* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
a____(X,nil()) -> mark(X)
a____(X1,X2) -> __(X1,X2)
a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z)))
a____(nil(),X) -> mark(X)
a__and(X1,X2) -> and(X1,X2)
a__and(tt(),X) -> mark(X)
a__isList(V) -> a__isNeList(V)
a__isList(X) -> isList(X)
a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2))
a__isList(nil()) -> tt()
a__isNeList(V) -> a__isQid(V)
a__isNeList(X) -> isNeList(X)
a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2))
a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2))
a__isNePal(V) -> a__isQid(V)
a__isNePal(X) -> isNePal(X)
a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P))
a__isPal(V) -> a__isNePal(V)
a__isPal(X) -> isPal(X)
a__isPal(nil()) -> tt()
a__isQid(X) -> isQid(X)
a__isQid(a()) -> tt()
a__isQid(e()) -> tt()
a__isQid(i()) -> tt()
a__isQid(o()) -> tt()
a__isQid(u()) -> tt()
mark(__(X1,X2)) -> a____(mark(X1),mark(X2))
mark(a()) -> a()
mark(and(X1,X2)) -> a__and(mark(X1),X2)
mark(e()) -> e()
mark(i()) -> i()
mark(isList(X)) -> a__isList(X)
mark(isNeList(X)) -> a__isNeList(X)
mark(isNePal(X)) -> a__isNePal(X)
mark(isPal(X)) -> a__isPal(X)
mark(isQid(X)) -> a__isQid(X)
mark(nil()) -> nil()
mark(o()) -> o()
mark(tt()) -> tt()
mark(u()) -> u()
- Signature:
{a____/2,a__and/2,a__isList/1,a__isNeList/1,a__isNePal/1,a__isPal/1,a__isQid/1,mark/1} / {__/2,a/0,and/2,e/0
,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,tt/0,u/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {a____,a__and,a__isList,a__isNeList,a__isNePal,a__isPal
,a__isQid,mark} and constructors {__,a,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,tt,u}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
a____(X,nil()) -> mark(X)
a____(X1,X2) -> __(X1,X2)
a____(__(X,Y),Z) -> a____(mark(X),a____(mark(Y),mark(Z)))
a____(nil(),X) -> mark(X)
a__and(X1,X2) -> and(X1,X2)
a__and(tt(),X) -> mark(X)
a__isList(V) -> a__isNeList(V)
a__isList(X) -> isList(X)
a__isList(__(V1,V2)) -> a__and(a__isList(V1),isList(V2))
a__isList(nil()) -> tt()
a__isNeList(V) -> a__isQid(V)
a__isNeList(X) -> isNeList(X)
a__isNeList(__(V1,V2)) -> a__and(a__isList(V1),isNeList(V2))
a__isNeList(__(V1,V2)) -> a__and(a__isNeList(V1),isList(V2))
a__isNePal(V) -> a__isQid(V)
a__isNePal(X) -> isNePal(X)
a__isNePal(__(I,__(P,I))) -> a__and(a__isQid(I),isPal(P))
a__isPal(V) -> a__isNePal(V)
a__isPal(X) -> isPal(X)
a__isPal(nil()) -> tt()
a__isQid(X) -> isQid(X)
a__isQid(a()) -> tt()
a__isQid(e()) -> tt()
a__isQid(i()) -> tt()
a__isQid(o()) -> tt()
a__isQid(u()) -> tt()
mark(__(X1,X2)) -> a____(mark(X1),mark(X2))
mark(a()) -> a()
mark(and(X1,X2)) -> a__and(mark(X1),X2)
mark(e()) -> e()
mark(i()) -> i()
mark(isList(X)) -> a__isList(X)
mark(isNeList(X)) -> a__isNeList(X)
mark(isNePal(X)) -> a__isNePal(X)
mark(isPal(X)) -> a__isPal(X)
mark(isQid(X)) -> a__isQid(X)
mark(nil()) -> nil()
mark(o()) -> o()
mark(tt()) -> tt()
mark(u()) -> u()
- Signature:
{a____/2,a__and/2,a__isList/1,a__isNeList/1,a__isNePal/1,a__isPal/1,a__isQid/1,mark/1} / {__/2,a/0,and/2,e/0
,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,tt/0,u/0}
- Obligation:
innermost runtime complexity wrt. defined symbols {a____,a__and,a__isList,a__isNeList,a__isNePal,a__isPal
,a__isQid,mark} and constructors {__,a,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,tt,u}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
a__isList(x){x -> __(x,y)} =
a__isList(__(x,y)) ->^+ a__and(a__isList(x),isList(y))
= C[a__isList(x) = a__isList(x){}]
WORST_CASE(Omega(n^1),?)