V + [0]                                        
                                 >= [1] V + [0]                                        
                                 =  isNePal(activate(V))                               
          
                        isPal(X) =  [1] X + [0]                                        
                                 >= [1] X + [3]                                        
                                 =  n__isPal(X)                                        
          
                 isPal(n__nil()) =  [0]                                                
                                 >= [0]                                                
                                 =  tt()                                               
          
                           nil() =  [0]                                                
                                 >= [0]                                                
                                 =  n__nil()                                           
          
                             o() =  [0]                                                
                                 >= [5]                                                
                                 =  n__o()                                             
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 4: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            __(X1,X2) -> n____(X1,X2)
            a() -> n__a()
            activate(X) -> X
            activate(n__a()) -> a()
            activate(n__e()) -> e()
            activate(n__i()) -> i()
            activate(n__isList(X)) -> isList(X)
            activate(n__nil()) -> nil()
            activate(n__u()) -> u()
            e() -> n__e()
            i() -> n__i()
            isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
            isNeList(V) -> isQid(activate(V))
            isNeList(X) -> n__isNeList(X)
            isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
            isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
            isNePal(V) -> isQid(activate(V))
            isPal(V) -> isNePal(activate(V))
            isPal(X) -> n__isPal(X)
            isPal(n__nil()) -> tt()
            nil() -> n__nil()
            o() -> n__o()
        - Weak TRS:
            activate(n____(X1,X2)) -> __(X1,X2)
            activate(n__isNeList(X)) -> isNeList(X)
            activate(n__isPal(X)) -> isPal(X)
            activate(n__o()) -> o()
            and(tt(),X) -> activate(X)
            isList(V) -> isNeList(activate(V))
            isList(X) -> n__isList(X)
            isList(n__nil()) -> tt()
            isQid(n__a()) -> tt()
            isQid(n__e()) -> tt()
            isQid(n__i()) -> tt()
            isQid(n__o()) -> tt()
            isQid(n__u()) -> tt()
            u() -> n__u()
        - Signature:
            {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2
            ,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid
            ,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(isList) = {1},
            uargs(isNeList) = {1},
            uargs(isNePal) = {1},
            uargs(isQid) = {1},
            uargs(n__isList) = {1},
            uargs(n__isNeList) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                     p(__) = [1] x1 + [1] x2 + [1]
                      p(a) = [0]                  
               p(activate) = [1] x1 + [0]         
                    p(and) = [1] x1 + [1] x2 + [0]
                      p(e) = [0]                  
                      p(i) = [0]                  
                 p(isList) = [1] x1 + [0]         
               p(isNeList) = [1] x1 + [0]         
                p(isNePal) = [1] x1 + [0]         
                  p(isPal) = [1] x1 + [0]         
                  p(isQid) = [1] x1 + [0]         
                  p(n____) = [1] x1 + [1] x2 + [1]
                   p(n__a) = [5]                  
                   p(n__e) = [4]                  
                   p(n__i) = [1]                  
              p(n__isList) = [1] x1 + [0]         
            p(n__isNeList) = [1] x1 + [0]         
               p(n__isPal) = [1] x1 + [0]         
                 p(n__nil) = [0]                  
                   p(n__o) = [1]                  
                   p(n__u) = [1]                  
                    p(nil) = [1]                  
                      p(o) = [1]                  
                     p(tt) = [0]                  
                      p(u) = [1]                  
          
          Following rules are strictly oriented:
                activate(n__a()) = [5]                                                
                                 > [0]                                                
                                 = a()                                                
          
                activate(n__e()) = [4]                                                
                                 > [0]                                                
                                 = e()                                                
          
                activate(n__i()) = [1]                                                
                                 > [0]                                                
                                 = i()                                                
          
            isList(n____(V1,V2)) = [1] V1 + [1] V2 + [1]                              
                                 > [1] V1 + [1] V2 + [0]                              
                                 = and(isList(activate(V1)),n__isList(activate(V2)))  
          
          isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [1]                              
                                 > [1] V1 + [1] V2 + [0]                              
                                 = and(isList(activate(V1)),n__isNeList(activate(V2)))
          
          isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [1]                              
                                 > [1] V1 + [1] V2 + [0]                              
                                 = and(isNeList(activate(V1)),n__isList(activate(V2)))
          
                           nil() = [1]                                                
                                 > [0]                                                
                                 = n__nil()                                           
          
          
          Following rules are (at-least) weakly oriented:
                         __(X1,X2) =  [1] X1 + [1] X2 + [1]
                                   >= [1] X1 + [1] X2 + [1]
                                   =  n____(X1,X2)         
          
                               a() =  [0]                  
                                   >= [5]                  
                                   =  n__a()               
          
                       activate(X) =  [1] X + [0]          
                                   >= [1] X + [0]          
                                   =  X                    
          
            activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [1]
                                   >= [1] X1 + [1] X2 + [1]
                                   =  __(X1,X2)            
          
            activate(n__isList(X)) =  [1] X + [0]          
                                   >= [1] X + [0]          
                                   =  isList(X)            
          
          activate(n__isNeList(X)) =  [1] X + [0]          
                                   >= [1] X + [0]          
                                   =  isNeList(X)          
          
             activate(n__isPal(X)) =  [1] X + [0]          
                                   >= [1] X + [0]          
                                   =  isPal(X)             
          
                activate(n__nil()) =  [0]                  
                                   >= [1]                  
                                   =  nil()                
          
                  activate(n__o()) =  [1]                  
                                   >= [1]                  
                                   =  o()                  
          
                  activate(n__u()) =  [1]                  
                                   >= [1]                  
                                   =  u()                  
          
                       and(tt(),X) =  [1] X + [0]          
                                   >= [1] X + [0]          
                                   =  activate(X)          
          
                               e() =  [0]                  
                                   >= [4]                  
                                   =  n__e()               
          
                               i() =  [0]                  
                                   >= [1]                  
                                   =  n__i()               
          
                         isList(V) =  [1] V + [0]          
                                   >= [1] V + [0]          
                                   =  isNeList(activate(V))
          
                         isList(X) =  [1] X + [0]          
                                   >= [1] X + [0]          
                                   =  n__isList(X)         
          
                  isList(n__nil()) =  [0]                  
                                   >= [0]                  
                                   =  tt()                 
          
                       isNeList(V) =  [1] V + [0]          
                                   >= [1] V + [0]          
                                   =  isQid(activate(V))   
          
                       isNeList(X) =  [1] X + [0]          
                                   >= [1] X + [0]          
                                   =  n__isNeList(X)       
          
                        isNePal(V) =  [1] V + [0]          
                                   >= [1] V + [0]          
                                   =  isQid(activate(V))   
          
                          isPal(V) =  [1] V + [0]          
                                   >= [1] V + [0]          
                                   =  isNePal(activate(V)) 
          
                          isPal(X) =  [1] X + [0]          
                                   >= [1] X + [0]          
                                   =  n__isPal(X)          
          
                   isPal(n__nil()) =  [0]                  
                                   >= [0]                  
                                   =  tt()                 
          
                     isQid(n__a()) =  [5]                  
                                   >= [0]                  
                                   =  tt()                 
          
                     isQid(n__e()) =  [4]                  
                                   >= [0]                  
                                   =  tt()                 
          
                     isQid(n__i()) =  [1]                  
                                   >= [0]                  
                                   =  tt()                 
          
                     isQid(n__o()) =  [1]                  
                                   >= [0]                  
                                   =  tt()                 
          
                     isQid(n__u()) =  [1]                  
                                   >= [0]                  
                                   =  tt()                 
          
                               o() =  [1]                  
                                   >= [1]                  
                                   =  n__o()               
          
                               u() =  [1]                  
                                   >= [1]                  
                                   =  n__u()               
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 5: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            __(X1,X2) -> n____(X1,X2)
            a() -> n__a()
            activate(X) -> X
            activate(n__isList(X)) -> isList(X)
            activate(n__nil()) -> nil()
            activate(n__u()) -> u()
            e() -> n__e()
            i() -> n__i()
            isNeList(V) -> isQid(activate(V))
            isNeList(X) -> n__isNeList(X)
            isNePal(V) -> isQid(activate(V))
            isPal(V) -> isNePal(activate(V))
            isPal(X) -> n__isPal(X)
            isPal(n__nil()) -> tt()
            o() -> n__o()
        - Weak TRS:
            activate(n____(X1,X2)) -> __(X1,X2)
            activate(n__a()) -> a()
            activate(n__e()) -> e()
            activate(n__i()) -> i()
            activate(n__isNeList(X)) -> isNeList(X)
            activate(n__isPal(X)) -> isPal(X)
            activate(n__o()) -> o()
            and(tt(),X) -> activate(X)
            isList(V) -> isNeList(activate(V))
            isList(X) -> n__isList(X)
            isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
            isList(n__nil()) -> tt()
            isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
            isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
            isQid(n__a()) -> tt()
            isQid(n__e()) -> tt()
            isQid(n__i()) -> tt()
            isQid(n__o()) -> tt()
            isQid(n__u()) -> tt()
            nil() -> n__nil()
            u() -> n__u()
        - Signature:
            {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2
            ,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid
            ,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(isList) = {1},
            uargs(isNeList) = {1},
            uargs(isNePal) = {1},
            uargs(isQid) = {1},
            uargs(n__isList) = {1},
            uargs(n__isNeList) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                     p(__) = [1] x1 + [1] x2 + [4]
                      p(a) = [1]                  
               p(activate) = [1] x1 + [0]         
                    p(and) = [1] x1 + [1] x2 + [4]
                      p(e) = [1]                  
                      p(i) = [1]                  
                 p(isList) = [1] x1 + [0]         
               p(isNeList) = [1] x1 + [0]         
                p(isNePal) = [1] x1 + [0]         
                  p(isPal) = [1] x1 + [5]         
                  p(isQid) = [1] x1 + [2]         
                  p(n____) = [1] x1 + [1] x2 + [4]
                   p(n__a) = [1]                  
                   p(n__e) = [1]                  
                   p(n__i) = [1]                  
              p(n__isList) = [1] x1 + [0]         
            p(n__isNeList) = [1] x1 + [0]         
               p(n__isPal) = [1] x1 + [5]         
                 p(n__nil) = [1]                  
                   p(n__o) = [3]                  
                   p(n__u) = [7]                  
                    p(nil) = [1]                  
                      p(o) = [0]                  
                     p(tt) = [0]                  
                      p(u) = [7]                  
          
          Following rules are strictly oriented:
                 isPal(V) = [1] V + [5]         
                          > [1] V + [0]         
                          = isNePal(activate(V))
          
          isPal(n__nil()) = [6]                 
                          > [0]                 
                          = tt()                
          
          
          Following rules are (at-least) weakly oriented:
                         __(X1,X2) =  [1] X1 + [1] X2 + [4]                              
                                   >= [1] X1 + [1] X2 + [4]                              
                                   =  n____(X1,X2)                                       
          
                               a() =  [1]                                                
                                   >= [1]                                                
                                   =  n__a()                                             
          
                       activate(X) =  [1] X + [0]                                        
                                   >= [1] X + [0]                                        
                                   =  X                                                  
          
            activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [4]                              
                                   >= [1] X1 + [1] X2 + [4]                              
                                   =  __(X1,X2)                                          
          
                  activate(n__a()) =  [1]                                                
                                   >= [1]                                                
                                   =  a()                                                
          
                  activate(n__e()) =  [1]                                                
                                   >= [1]                                                
                                   =  e()                                                
          
                  activate(n__i()) =  [1]                                                
                                   >= [1]                                                
                                   =  i()                                                
          
            activate(n__isList(X)) =  [1] X + [0]                                        
                                   >= [1] X + [0]                                        
                                   =  isList(X)                                          
          
          activate(n__isNeList(X)) =  [1] X + [0]                                        
                                   >= [1] X + [0]                                        
                                   =  isNeList(X)                                        
          
             activate(n__isPal(X)) =  [1] X + [5]                                        
                                   >= [1] X + [5]                                        
                                   =  isPal(X)                                           
          
                activate(n__nil()) =  [1]                                                
                                   >= [1]                                                
                                   =  nil()                                              
          
                  activate(n__o()) =  [3]                                                
                                   >= [0]                                                
                                   =  o()                                                
          
                  activate(n__u()) =  [7]                                                
                                   >= [7]                                                
                                   =  u()                                                
          
                       and(tt(),X) =  [1] X + [4]                                        
                                   >= [1] X + [0]                                        
                                   =  activate(X)                                        
          
                               e() =  [1]                                                
                                   >= [1]                                                
                                   =  n__e()                                             
          
                               i() =  [1]                                                
                                   >= [1]                                                
                                   =  n__i()                                             
          
                         isList(V) =  [1] V + [0]                                        
                                   >= [1] V + [0]                                        
                                   =  isNeList(activate(V))                              
          
                         isList(X) =  [1] X + [0]                                        
                                   >= [1] X + [0]                                        
                                   =  n__isList(X)                                       
          
              isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [4]                              
                                   >= [1] V1 + [1] V2 + [4]                              
                                   =  and(isList(activate(V1)),n__isList(activate(V2)))  
          
                  isList(n__nil()) =  [1]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                       isNeList(V) =  [1] V + [0]                                        
                                   >= [1] V + [2]                                        
                                   =  isQid(activate(V))                                 
          
                       isNeList(X) =  [1] X + [0]                                        
                                   >= [1] X + [0]                                        
                                   =  n__isNeList(X)                                     
          
            isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [4]                              
                                   >= [1] V1 + [1] V2 + [4]                              
                                   =  and(isList(activate(V1)),n__isNeList(activate(V2)))
          
            isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [4]                              
                                   >= [1] V1 + [1] V2 + [4]                              
                                   =  and(isNeList(activate(V1)),n__isList(activate(V2)))
          
                        isNePal(V) =  [1] V + [0]                                        
                                   >= [1] V + [2]                                        
                                   =  isQid(activate(V))                                 
          
                          isPal(X) =  [1] X + [5]                                        
                                   >= [1] X + [5]                                        
                                   =  n__isPal(X)                                        
          
                     isQid(n__a()) =  [3]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                     isQid(n__e()) =  [3]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                     isQid(n__i()) =  [3]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                     isQid(n__o()) =  [5]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                     isQid(n__u()) =  [9]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                             nil() =  [1]                                                
                                   >= [1]                                                
                                   =  n__nil()                                           
          
                               o() =  [0]                                                
                                   >= [3]                                                
                                   =  n__o()                                             
          
                               u() =  [7]                                                
                                   >= [7]                                                
                                   =  n__u()                                             
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 6: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            __(X1,X2) -> n____(X1,X2)
            a() -> n__a()
            activate(X) -> X
            activate(n__isList(X)) -> isList(X)
            activate(n__nil()) -> nil()
            activate(n__u()) -> u()
            e() -> n__e()
            i() -> n__i()
            isNeList(V) -> isQid(activate(V))
            isNeList(X) -> n__isNeList(X)
            isNePal(V) -> isQid(activate(V))
            isPal(X) -> n__isPal(X)
            o() -> n__o()
        - Weak TRS:
            activate(n____(X1,X2)) -> __(X1,X2)
            activate(n__a()) -> a()
            activate(n__e()) -> e()
            activate(n__i()) -> i()
            activate(n__isNeList(X)) -> isNeList(X)
            activate(n__isPal(X)) -> isPal(X)
            activate(n__o()) -> o()
            and(tt(),X) -> activate(X)
            isList(V) -> isNeList(activate(V))
            isList(X) -> n__isList(X)
            isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
            isList(n__nil()) -> tt()
            isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
            isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
            isPal(V) -> isNePal(activate(V))
            isPal(n__nil()) -> tt()
            isQid(n__a()) -> tt()
            isQid(n__e()) -> tt()
            isQid(n__i()) -> tt()
            isQid(n__o()) -> tt()
            isQid(n__u()) -> tt()
            nil() -> n__nil()
            u() -> n__u()
        - Signature:
            {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2
            ,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid
            ,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(isList) = {1},
            uargs(isNeList) = {1},
            uargs(isNePal) = {1},
            uargs(isQid) = {1},
            uargs(n__isList) = {1},
            uargs(n__isNeList) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                     p(__) = [1] x1 + [1] x2 + [0]
                      p(a) = [2]                  
               p(activate) = [1] x1 + [0]         
                    p(and) = [1] x1 + [1] x2 + [0]
                      p(e) = [0]                  
                      p(i) = [0]                  
                 p(isList) = [1] x1 + [0]         
               p(isNeList) = [1] x1 + [0]         
                p(isNePal) = [1] x1 + [6]         
                  p(isPal) = [1] x1 + [6]         
                  p(isQid) = [1] x1 + [0]         
                  p(n____) = [1] x1 + [1] x2 + [0]
                   p(n__a) = [3]                  
                   p(n__e) = [6]                  
                   p(n__i) = [0]                  
              p(n__isList) = [1] x1 + [0]         
            p(n__isNeList) = [1] x1 + [0]         
               p(n__isPal) = [1] x1 + [6]         
                 p(n__nil) = [0]                  
                   p(n__o) = [2]                  
                   p(n__u) = [3]                  
                    p(nil) = [1]                  
                      p(o) = [0]                  
                     p(tt) = [0]                  
                      p(u) = [3]                  
          
          Following rules are strictly oriented:
          isNePal(V) = [1] V + [6]       
                     > [1] V + [0]       
                     = isQid(activate(V))
          
          
          Following rules are (at-least) weakly oriented:
                         __(X1,X2) =  [1] X1 + [1] X2 + [0]                              
                                   >= [1] X1 + [1] X2 + [0]                              
                                   =  n____(X1,X2)                                       
          
                               a() =  [2]                                                
                                   >= [3]                                                
                                   =  n__a()                                             
          
                       activate(X) =  [1] X + [0]                                        
                                   >= [1] X + [0]                                        
                                   =  X                                                  
          
            activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [0]                              
                                   >= [1] X1 + [1] X2 + [0]                              
                                   =  __(X1,X2)                                          
          
                  activate(n__a()) =  [3]                                                
                                   >= [2]                                                
                                   =  a()                                                
          
                  activate(n__e()) =  [6]                                                
                                   >= [0]                                                
                                   =  e()                                                
          
                  activate(n__i()) =  [0]                                                
                                   >= [0]                                                
                                   =  i()                                                
          
            activate(n__isList(X)) =  [1] X + [0]                                        
                                   >= [1] X + [0]                                        
                                   =  isList(X)                                          
          
          activate(n__isNeList(X)) =  [1] X + [0]                                        
                                   >= [1] X + [0]                                        
                                   =  isNeList(X)                                        
          
             activate(n__isPal(X)) =  [1] X + [6]                                        
                                   >= [1] X + [6]                                        
                                   =  isPal(X)                                           
          
                activate(n__nil()) =  [0]                                                
                                   >= [1]                                                
                                   =  nil()                                              
          
                  activate(n__o()) =  [2]                                                
                                   >= [0]                                                
                                   =  o()                                                
          
                  activate(n__u()) =  [3]                                                
                                   >= [3]                                                
                                   =  u()                                                
          
                       and(tt(),X) =  [1] X + [0]                                        
                                   >= [1] X + [0]                                        
                                   =  activate(X)                                        
          
                               e() =  [0]                                                
                                   >= [6]                                                
                                   =  n__e()                                             
          
                               i() =  [0]                                                
                                   >= [0]                                                
                                   =  n__i()                                             
          
                         isList(V) =  [1] V + [0]                                        
                                   >= [1] V + [0]                                        
                                   =  isNeList(activate(V))                              
          
                         isList(X) =  [1] X + [0]                                        
                                   >= [1] X + [0]                                        
                                   =  n__isList(X)                                       
          
              isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]                              
                                   >= [1] V1 + [1] V2 + [0]                              
                                   =  and(isList(activate(V1)),n__isList(activate(V2)))  
          
                  isList(n__nil()) =  [0]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                       isNeList(V) =  [1] V + [0]                                        
                                   >= [1] V + [0]                                        
                                   =  isQid(activate(V))                                 
          
                       isNeList(X) =  [1] X + [0]                                        
                                   >= [1] X + [0]                                        
                                   =  n__isNeList(X)                                     
          
            isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]                              
                                   >= [1] V1 + [1] V2 + [0]                              
                                   =  and(isList(activate(V1)),n__isNeList(activate(V2)))
          
            isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]                              
                                   >= [1] V1 + [1] V2 + [0]                              
                                   =  and(isNeList(activate(V1)),n__isList(activate(V2)))
          
                          isPal(V) =  [1] V + [6]                                        
                                   >= [1] V + [6]                                        
                                   =  isNePal(activate(V))                               
          
                          isPal(X) =  [1] X + [6]                                        
                                   >= [1] X + [6]                                        
                                   =  n__isPal(X)                                        
          
                   isPal(n__nil()) =  [6]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                     isQid(n__a()) =  [3]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                     isQid(n__e()) =  [6]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                     isQid(n__i()) =  [0]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                     isQid(n__o()) =  [2]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                     isQid(n__u()) =  [3]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                             nil() =  [1]                                                
                                   >= [0]                                                
                                   =  n__nil()                                           
          
                               o() =  [0]                                                
                                   >= [2]                                                
                                   =  n__o()                                             
          
                               u() =  [3]                                                
                                   >= [3]                                                
                                   =  n__u()                                             
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 7: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            __(X1,X2) -> n____(X1,X2)
            a() -> n__a()
            activate(X) -> X
            activate(n__isList(X)) -> isList(X)
            activate(n__nil()) -> nil()
            activate(n__u()) -> u()
            e() -> n__e()
            i() -> n__i()
            isNeList(V) -> isQid(activate(V))
            isNeList(X) -> n__isNeList(X)
            isPal(X) -> n__isPal(X)
            o() -> n__o()
        - Weak TRS:
            activate(n____(X1,X2)) -> __(X1,X2)
            activate(n__a()) -> a()
            activate(n__e()) -> e()
            activate(n__i()) -> i()
            activate(n__isNeList(X)) -> isNeList(X)
            activate(n__isPal(X)) -> isPal(X)
            activate(n__o()) -> o()
            and(tt(),X) -> activate(X)
            isList(V) -> isNeList(activate(V))
            isList(X) -> n__isList(X)
            isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
            isList(n__nil()) -> tt()
            isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
            isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
            isNePal(V) -> isQid(activate(V))
            isPal(V) -> isNePal(activate(V))
            isPal(n__nil()) -> tt()
            isQid(n__a()) -> tt()
            isQid(n__e()) -> tt()
            isQid(n__i()) -> tt()
            isQid(n__o()) -> tt()
            isQid(n__u()) -> tt()
            nil() -> n__nil()
            u() -> n__u()
        - Signature:
            {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2
            ,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid
            ,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(isList) = {1},
            uargs(isNeList) = {1},
            uargs(isNePal) = {1},
            uargs(isQid) = {1},
            uargs(n__isList) = {1},
            uargs(n__isNeList) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                     p(__) = [1] x1 + [1] x2 + [7]
                      p(a) = [0]                  
               p(activate) = [1] x1 + [0]         
                    p(and) = [1] x1 + [1] x2 + [0]
                      p(e) = [0]                  
                      p(i) = [0]                  
                 p(isList) = [1] x1 + [2]         
               p(isNeList) = [1] x1 + [2]         
                p(isNePal) = [1] x1 + [0]         
                  p(isPal) = [1] x1 + [0]         
                  p(isQid) = [1] x1 + [0]         
                  p(n____) = [1] x1 + [1] x2 + [7]
                   p(n__a) = [0]                  
                   p(n__e) = [0]                  
                   p(n__i) = [0]                  
              p(n__isList) = [1] x1 + [2]         
            p(n__isNeList) = [1] x1 + [2]         
               p(n__isPal) = [1] x1 + [0]         
                 p(n__nil) = [0]                  
                   p(n__o) = [0]                  
                   p(n__u) = [0]                  
                    p(nil) = [0]                  
                      p(o) = [0]                  
                     p(tt) = [0]                  
                      p(u) = [0]                  
          
          Following rules are strictly oriented:
          isNeList(V) = [1] V + [2]       
                      > [1] V + [0]       
                      = isQid(activate(V))
          
          
          Following rules are (at-least) weakly oriented:
                         __(X1,X2) =  [1] X1 + [1] X2 + [7]                              
                                   >= [1] X1 + [1] X2 + [7]                              
                                   =  n____(X1,X2)                                       
          
                               a() =  [0]                                                
                                   >= [0]                                                
                                   =  n__a()                                             
          
                       activate(X) =  [1] X + [0]                                        
                                   >= [1] X + [0]                                        
                                   =  X                                                  
          
            activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [7]                              
                                   >= [1] X1 + [1] X2 + [7]                              
                                   =  __(X1,X2)                                          
          
                  activate(n__a()) =  [0]                                                
                                   >= [0]                                                
                                   =  a()                                                
          
                  activate(n__e()) =  [0]                                                
                                   >= [0]                                                
                                   =  e()                                                
          
                  activate(n__i()) =  [0]                                                
                                   >= [0]                                                
                                   =  i()                                                
          
            activate(n__isList(X)) =  [1] X + [2]                                        
                                   >= [1] X + [2]                                        
                                   =  isList(X)                                          
          
          activate(n__isNeList(X)) =  [1] X + [2]                                        
                                   >= [1] X + [2]                                        
                                   =  isNeList(X)                                        
          
             activate(n__isPal(X)) =  [1] X + [0]                                        
                                   >= [1] X + [0]                                        
                                   =  isPal(X)                                           
          
                activate(n__nil()) =  [0]                                                
                                   >= [0]                                                
                                   =  nil()                                              
          
                  activate(n__o()) =  [0]                                                
                                   >= [0]                                                
                                   =  o()                                                
          
                  activate(n__u()) =  [0]                                                
                                   >= [0]                                                
                                   =  u()                                                
          
                       and(tt(),X) =  [1] X + [0]                                        
                                   >= [1] X + [0]                                        
                                   =  activate(X)                                        
          
                               e() =  [0]                                                
                                   >= [0]                                                
                                   =  n__e()                                             
          
                               i() =  [0]                                                
                                   >= [0]                                                
                                   =  n__i()                                             
          
                         isList(V) =  [1] V + [2]                                        
                                   >= [1] V + [2]                                        
                                   =  isNeList(activate(V))                              
          
                         isList(X) =  [1] X + [2]                                        
                                   >= [1] X + [2]                                        
                                   =  n__isList(X)                                       
          
              isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [9]                              
                                   >= [1] V1 + [1] V2 + [4]                              
                                   =  and(isList(activate(V1)),n__isList(activate(V2)))  
          
                  isList(n__nil()) =  [2]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                       isNeList(X) =  [1] X + [2]                                        
                                   >= [1] X + [2]                                        
                                   =  n__isNeList(X)                                     
          
            isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [9]                              
                                   >= [1] V1 + [1] V2 + [4]                              
                                   =  and(isList(activate(V1)),n__isNeList(activate(V2)))
          
            isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [9]                              
                                   >= [1] V1 + [1] V2 + [4]                              
                                   =  and(isNeList(activate(V1)),n__isList(activate(V2)))
          
                        isNePal(V) =  [1] V + [0]                                        
                                   >= [1] V + [0]                                        
                                   =  isQid(activate(V))                                 
          
                          isPal(V) =  [1] V + [0]                                        
                                   >= [1] V + [0]                                        
                                   =  isNePal(activate(V))                               
          
                          isPal(X) =  [1] X + [0]                                        
                                   >= [1] X + [0]                                        
                                   =  n__isPal(X)                                        
          
                   isPal(n__nil()) =  [0]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                     isQid(n__a()) =  [0]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                     isQid(n__e()) =  [0]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                     isQid(n__i()) =  [0]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                     isQid(n__o()) =  [0]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                     isQid(n__u()) =  [0]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                             nil() =  [0]                                                
                                   >= [0]                                                
                                   =  n__nil()                                           
          
                               o() =  [0]                                                
                                   >= [0]                                                
                                   =  n__o()                                             
          
                               u() =  [0]                                                
                                   >= [0]                                                
                                   =  n__u()                                             
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 8: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            __(X1,X2) -> n____(X1,X2)
            a() -> n__a()
            activate(X) -> X
            activate(n__isList(X)) -> isList(X)
            activate(n__nil()) -> nil()
            activate(n__u()) -> u()
            e() -> n__e()
            i() -> n__i()
            isNeList(X) -> n__isNeList(X)
            isPal(X) -> n__isPal(X)
            o() -> n__o()
        - Weak TRS:
            activate(n____(X1,X2)) -> __(X1,X2)
            activate(n__a()) -> a()
            activate(n__e()) -> e()
            activate(n__i()) -> i()
            activate(n__isNeList(X)) -> isNeList(X)
            activate(n__isPal(X)) -> isPal(X)
            activate(n__o()) -> o()
            and(tt(),X) -> activate(X)
            isList(V) -> isNeList(activate(V))
            isList(X) -> n__isList(X)
            isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
            isList(n__nil()) -> tt()
            isNeList(V) -> isQid(activate(V))
            isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
            isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
            isNePal(V) -> isQid(activate(V))
            isPal(V) -> isNePal(activate(V))
            isPal(n__nil()) -> tt()
            isQid(n__a()) -> tt()
            isQid(n__e()) -> tt()
            isQid(n__i()) -> tt()
            isQid(n__o()) -> tt()
            isQid(n__u()) -> tt()
            nil() -> n__nil()
            u() -> n__u()
        - Signature:
            {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2
            ,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid
            ,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(isList) = {1},
            uargs(isNeList) = {1},
            uargs(isNePal) = {1},
            uargs(isQid) = {1},
            uargs(n__isList) = {1},
            uargs(n__isNeList) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                     p(__) = [1] x1 + [1] x2 + [0]
                      p(a) = [1]                  
               p(activate) = [1] x1 + [1]         
                    p(and) = [1] x1 + [1] x2 + [1]
                      p(e) = [4]                  
                      p(i) = [0]                  
                 p(isList) = [1] x1 + [2]         
               p(isNeList) = [1] x1 + [1]         
                p(isNePal) = [1] x1 + [2]         
                  p(isPal) = [1] x1 + [3]         
                  p(isQid) = [1] x1 + [0]         
                  p(n____) = [1] x1 + [1] x2 + [4]
                   p(n__a) = [0]                  
                   p(n__e) = [3]                  
                   p(n__i) = [1]                  
              p(n__isList) = [1] x1 + [0]         
            p(n__isNeList) = [1] x1 + [0]         
               p(n__isPal) = [1] x1 + [2]         
                 p(n__nil) = [0]                  
                   p(n__o) = [2]                  
                   p(n__u) = [1]                  
                    p(nil) = [2]                  
                      p(o) = [3]                  
                     p(tt) = [0]                  
                      p(u) = [1]                  
          
          Following rules are strictly oriented:
                       a() = [1]           
                           > [0]           
                           = n__a()        
          
               activate(X) = [1] X + [1]   
                           > [1] X + [0]   
                           = X             
          
          activate(n__u()) = [2]           
                           > [1]           
                           = u()           
          
                       e() = [4]           
                           > [3]           
                           = n__e()        
          
               isNeList(X) = [1] X + [1]   
                           > [1] X + [0]   
                           = n__isNeList(X)
          
                  isPal(X) = [1] X + [3]   
                           > [1] X + [2]   
                           = n__isPal(X)   
          
                       o() = [3]           
                           > [2]           
                           = n__o()        
          
          
          Following rules are (at-least) weakly oriented:
                         __(X1,X2) =  [1] X1 + [1] X2 + [0]                              
                                   >= [1] X1 + [1] X2 + [4]                              
                                   =  n____(X1,X2)                                       
          
            activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [5]                              
                                   >= [1] X1 + [1] X2 + [0]                              
                                   =  __(X1,X2)                                          
          
                  activate(n__a()) =  [1]                                                
                                   >= [1]                                                
                                   =  a()                                                
          
                  activate(n__e()) =  [4]                                                
                                   >= [4]                                                
                                   =  e()                                                
          
                  activate(n__i()) =  [2]                                                
                                   >= [0]                                                
                                   =  i()                                                
          
            activate(n__isList(X)) =  [1] X + [1]                                        
                                   >= [1] X + [2]                                        
                                   =  isList(X)                                          
          
          activate(n__isNeList(X)) =  [1] X + [1]                                        
                                   >= [1] X + [1]                                        
                                   =  isNeList(X)                                        
          
             activate(n__isPal(X)) =  [1] X + [3]                                        
                                   >= [1] X + [3]                                        
                                   =  isPal(X)                                           
          
                activate(n__nil()) =  [1]                                                
                                   >= [2]                                                
                                   =  nil()                                              
          
                  activate(n__o()) =  [3]                                                
                                   >= [3]                                                
                                   =  o()                                                
          
                       and(tt(),X) =  [1] X + [1]                                        
                                   >= [1] X + [1]                                        
                                   =  activate(X)                                        
          
                               i() =  [0]                                                
                                   >= [1]                                                
                                   =  n__i()                                             
          
                         isList(V) =  [1] V + [2]                                        
                                   >= [1] V + [2]                                        
                                   =  isNeList(activate(V))                              
          
                         isList(X) =  [1] X + [2]                                        
                                   >= [1] X + [0]                                        
                                   =  n__isList(X)                                       
          
              isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [6]                              
                                   >= [1] V1 + [1] V2 + [5]                              
                                   =  and(isList(activate(V1)),n__isList(activate(V2)))  
          
                  isList(n__nil()) =  [2]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                       isNeList(V) =  [1] V + [1]                                        
                                   >= [1] V + [1]                                        
                                   =  isQid(activate(V))                                 
          
            isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [5]                              
                                   >= [1] V1 + [1] V2 + [5]                              
                                   =  and(isList(activate(V1)),n__isNeList(activate(V2)))
          
            isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [5]                              
                                   >= [1] V1 + [1] V2 + [4]                              
                                   =  and(isNeList(activate(V1)),n__isList(activate(V2)))
          
                        isNePal(V) =  [1] V + [2]                                        
                                   >= [1] V + [1]                                        
                                   =  isQid(activate(V))                                 
          
                          isPal(V) =  [1] V + [3]                                        
                                   >= [1] V + [3]                                        
                                   =  isNePal(activate(V))                               
          
                   isPal(n__nil()) =  [3]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                     isQid(n__a()) =  [0]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                     isQid(n__e()) =  [3]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                     isQid(n__i()) =  [1]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                     isQid(n__o()) =  [2]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                     isQid(n__u()) =  [1]                                                
                                   >= [0]                                                
                                   =  tt()                                               
          
                             nil() =  [2]                                                
                                   >= [0]                                                
                                   =  n__nil()                                           
          
                               u() =  [1]                                                
                                   >= [1]                                                
                                   =  n__u()                                             
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 9: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            __(X1,X2) -> n____(X1,X2)
            activate(n__isList(X)) -> isList(X)
            activate(n__nil()) -> nil()
            i() -> n__i()
        - Weak TRS:
            a() -> n__a()
            activate(X) -> X
            activate(n____(X1,X2)) -> __(X1,X2)
            activate(n__a()) -> a()
            activate(n__e()) -> e()
            activate(n__i()) -> i()
            activate(n__isNeList(X)) -> isNeList(X)
            activate(n__isPal(X)) -> isPal(X)
            activate(n__o()) -> o()
            activate(n__u()) -> u()
            and(tt(),X) -> activate(X)
            e() -> n__e()
            isList(V) -> isNeList(activate(V))
            isList(X) -> n__isList(X)
            isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
            isList(n__nil()) -> tt()
            isNeList(V) -> isQid(activate(V))
            isNeList(X) -> n__isNeList(X)
            isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
            isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
            isNePal(V) -> isQid(activate(V))
            isPal(V) -> isNePal(activate(V))
            isPal(X) -> n__isPal(X)
            isPal(n__nil()) -> tt()
            isQid(n__a()) -> tt()
            isQid(n__e()) -> tt()
            isQid(n__i()) -> tt()
            isQid(n__o()) -> tt()
            isQid(n__u()) -> tt()
            nil() -> n__nil()
            o() -> n__o()
            u() -> n__u()
        - Signature:
            {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2
            ,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid
            ,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(isList) = {1},
            uargs(isNeList) = {1},
            uargs(isNePal) = {1},
            uargs(isQid) = {1},
            uargs(n__isList) = {1},
            uargs(n__isNeList) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                     p(__) = [1] x1 + [1] x2 + [0]
                      p(a) = [3]                  
               p(activate) = [1] x1 + [2]         
                    p(and) = [1] x1 + [1] x2 + [0]
                      p(e) = [4]                  
                      p(i) = [5]                  
                 p(isList) = [1] x1 + [4]         
               p(isNeList) = [1] x1 + [2]         
                p(isNePal) = [1] x1 + [4]         
                  p(isPal) = [1] x1 + [6]         
                  p(isQid) = [1] x1 + [0]         
                  p(n____) = [1] x1 + [1] x2 + [6]
                   p(n__a) = [2]                  
                   p(n__e) = [4]                  
                   p(n__i) = [4]                  
              p(n__isList) = [1] x1 + [0]         
            p(n__isNeList) = [1] x1 + [0]         
               p(n__isPal) = [1] x1 + [4]         
                 p(n__nil) = [0]                  
                   p(n__o) = [2]                  
                   p(n__u) = [4]                  
                    p(nil) = [0]                  
                      p(o) = [2]                  
                     p(tt) = [2]                  
                      p(u) = [5]                  
          
          Following rules are strictly oriented:
          activate(n__nil()) = [2]   
                             > [0]   
                             = nil() 
          
                         i() = [5]   
                             > [4]   
                             = n__i()
          
          
          Following rules are (at-least) weakly oriented:
                         __(X1,X2) =  [1] X1 + [1] X2 + [0]                              
                                   >= [1] X1 + [1] X2 + [6]                              
                                   =  n____(X1,X2)                                       
          
                               a() =  [3]                                                
                                   >= [2]                                                
                                   =  n__a()                                             
          
                       activate(X) =  [1] X + [2]                                        
                                   >= [1] X + [0]                                        
                                   =  X                                                  
          
            activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [8]                              
                                   >= [1] X1 + [1] X2 + [0]                              
                                   =  __(X1,X2)                                          
          
                  activate(n__a()) =  [4]                                                
                                   >= [3]                                                
                                   =  a()                                                
          
                  activate(n__e()) =  [6]                                                
                                   >= [4]                                                
                                   =  e()                                                
          
                  activate(n__i()) =  [6]                                                
                                   >= [5]                                                
                                   =  i()                                                
          
            activate(n__isList(X)) =  [1] X + [2]                                        
                                   >= [1] X + [4]                                        
                                   =  isList(X)                                          
          
          activate(n__isNeList(X)) =  [1] X + [2]                                        
                                   >= [1] X + [2]                                        
                                   =  isNeList(X)                                        
          
             activate(n__isPal(X)) =  [1] X + [6]                                        
                                   >= [1] X + [6]                                        
                                   =  isPal(X)                                           
          
                  activate(n__o()) =  [4]                                                
                                   >= [2]                                                
                                   =  o()                                                
          
                  activate(n__u()) =  [6]                                                
                                   >= [5]                                                
                                   =  u()                                                
          
                       and(tt(),X) =  [1] X + [2]                                        
                                   >= [1] X + [2]                                        
                                   =  activate(X)                                        
          
                               e() =  [4]                                                
                                   >= [4]                                                
                                   =  n__e()                                             
          
                         isList(V) =  [1] V + [4]                                        
                                   >= [1] V + [4]                                        
                                   =  isNeList(activate(V))                              
          
                         isList(X) =  [1] X + [4]                                        
                                   >= [1] X + [0]                                        
                                   =  n__isList(X)                                       
          
              isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [10]                             
                                   >= [1] V1 + [1] V2 + [8]                              
                                   =  and(isList(activate(V1)),n__isList(activate(V2)))  
          
                  isList(n__nil()) =  [4]                                                
                                   >= [2]                                                
                                   =  tt()                                               
          
                       isNeList(V) =  [1] V + [2]                                        
                                   >= [1] V + [2]                                        
                                   =  isQid(activate(V))                                 
          
                       isNeList(X) =  [1] X + [2]                                        
                                   >= [1] X + [0]                                        
                                   =  n__isNeList(X)                                     
          
            isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [8]                              
                                   >= [1] V1 + [1] V2 + [8]                              
                                   =  and(isList(activate(V1)),n__isNeList(activate(V2)))
          
            isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [8]                              
                                   >= [1] V1 + [1] V2 + [6]                              
                                   =  and(isNeList(activate(V1)),n__isList(activate(V2)))
          
                        isNePal(V) =  [1] V + [4]                                        
                                   >= [1] V + [2]                                        
                                   =  isQid(activate(V))                                 
          
                          isPal(V) =  [1] V + [6]                                        
                                   >= [1] V + [6]                                        
                                   =  isNePal(activate(V))                               
          
                          isPal(X) =  [1] X + [6]                                        
                                   >= [1] X + [4]                                        
                                   =  n__isPal(X)                                        
          
                   isPal(n__nil()) =  [6]                                                
                                   >= [2]                                                
                                   =  tt()                                               
          
                     isQid(n__a()) =  [2]                                                
                                   >= [2]                                                
                                   =  tt()                                               
          
                     isQid(n__e()) =  [4]                                                
                                   >= [2]                                                
                                   =  tt()                                               
          
                     isQid(n__i()) =  [4]                                                
                                   >= [2]                                                
                                   =  tt()                                               
          
                     isQid(n__o()) =  [2]                                                
                                   >= [2]                                                
                                   =  tt()                                               
          
                     isQid(n__u()) =  [4]                                                
                                   >= [2]                                                
                                   =  tt()                                               
          
                             nil() =  [0]                                                
                                   >= [0]                                                
                                   =  n__nil()                                           
          
                               o() =  [2]                                                
                                   >= [2]                                                
                                   =  n__o()                                             
          
                               u() =  [5]                                                
                                   >= [4]                                                
                                   =  n__u()                                             
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 10: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            __(X1,X2) -> n____(X1,X2)
            activate(n__isList(X)) -> isList(X)
        - Weak TRS:
            a() -> n__a()
            activate(X) -> X
            activate(n____(X1,X2)) -> __(X1,X2)
            activate(n__a()) -> a()
            activate(n__e()) -> e()
            activate(n__i()) -> i()
            activate(n__isNeList(X)) -> isNeList(X)
            activate(n__isPal(X)) -> isPal(X)
            activate(n__nil()) -> nil()
            activate(n__o()) -> o()
            activate(n__u()) -> u()
            and(tt(),X) -> activate(X)
            e() -> n__e()
            i() -> n__i()
            isList(V) -> isNeList(activate(V))
            isList(X) -> n__isList(X)
            isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
            isList(n__nil()) -> tt()
            isNeList(V) -> isQid(activate(V))
            isNeList(X) -> n__isNeList(X)
            isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
            isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
            isNePal(V) -> isQid(activate(V))
            isPal(V) -> isNePal(activate(V))
            isPal(X) -> n__isPal(X)
            isPal(n__nil()) -> tt()
            isQid(n__a()) -> tt()
            isQid(n__e()) -> tt()
            isQid(n__i()) -> tt()
            isQid(n__o()) -> tt()
            isQid(n__u()) -> tt()
            nil() -> n__nil()
            o() -> n__o()
            u() -> n__u()
        - Signature:
            {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2
            ,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid
            ,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(isList) = {1},
            uargs(isNeList) = {1},
            uargs(isNePal) = {1},
            uargs(isQid) = {1},
            uargs(n__isList) = {1},
            uargs(n__isNeList) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                     p(__) = [1] x1 + [1] x2 + [7]
                      p(a) = [7]                  
               p(activate) = [1] x1 + [1]         
                    p(and) = [1] x1 + [1] x2 + [0]
                      p(e) = [1]                  
                      p(i) = [4]                  
                 p(isList) = [1] x1 + [4]         
               p(isNeList) = [1] x1 + [2]         
                p(isNePal) = [1] x1 + [1]         
                  p(isPal) = [1] x1 + [2]         
                  p(isQid) = [1] x1 + [0]         
                  p(n____) = [1] x1 + [1] x2 + [6]
                   p(n__a) = [7]                  
                   p(n__e) = [1]                  
                   p(n__i) = [4]                  
              p(n__isList) = [1] x1 + [4]         
            p(n__isNeList) = [1] x1 + [2]         
               p(n__isPal) = [1] x1 + [2]         
                 p(n__nil) = [0]                  
                   p(n__o) = [3]                  
                   p(n__u) = [1]                  
                    p(nil) = [0]                  
                      p(o) = [3]                  
                     p(tt) = [1]                  
                      p(u) = [2]                  
          
          Following rules are strictly oriented:
                       __(X1,X2) = [1] X1 + [1] X2 + [7]
                                 > [1] X1 + [1] X2 + [6]
                                 = n____(X1,X2)         
          
          activate(n__isList(X)) = [1] X + [5]          
                                 > [1] X + [4]          
                                 = isList(X)            
          
          
          Following rules are (at-least) weakly oriented:
                               a() =  [7]                                                
                                   >= [7]                                                
                                   =  n__a()                                             
          
                       activate(X) =  [1] X + [1]                                        
                                   >= [1] X + [0]                                        
                                   =  X                                                  
          
            activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [7]                              
                                   >= [1] X1 + [1] X2 + [7]                              
                                   =  __(X1,X2)                                          
          
                  activate(n__a()) =  [8]                                                
                                   >= [7]                                                
                                   =  a()                                                
          
                  activate(n__e()) =  [2]                                                
                                   >= [1]                                                
                                   =  e()                                                
          
                  activate(n__i()) =  [5]                                                
                                   >= [4]                                                
                                   =  i()                                                
          
          activate(n__isNeList(X)) =  [1] X + [3]                                        
                                   >= [1] X + [2]                                        
                                   =  isNeList(X)                                        
          
             activate(n__isPal(X)) =  [1] X + [3]                                        
                                   >= [1] X + [2]                                        
                                   =  isPal(X)                                           
          
                activate(n__nil()) =  [1]                                                
                                   >= [0]                                                
                                   =  nil()                                              
          
                  activate(n__o()) =  [4]                                                
                                   >= [3]                                                
                                   =  o()                                                
          
                  activate(n__u()) =  [2]                                                
                                   >= [2]                                                
                                   =  u()                                                
          
                       and(tt(),X) =  [1] X + [1]                                        
                                   >= [1] X + [1]                                        
                                   =  activate(X)                                        
          
                               e() =  [1]                                                
                                   >= [1]                                                
                                   =  n__e()                                             
          
                               i() =  [4]                                                
                                   >= [4]                                                
                                   =  n__i()                                             
          
                         isList(V) =  [1] V + [4]                                        
                                   >= [1] V + [3]                                        
                                   =  isNeList(activate(V))                              
          
                         isList(X) =  [1] X + [4]                                        
                                   >= [1] X + [4]                                        
                                   =  n__isList(X)                                       
          
              isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [10]                             
                                   >= [1] V1 + [1] V2 + [10]                             
                                   =  and(isList(activate(V1)),n__isList(activate(V2)))  
          
                  isList(n__nil()) =  [4]                                                
                                   >= [1]                                                
                                   =  tt()                                               
          
                       isNeList(V) =  [1] V + [2]                                        
                                   >= [1] V + [1]                                        
                                   =  isQid(activate(V))                                 
          
                       isNeList(X) =  [1] X + [2]                                        
                                   >= [1] X + [2]                                        
                                   =  n__isNeList(X)                                     
          
            isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [8]                              
                                   >= [1] V1 + [1] V2 + [8]                              
                                   =  and(isList(activate(V1)),n__isNeList(activate(V2)))
          
            isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [8]                              
                                   >= [1] V1 + [1] V2 + [8]                              
                                   =  and(isNeList(activate(V1)),n__isList(activate(V2)))
          
                        isNePal(V) =  [1] V + [1]                                        
                                   >= [1] V + [1]                                        
                                   =  isQid(activate(V))                                 
          
                          isPal(V) =  [1] V + [2]                                        
                                   >= [1] V + [2]                                        
                                   =  isNePal(activate(V))                               
          
                          isPal(X) =  [1] X + [2]                                        
                                   >= [1] X + [2]                                        
                                   =  n__isPal(X)                                        
          
                   isPal(n__nil()) =  [2]                                                
                                   >= [1]                                                
                                   =  tt()                                               
          
                     isQid(n__a()) =  [7]                                                
                                   >= [1]                                                
                                   =  tt()                                               
          
                     isQid(n__e()) =  [1]                                                
                                   >= [1]                                                
                                   =  tt()                                               
          
                     isQid(n__i()) =  [4]                                                
                                   >= [1]                                                
                                   =  tt()                                               
          
                     isQid(n__o()) =  [3]                                                
                                   >= [1]                                                
                                   =  tt()                                               
          
                     isQid(n__u()) =  [1]                                                
                                   >= [1]                                                
                                   =  tt()                                               
          
                             nil() =  [0]                                                
                                   >= [0]                                                
                                   =  n__nil()                                           
          
                               o() =  [3]                                                
                                   >= [3]                                                
                                   =  n__o()                                             
          
                               u() =  [2]                                                
                                   >= [1]                                                
                                   =  n__u()                                             
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
* Step 11: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            __(X1,X2) -> n____(X1,X2)
            a() -> n__a()
            activate(X) -> X
            activate(n____(X1,X2)) -> __(X1,X2)
            activate(n__a()) -> a()
            activate(n__e()) -> e()
            activate(n__i()) -> i()
            activate(n__isList(X)) -> isList(X)
            activate(n__isNeList(X)) -> isNeList(X)
            activate(n__isPal(X)) -> isPal(X)
            activate(n__nil()) -> nil()
            activate(n__o()) -> o()
            activate(n__u()) -> u()
            and(tt(),X) -> activate(X)
            e() -> n__e()
            i() -> n__i()
            isList(V) -> isNeList(activate(V))
            isList(X) -> n__isList(X)
            isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
            isList(n__nil()) -> tt()
            isNeList(V) -> isQid(activate(V))
            isNeList(X) -> n__isNeList(X)
            isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
            isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
            isNePal(V) -> isQid(activate(V))
            isPal(V) -> isNePal(activate(V))
            isPal(X) -> n__isPal(X)
            isPal(n__nil()) -> tt()
            isQid(n__a()) -> tt()
            isQid(n__e()) -> tt()
            isQid(n__i()) -> tt()
            isQid(n__o()) -> tt()
            isQid(n__u()) -> tt()
            nil() -> n__nil()
            o() -> n__o()
            u() -> n__u()
        - Signature:
            {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2
            ,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid
            ,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))