* Step 1: Sum WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() __(X,nil()) -> X __(X1,X2) -> n____(X1,X2) __(__(X,Y),Z) -> __(X,__(Y,Z)) __(nil(),X) -> X a() -> n__a() activate(X) -> X activate(n____(X1,X2)) -> __(X1,X2) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__nil()) -> nil() activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() isList(V) -> U11(isNeList(activate(V))) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P)) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() o() -> n__o() u() -> n__u() - Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0 ,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0 ,n__o/0,n__u/0,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a ,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__nil ,n__o,n__u,tt} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: InnermostRuleRemoval WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() __(X,nil()) -> X __(X1,X2) -> n____(X1,X2) __(__(X,Y),Z) -> __(X,__(Y,Z)) __(nil(),X) -> X a() -> n__a() activate(X) -> X activate(n____(X1,X2)) -> __(X1,X2) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__nil()) -> nil() activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() isList(V) -> U11(isNeList(activate(V))) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P)) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() o() -> n__o() u() -> n__u() - Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0 ,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0 ,n__o/0,n__u/0,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a ,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__nil ,n__o,n__u,tt} + Applied Processor: InnermostRuleRemoval + Details: Arguments of following rules are not normal-forms. __(X,nil()) -> X __(__(X,Y),Z) -> __(X,__(Y,Z)) __(nil(),X) -> X isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P)) All above mentioned rules can be savely removed. * Step 3: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() __(X1,X2) -> n____(X1,X2) a() -> n__a() activate(X) -> X activate(n____(X1,X2)) -> __(X1,X2) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__nil()) -> nil() activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() isList(V) -> U11(isNeList(activate(V))) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() o() -> n__o() u() -> n__u() - Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0 ,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0 ,n__o/0,n__u/0,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a ,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__nil ,n__o,n__u,tt} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1}, uargs(U21) = {1,2}, uargs(U22) = {1}, uargs(U31) = {1}, uargs(U41) = {1,2}, uargs(U42) = {1}, uargs(U51) = {1,2}, uargs(U52) = {1}, uargs(U61) = {1}, uargs(U72) = {1}, uargs(U81) = {1}, uargs(isList) = {1}, uargs(isNeList) = {1}, uargs(isNePal) = {1}, uargs(isPal) = {1}, uargs(isQid) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(U11) = [1] x1 + [0] p(U21) = [1] x1 + [1] x2 + [0] p(U22) = [1] x1 + [0] p(U31) = [1] x1 + [0] p(U41) = [1] x1 + [1] x2 + [0] p(U42) = [1] x1 + [0] p(U51) = [1] x1 + [1] x2 + [0] p(U52) = [1] x1 + [5] p(U61) = [1] x1 + [0] p(U71) = [1] x2 + [0] p(U72) = [1] x1 + [0] p(U81) = [1] x1 + [0] p(__) = [1] x1 + [1] x2 + [0] p(a) = [0] p(activate) = [1] x1 + [0] p(e) = [0] p(i) = [0] p(isList) = [1] x1 + [0] p(isNeList) = [1] x1 + [7] p(isNePal) = [1] x1 + [0] p(isPal) = [1] x1 + [0] p(isQid) = [1] x1 + [1] p(n____) = [1] x1 + [1] x2 + [3] p(n__a) = [0] p(n__e) = [0] p(n__i) = [0] p(n__nil) = [0] p(n__o) = [0] p(n__u) = [0] p(nil) = [0] p(o) = [0] p(tt) = [0] p(u) = [1] Following rules are strictly oriented: U52(tt()) = [5] > [0] = tt() activate(n____(X1,X2)) = [1] X1 + [1] X2 + [3] > [1] X1 + [1] X2 + [0] = __(X1,X2) isList(n____(V1,V2)) = [1] V1 + [1] V2 + [3] > [1] V1 + [1] V2 + [0] = U21(isList(activate(V1)),activate(V2)) isNeList(V) = [1] V + [7] > [1] V + [1] = U31(isQid(activate(V))) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [10] > [1] V1 + [1] V2 + [0] = U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [10] > [1] V1 + [1] V2 + [7] = U51(isNeList(activate(V1)),activate(V2)) isQid(n__a()) = [1] > [0] = tt() isQid(n__e()) = [1] > [0] = tt() isQid(n__i()) = [1] > [0] = tt() isQid(n__o()) = [1] > [0] = tt() isQid(n__u()) = [1] > [0] = tt() u() = [1] > [0] = n__u() Following rules are (at-least) weakly oriented: U11(tt()) = [0] >= [0] = tt() U21(tt(),V2) = [1] V2 + [0] >= [1] V2 + [0] = U22(isList(activate(V2))) U22(tt()) = [0] >= [0] = tt() U31(tt()) = [0] >= [0] = tt() U41(tt(),V2) = [1] V2 + [0] >= [1] V2 + [7] = U42(isNeList(activate(V2))) U42(tt()) = [0] >= [0] = tt() U51(tt(),V2) = [1] V2 + [0] >= [1] V2 + [5] = U52(isList(activate(V2))) U61(tt()) = [0] >= [0] = tt() U71(tt(),P) = [1] P + [0] >= [1] P + [0] = U72(isPal(activate(P))) U72(tt()) = [0] >= [0] = tt() U81(tt()) = [0] >= [0] = tt() __(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [3] = n____(X1,X2) a() = [0] >= [0] = n__a() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__a()) = [0] >= [0] = a() activate(n__e()) = [0] >= [0] = e() activate(n__i()) = [0] >= [0] = i() activate(n__nil()) = [0] >= [0] = nil() activate(n__o()) = [0] >= [0] = o() activate(n__u()) = [0] >= [1] = u() e() = [0] >= [0] = n__e() i() = [0] >= [0] = n__i() isList(V) = [1] V + [0] >= [1] V + [7] = U11(isNeList(activate(V))) isList(n__nil()) = [0] >= [0] = tt() isNePal(V) = [1] V + [0] >= [1] V + [1] = U61(isQid(activate(V))) isPal(V) = [1] V + [0] >= [1] V + [0] = U81(isNePal(activate(V))) isPal(n__nil()) = [0] >= [0] = tt() nil() = [0] >= [0] = n__nil() o() = [0] >= [0] = n__o() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 4: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() __(X1,X2) -> n____(X1,X2) a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__nil()) -> nil() activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() isList(V) -> U11(isNeList(activate(V))) isList(n__nil()) -> tt() isNePal(V) -> U61(isQid(activate(V))) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() nil() -> n__nil() o() -> n__o() - Weak TRS: U52(tt()) -> tt() activate(n____(X1,X2)) -> __(X1,X2) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() u() -> n__u() - Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0 ,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0 ,n__o/0,n__u/0,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a ,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__nil ,n__o,n__u,tt} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1}, uargs(U21) = {1,2}, uargs(U22) = {1}, uargs(U31) = {1}, uargs(U41) = {1,2}, uargs(U42) = {1}, uargs(U51) = {1,2}, uargs(U52) = {1}, uargs(U61) = {1}, uargs(U72) = {1}, uargs(U81) = {1}, uargs(isList) = {1}, uargs(isNeList) = {1}, uargs(isNePal) = {1}, uargs(isPal) = {1}, uargs(isQid) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(U11) = [1] x1 + [0] p(U21) = [1] x1 + [1] x2 + [1] p(U22) = [1] x1 + [0] p(U31) = [1] x1 + [0] p(U41) = [1] x1 + [1] x2 + [0] p(U42) = [1] x1 + [1] p(U51) = [1] x1 + [1] x2 + [1] p(U52) = [1] x1 + [0] p(U61) = [1] x1 + [0] p(U71) = [1] x2 + [0] p(U72) = [1] x1 + [0] p(U81) = [1] x1 + [0] p(__) = [1] x1 + [1] x2 + [1] p(a) = [0] p(activate) = [1] x1 + [0] p(e) = [0] p(i) = [0] p(isList) = [1] x1 + [2] p(isNeList) = [1] x1 + [1] p(isNePal) = [1] x1 + [0] p(isPal) = [1] x1 + [7] p(isQid) = [1] x1 + [1] p(n____) = [1] x1 + [1] x2 + [1] p(n__a) = [1] p(n__e) = [1] p(n__i) = [1] p(n__nil) = [4] p(n__o) = [1] p(n__u) = [1] p(nil) = [0] p(o) = [2] p(tt) = [2] p(u) = [1] Following rules are strictly oriented: U21(tt(),V2) = [1] V2 + [3] > [1] V2 + [2] = U22(isList(activate(V2))) U42(tt()) = [3] > [2] = tt() U51(tt(),V2) = [1] V2 + [3] > [1] V2 + [2] = U52(isList(activate(V2))) activate(n__a()) = [1] > [0] = a() activate(n__e()) = [1] > [0] = e() activate(n__i()) = [1] > [0] = i() activate(n__nil()) = [4] > [0] = nil() isList(V) = [1] V + [2] > [1] V + [1] = U11(isNeList(activate(V))) isList(n__nil()) = [6] > [2] = tt() isPal(V) = [1] V + [7] > [1] V + [0] = U81(isNePal(activate(V))) isPal(n__nil()) = [11] > [2] = tt() o() = [2] > [1] = n__o() Following rules are (at-least) weakly oriented: U11(tt()) = [2] >= [2] = tt() U22(tt()) = [2] >= [2] = tt() U31(tt()) = [2] >= [2] = tt() U41(tt(),V2) = [1] V2 + [2] >= [1] V2 + [2] = U42(isNeList(activate(V2))) U52(tt()) = [2] >= [2] = tt() U61(tt()) = [2] >= [2] = tt() U71(tt(),P) = [1] P + [0] >= [1] P + [7] = U72(isPal(activate(P))) U72(tt()) = [2] >= [2] = tt() U81(tt()) = [2] >= [2] = tt() __(X1,X2) = [1] X1 + [1] X2 + [1] >= [1] X1 + [1] X2 + [1] = n____(X1,X2) a() = [0] >= [1] = n__a() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n____(X1,X2)) = [1] X1 + [1] X2 + [1] >= [1] X1 + [1] X2 + [1] = __(X1,X2) activate(n__o()) = [1] >= [2] = o() activate(n__u()) = [1] >= [1] = u() e() = [0] >= [1] = n__e() i() = [0] >= [1] = n__i() isList(n____(V1,V2)) = [1] V1 + [1] V2 + [3] >= [1] V1 + [1] V2 + [3] = U21(isList(activate(V1)),activate(V2)) isNeList(V) = [1] V + [1] >= [1] V + [1] = U31(isQid(activate(V))) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [2] >= [1] V1 + [1] V2 + [2] = U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [2] >= [1] V1 + [1] V2 + [2] = U51(isNeList(activate(V1)),activate(V2)) isNePal(V) = [1] V + [0] >= [1] V + [1] = U61(isQid(activate(V))) isQid(n__a()) = [2] >= [2] = tt() isQid(n__e()) = [2] >= [2] = tt() isQid(n__i()) = [2] >= [2] = tt() isQid(n__o()) = [2] >= [2] = tt() isQid(n__u()) = [2] >= [2] = tt() nil() = [0] >= [4] = n__nil() u() = [1] >= [1] = n__u() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 5: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: U11(tt()) -> tt() U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() __(X1,X2) -> n____(X1,X2) a() -> n__a() activate(X) -> X activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() isNePal(V) -> U61(isQid(activate(V))) nil() -> n__nil() - Weak TRS: U21(tt(),V2) -> U22(isList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() activate(n____(X1,X2)) -> __(X1,X2) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__nil()) -> nil() isList(V) -> U11(isNeList(activate(V))) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() o() -> n__o() u() -> n__u() - Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0 ,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0 ,n__o/0,n__u/0,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a ,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__nil ,n__o,n__u,tt} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1}, uargs(U21) = {1,2}, uargs(U22) = {1}, uargs(U31) = {1}, uargs(U41) = {1,2}, uargs(U42) = {1}, uargs(U51) = {1,2}, uargs(U52) = {1}, uargs(U61) = {1}, uargs(U72) = {1}, uargs(U81) = {1}, uargs(isList) = {1}, uargs(isNeList) = {1}, uargs(isNePal) = {1}, uargs(isPal) = {1}, uargs(isQid) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(U11) = [1] x1 + [4] p(U21) = [1] x1 + [1] x2 + [4] p(U22) = [1] x1 + [0] p(U31) = [1] x1 + [0] p(U41) = [1] x1 + [1] x2 + [2] p(U42) = [1] x1 + [0] p(U51) = [1] x1 + [1] x2 + [4] p(U52) = [1] x1 + [0] p(U61) = [1] x1 + [0] p(U71) = [1] x2 + [0] p(U72) = [1] x1 + [4] p(U81) = [1] x1 + [0] p(__) = [1] x1 + [1] x2 + [0] p(a) = [0] p(activate) = [1] x1 + [0] p(e) = [0] p(i) = [0] p(isList) = [1] x1 + [4] p(isNeList) = [1] x1 + [0] p(isNePal) = [1] x1 + [5] p(isPal) = [1] x1 + [5] p(isQid) = [1] x1 + [0] p(n____) = [1] x1 + [1] x2 + [7] p(n__a) = [0] p(n__e) = [5] p(n__i) = [1] p(n__nil) = [4] p(n__o) = [4] p(n__u) = [6] p(nil) = [0] p(o) = [4] p(tt) = [0] p(u) = [6] Following rules are strictly oriented: U11(tt()) = [4] > [0] = tt() U41(tt(),V2) = [1] V2 + [2] > [1] V2 + [0] = U42(isNeList(activate(V2))) U72(tt()) = [4] > [0] = tt() isNePal(V) = [1] V + [5] > [1] V + [0] = U61(isQid(activate(V))) Following rules are (at-least) weakly oriented: U21(tt(),V2) = [1] V2 + [4] >= [1] V2 + [4] = U22(isList(activate(V2))) U22(tt()) = [0] >= [0] = tt() U31(tt()) = [0] >= [0] = tt() U42(tt()) = [0] >= [0] = tt() U51(tt(),V2) = [1] V2 + [4] >= [1] V2 + [4] = U52(isList(activate(V2))) U52(tt()) = [0] >= [0] = tt() U61(tt()) = [0] >= [0] = tt() U71(tt(),P) = [1] P + [0] >= [1] P + [9] = U72(isPal(activate(P))) U81(tt()) = [0] >= [0] = tt() __(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [7] = n____(X1,X2) a() = [0] >= [0] = n__a() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n____(X1,X2)) = [1] X1 + [1] X2 + [7] >= [1] X1 + [1] X2 + [0] = __(X1,X2) activate(n__a()) = [0] >= [0] = a() activate(n__e()) = [5] >= [0] = e() activate(n__i()) = [1] >= [0] = i() activate(n__nil()) = [4] >= [0] = nil() activate(n__o()) = [4] >= [4] = o() activate(n__u()) = [6] >= [6] = u() e() = [0] >= [5] = n__e() i() = [0] >= [1] = n__i() isList(V) = [1] V + [4] >= [1] V + [4] = U11(isNeList(activate(V))) isList(n____(V1,V2)) = [1] V1 + [1] V2 + [11] >= [1] V1 + [1] V2 + [8] = U21(isList(activate(V1)),activate(V2)) isList(n__nil()) = [8] >= [0] = tt() isNeList(V) = [1] V + [0] >= [1] V + [0] = U31(isQid(activate(V))) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [7] >= [1] V1 + [1] V2 + [6] = U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [7] >= [1] V1 + [1] V2 + [4] = U51(isNeList(activate(V1)),activate(V2)) isPal(V) = [1] V + [5] >= [1] V + [5] = U81(isNePal(activate(V))) isPal(n__nil()) = [9] >= [0] = tt() isQid(n__a()) = [0] >= [0] = tt() isQid(n__e()) = [5] >= [0] = tt() isQid(n__i()) = [1] >= [0] = tt() isQid(n__o()) = [4] >= [0] = tt() isQid(n__u()) = [6] >= [0] = tt() nil() = [0] >= [4] = n__nil() o() = [4] >= [4] = n__o() u() = [6] >= [6] = n__u() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 6: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: U22(tt()) -> tt() U31(tt()) -> tt() U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U81(tt()) -> tt() __(X1,X2) -> n____(X1,X2) a() -> n__a() activate(X) -> X activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() nil() -> n__nil() - Weak TRS: U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U72(tt()) -> tt() activate(n____(X1,X2)) -> __(X1,X2) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__nil()) -> nil() isList(V) -> U11(isNeList(activate(V))) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() o() -> n__o() u() -> n__u() - Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0 ,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0 ,n__o/0,n__u/0,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a ,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__nil ,n__o,n__u,tt} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1}, uargs(U21) = {1,2}, uargs(U22) = {1}, uargs(U31) = {1}, uargs(U41) = {1,2}, uargs(U42) = {1}, uargs(U51) = {1,2}, uargs(U52) = {1}, uargs(U61) = {1}, uargs(U72) = {1}, uargs(U81) = {1}, uargs(isList) = {1}, uargs(isNeList) = {1}, uargs(isNePal) = {1}, uargs(isPal) = {1}, uargs(isQid) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(U11) = [1] x1 + [3] p(U21) = [1] x1 + [1] x2 + [5] p(U22) = [1] x1 + [1] p(U31) = [1] x1 + [0] p(U41) = [1] x1 + [1] x2 + [2] p(U42) = [1] x1 + [1] p(U51) = [1] x1 + [1] x2 + [6] p(U52) = [1] x1 + [1] p(U61) = [1] x1 + [0] p(U71) = [1] x2 + [0] p(U72) = [1] x1 + [4] p(U81) = [1] x1 + [4] p(__) = [1] x1 + [1] x2 + [0] p(a) = [0] p(activate) = [1] x1 + [0] p(e) = [0] p(i) = [0] p(isList) = [1] x1 + [4] p(isNeList) = [1] x1 + [0] p(isNePal) = [1] x1 + [0] p(isPal) = [1] x1 + [4] p(isQid) = [1] x1 + [0] p(n____) = [1] x1 + [1] x2 + [6] p(n__a) = [1] p(n__e) = [4] p(n__i) = [0] p(n__nil) = [0] p(n__o) = [0] p(n__u) = [0] p(nil) = [0] p(o) = [1] p(tt) = [0] p(u) = [1] Following rules are strictly oriented: U22(tt()) = [1] > [0] = tt() U81(tt()) = [4] > [0] = tt() Following rules are (at-least) weakly oriented: U11(tt()) = [3] >= [0] = tt() U21(tt(),V2) = [1] V2 + [5] >= [1] V2 + [5] = U22(isList(activate(V2))) U31(tt()) = [0] >= [0] = tt() U41(tt(),V2) = [1] V2 + [2] >= [1] V2 + [1] = U42(isNeList(activate(V2))) U42(tt()) = [1] >= [0] = tt() U51(tt(),V2) = [1] V2 + [6] >= [1] V2 + [5] = U52(isList(activate(V2))) U52(tt()) = [1] >= [0] = tt() U61(tt()) = [0] >= [0] = tt() U71(tt(),P) = [1] P + [0] >= [1] P + [8] = U72(isPal(activate(P))) U72(tt()) = [4] >= [0] = tt() __(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [6] = n____(X1,X2) a() = [0] >= [1] = n__a() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n____(X1,X2)) = [1] X1 + [1] X2 + [6] >= [1] X1 + [1] X2 + [0] = __(X1,X2) activate(n__a()) = [1] >= [0] = a() activate(n__e()) = [4] >= [0] = e() activate(n__i()) = [0] >= [0] = i() activate(n__nil()) = [0] >= [0] = nil() activate(n__o()) = [0] >= [1] = o() activate(n__u()) = [0] >= [1] = u() e() = [0] >= [4] = n__e() i() = [0] >= [0] = n__i() isList(V) = [1] V + [4] >= [1] V + [3] = U11(isNeList(activate(V))) isList(n____(V1,V2)) = [1] V1 + [1] V2 + [10] >= [1] V1 + [1] V2 + [9] = U21(isList(activate(V1)),activate(V2)) isList(n__nil()) = [4] >= [0] = tt() isNeList(V) = [1] V + [0] >= [1] V + [0] = U31(isQid(activate(V))) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [6] >= [1] V1 + [1] V2 + [6] = U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [6] >= [1] V1 + [1] V2 + [6] = U51(isNeList(activate(V1)),activate(V2)) isNePal(V) = [1] V + [0] >= [1] V + [0] = U61(isQid(activate(V))) isPal(V) = [1] V + [4] >= [1] V + [4] = U81(isNePal(activate(V))) isPal(n__nil()) = [4] >= [0] = tt() isQid(n__a()) = [1] >= [0] = tt() isQid(n__e()) = [4] >= [0] = tt() isQid(n__i()) = [0] >= [0] = tt() isQid(n__o()) = [0] >= [0] = tt() isQid(n__u()) = [0] >= [0] = tt() nil() = [0] >= [0] = n__nil() o() = [1] >= [0] = n__o() u() = [1] >= [0] = n__u() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 7: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: U31(tt()) -> tt() U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) __(X1,X2) -> n____(X1,X2) a() -> n__a() activate(X) -> X activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() nil() -> n__nil() - Weak TRS: U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U72(tt()) -> tt() U81(tt()) -> tt() activate(n____(X1,X2)) -> __(X1,X2) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__nil()) -> nil() isList(V) -> U11(isNeList(activate(V))) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() o() -> n__o() u() -> n__u() - Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0 ,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0 ,n__o/0,n__u/0,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a ,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__nil ,n__o,n__u,tt} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1}, uargs(U21) = {1,2}, uargs(U22) = {1}, uargs(U31) = {1}, uargs(U41) = {1,2}, uargs(U42) = {1}, uargs(U51) = {1,2}, uargs(U52) = {1}, uargs(U61) = {1}, uargs(U72) = {1}, uargs(U81) = {1}, uargs(isList) = {1}, uargs(isNeList) = {1}, uargs(isNePal) = {1}, uargs(isPal) = {1}, uargs(isQid) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(U11) = [1] x1 + [0] p(U21) = [1] x1 + [1] x2 + [0] p(U22) = [1] x1 + [0] p(U31) = [1] x1 + [0] p(U41) = [1] x1 + [1] x2 + [0] p(U42) = [1] x1 + [0] p(U51) = [1] x1 + [1] x2 + [0] p(U52) = [1] x1 + [0] p(U61) = [1] x1 + [1] p(U71) = [1] x2 + [0] p(U72) = [1] x1 + [0] p(U81) = [1] x1 + [0] p(__) = [1] x1 + [1] x2 + [0] p(a) = [1] p(activate) = [1] x1 + [0] p(e) = [0] p(i) = [0] p(isList) = [1] x1 + [0] p(isNeList) = [1] x1 + [0] p(isNePal) = [1] x1 + [1] p(isPal) = [1] x1 + [4] p(isQid) = [1] x1 + [0] p(n____) = [1] x1 + [1] x2 + [0] p(n__a) = [1] p(n__e) = [5] p(n__i) = [2] p(n__nil) = [4] p(n__o) = [1] p(n__u) = [1] p(nil) = [4] p(o) = [5] p(tt) = [0] p(u) = [1] Following rules are strictly oriented: U61(tt()) = [1] > [0] = tt() Following rules are (at-least) weakly oriented: U11(tt()) = [0] >= [0] = tt() U21(tt(),V2) = [1] V2 + [0] >= [1] V2 + [0] = U22(isList(activate(V2))) U22(tt()) = [0] >= [0] = tt() U31(tt()) = [0] >= [0] = tt() U41(tt(),V2) = [1] V2 + [0] >= [1] V2 + [0] = U42(isNeList(activate(V2))) U42(tt()) = [0] >= [0] = tt() U51(tt(),V2) = [1] V2 + [0] >= [1] V2 + [0] = U52(isList(activate(V2))) U52(tt()) = [0] >= [0] = tt() U71(tt(),P) = [1] P + [0] >= [1] P + [4] = U72(isPal(activate(P))) U72(tt()) = [0] >= [0] = tt() U81(tt()) = [0] >= [0] = tt() __(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = n____(X1,X2) a() = [1] >= [1] = n__a() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n____(X1,X2)) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = __(X1,X2) activate(n__a()) = [1] >= [1] = a() activate(n__e()) = [5] >= [0] = e() activate(n__i()) = [2] >= [0] = i() activate(n__nil()) = [4] >= [4] = nil() activate(n__o()) = [1] >= [5] = o() activate(n__u()) = [1] >= [1] = u() e() = [0] >= [5] = n__e() i() = [0] >= [2] = n__i() isList(V) = [1] V + [0] >= [1] V + [0] = U11(isNeList(activate(V))) isList(n____(V1,V2)) = [1] V1 + [1] V2 + [0] >= [1] V1 + [1] V2 + [0] = U21(isList(activate(V1)),activate(V2)) isList(n__nil()) = [4] >= [0] = tt() isNeList(V) = [1] V + [0] >= [1] V + [0] = U31(isQid(activate(V))) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [0] >= [1] V1 + [1] V2 + [0] = U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [0] >= [1] V1 + [1] V2 + [0] = U51(isNeList(activate(V1)),activate(V2)) isNePal(V) = [1] V + [1] >= [1] V + [1] = U61(isQid(activate(V))) isPal(V) = [1] V + [4] >= [1] V + [1] = U81(isNePal(activate(V))) isPal(n__nil()) = [8] >= [0] = tt() isQid(n__a()) = [1] >= [0] = tt() isQid(n__e()) = [5] >= [0] = tt() isQid(n__i()) = [2] >= [0] = tt() isQid(n__o()) = [1] >= [0] = tt() isQid(n__u()) = [1] >= [0] = tt() nil() = [4] >= [4] = n__nil() o() = [5] >= [1] = n__o() u() = [1] >= [1] = n__u() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 8: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: U31(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) __(X1,X2) -> n____(X1,X2) a() -> n__a() activate(X) -> X activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() nil() -> n__nil() - Weak TRS: U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U61(tt()) -> tt() U72(tt()) -> tt() U81(tt()) -> tt() activate(n____(X1,X2)) -> __(X1,X2) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__nil()) -> nil() isList(V) -> U11(isNeList(activate(V))) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() o() -> n__o() u() -> n__u() - Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0 ,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0 ,n__o/0,n__u/0,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a ,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__nil ,n__o,n__u,tt} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1}, uargs(U21) = {1,2}, uargs(U22) = {1}, uargs(U31) = {1}, uargs(U41) = {1,2}, uargs(U42) = {1}, uargs(U51) = {1,2}, uargs(U52) = {1}, uargs(U61) = {1}, uargs(U72) = {1}, uargs(U81) = {1}, uargs(isList) = {1}, uargs(isNeList) = {1}, uargs(isNePal) = {1}, uargs(isPal) = {1}, uargs(isQid) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(U11) = [1] x1 + [0] p(U21) = [1] x1 + [1] x2 + [0] p(U22) = [1] x1 + [0] p(U31) = [1] x1 + [0] p(U41) = [1] x1 + [1] x2 + [0] p(U42) = [1] x1 + [0] p(U51) = [1] x1 + [1] x2 + [0] p(U52) = [1] x1 + [0] p(U61) = [1] x1 + [0] p(U71) = [1] x2 + [2] p(U72) = [1] x1 + [0] p(U81) = [1] x1 + [0] p(__) = [1] x1 + [1] x2 + [0] p(a) = [0] p(activate) = [1] x1 + [0] p(e) = [0] p(i) = [0] p(isList) = [1] x1 + [0] p(isNeList) = [1] x1 + [0] p(isNePal) = [1] x1 + [1] p(isPal) = [1] x1 + [1] p(isQid) = [1] x1 + [0] p(n____) = [1] x1 + [1] x2 + [0] p(n__a) = [1] p(n__e) = [1] p(n__i) = [0] p(n__nil) = [2] p(n__o) = [0] p(n__u) = [0] p(nil) = [2] p(o) = [1] p(tt) = [0] p(u) = [5] Following rules are strictly oriented: U71(tt(),P) = [1] P + [2] > [1] P + [1] = U72(isPal(activate(P))) Following rules are (at-least) weakly oriented: U11(tt()) = [0] >= [0] = tt() U21(tt(),V2) = [1] V2 + [0] >= [1] V2 + [0] = U22(isList(activate(V2))) U22(tt()) = [0] >= [0] = tt() U31(tt()) = [0] >= [0] = tt() U41(tt(),V2) = [1] V2 + [0] >= [1] V2 + [0] = U42(isNeList(activate(V2))) U42(tt()) = [0] >= [0] = tt() U51(tt(),V2) = [1] V2 + [0] >= [1] V2 + [0] = U52(isList(activate(V2))) U52(tt()) = [0] >= [0] = tt() U61(tt()) = [0] >= [0] = tt() U72(tt()) = [0] >= [0] = tt() U81(tt()) = [0] >= [0] = tt() __(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = n____(X1,X2) a() = [0] >= [1] = n__a() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n____(X1,X2)) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [0] = __(X1,X2) activate(n__a()) = [1] >= [0] = a() activate(n__e()) = [1] >= [0] = e() activate(n__i()) = [0] >= [0] = i() activate(n__nil()) = [2] >= [2] = nil() activate(n__o()) = [0] >= [1] = o() activate(n__u()) = [0] >= [5] = u() e() = [0] >= [1] = n__e() i() = [0] >= [0] = n__i() isList(V) = [1] V + [0] >= [1] V + [0] = U11(isNeList(activate(V))) isList(n____(V1,V2)) = [1] V1 + [1] V2 + [0] >= [1] V1 + [1] V2 + [0] = U21(isList(activate(V1)),activate(V2)) isList(n__nil()) = [2] >= [0] = tt() isNeList(V) = [1] V + [0] >= [1] V + [0] = U31(isQid(activate(V))) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [0] >= [1] V1 + [1] V2 + [0] = U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [0] >= [1] V1 + [1] V2 + [0] = U51(isNeList(activate(V1)),activate(V2)) isNePal(V) = [1] V + [1] >= [1] V + [0] = U61(isQid(activate(V))) isPal(V) = [1] V + [1] >= [1] V + [1] = U81(isNePal(activate(V))) isPal(n__nil()) = [3] >= [0] = tt() isQid(n__a()) = [1] >= [0] = tt() isQid(n__e()) = [1] >= [0] = tt() isQid(n__i()) = [0] >= [0] = tt() isQid(n__o()) = [0] >= [0] = tt() isQid(n__u()) = [0] >= [0] = tt() nil() = [2] >= [2] = n__nil() o() = [1] >= [0] = n__o() u() = [5] >= [0] = n__u() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 9: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: U31(tt()) -> tt() __(X1,X2) -> n____(X1,X2) a() -> n__a() activate(X) -> X activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() nil() -> n__nil() - Weak TRS: U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() activate(n____(X1,X2)) -> __(X1,X2) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__nil()) -> nil() isList(V) -> U11(isNeList(activate(V))) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() o() -> n__o() u() -> n__u() - Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0 ,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0 ,n__o/0,n__u/0,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a ,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__nil ,n__o,n__u,tt} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1}, uargs(U21) = {1,2}, uargs(U22) = {1}, uargs(U31) = {1}, uargs(U41) = {1,2}, uargs(U42) = {1}, uargs(U51) = {1,2}, uargs(U52) = {1}, uargs(U61) = {1}, uargs(U72) = {1}, uargs(U81) = {1}, uargs(isList) = {1}, uargs(isNeList) = {1}, uargs(isNePal) = {1}, uargs(isPal) = {1}, uargs(isQid) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(U11) = [1] x1 + [2] p(U21) = [1] x1 + [1] x2 + [4] p(U22) = [1] x1 + [0] p(U31) = [1] x1 + [1] p(U41) = [1] x1 + [1] x2 + [1] p(U42) = [1] x1 + [0] p(U51) = [1] x1 + [1] x2 + [4] p(U52) = [1] x1 + [0] p(U61) = [1] x1 + [7] p(U71) = [1] x2 + [7] p(U72) = [1] x1 + [0] p(U81) = [1] x1 + [0] p(__) = [1] x1 + [1] x2 + [0] p(a) = [0] p(activate) = [1] x1 + [0] p(e) = [0] p(i) = [0] p(isList) = [1] x1 + [4] p(isNeList) = [1] x1 + [1] p(isNePal) = [1] x1 + [7] p(isPal) = [1] x1 + [7] p(isQid) = [1] x1 + [0] p(n____) = [1] x1 + [1] x2 + [4] p(n__a) = [1] p(n__e) = [1] p(n__i) = [0] p(n__nil) = [0] p(n__o) = [0] p(n__u) = [0] p(nil) = [0] p(o) = [0] p(tt) = [0] p(u) = [0] Following rules are strictly oriented: U31(tt()) = [1] > [0] = tt() Following rules are (at-least) weakly oriented: U11(tt()) = [2] >= [0] = tt() U21(tt(),V2) = [1] V2 + [4] >= [1] V2 + [4] = U22(isList(activate(V2))) U22(tt()) = [0] >= [0] = tt() U41(tt(),V2) = [1] V2 + [1] >= [1] V2 + [1] = U42(isNeList(activate(V2))) U42(tt()) = [0] >= [0] = tt() U51(tt(),V2) = [1] V2 + [4] >= [1] V2 + [4] = U52(isList(activate(V2))) U52(tt()) = [0] >= [0] = tt() U61(tt()) = [7] >= [0] = tt() U71(tt(),P) = [1] P + [7] >= [1] P + [7] = U72(isPal(activate(P))) U72(tt()) = [0] >= [0] = tt() U81(tt()) = [0] >= [0] = tt() __(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [4] = n____(X1,X2) a() = [0] >= [1] = n__a() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n____(X1,X2)) = [1] X1 + [1] X2 + [4] >= [1] X1 + [1] X2 + [0] = __(X1,X2) activate(n__a()) = [1] >= [0] = a() activate(n__e()) = [1] >= [0] = e() activate(n__i()) = [0] >= [0] = i() activate(n__nil()) = [0] >= [0] = nil() activate(n__o()) = [0] >= [0] = o() activate(n__u()) = [0] >= [0] = u() e() = [0] >= [1] = n__e() i() = [0] >= [0] = n__i() isList(V) = [1] V + [4] >= [1] V + [3] = U11(isNeList(activate(V))) isList(n____(V1,V2)) = [1] V1 + [1] V2 + [8] >= [1] V1 + [1] V2 + [8] = U21(isList(activate(V1)),activate(V2)) isList(n__nil()) = [4] >= [0] = tt() isNeList(V) = [1] V + [1] >= [1] V + [1] = U31(isQid(activate(V))) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [5] >= [1] V1 + [1] V2 + [5] = U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [5] >= [1] V1 + [1] V2 + [5] = U51(isNeList(activate(V1)),activate(V2)) isNePal(V) = [1] V + [7] >= [1] V + [7] = U61(isQid(activate(V))) isPal(V) = [1] V + [7] >= [1] V + [7] = U81(isNePal(activate(V))) isPal(n__nil()) = [7] >= [0] = tt() isQid(n__a()) = [1] >= [0] = tt() isQid(n__e()) = [1] >= [0] = tt() isQid(n__i()) = [0] >= [0] = tt() isQid(n__o()) = [0] >= [0] = tt() isQid(n__u()) = [0] >= [0] = tt() nil() = [0] >= [0] = n__nil() o() = [0] >= [0] = n__o() u() = [0] >= [0] = n__u() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 10: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: __(X1,X2) -> n____(X1,X2) a() -> n__a() activate(X) -> X activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() nil() -> n__nil() - Weak TRS: U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() activate(n____(X1,X2)) -> __(X1,X2) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__nil()) -> nil() isList(V) -> U11(isNeList(activate(V))) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() o() -> n__o() u() -> n__u() - Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0 ,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0 ,n__o/0,n__u/0,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a ,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__nil ,n__o,n__u,tt} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1}, uargs(U21) = {1,2}, uargs(U22) = {1}, uargs(U31) = {1}, uargs(U41) = {1,2}, uargs(U42) = {1}, uargs(U51) = {1,2}, uargs(U52) = {1}, uargs(U61) = {1}, uargs(U72) = {1}, uargs(U81) = {1}, uargs(isList) = {1}, uargs(isNeList) = {1}, uargs(isNePal) = {1}, uargs(isPal) = {1}, uargs(isQid) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(U11) = [1] x1 + [0] p(U21) = [1] x1 + [1] x2 + [3] p(U22) = [1] x1 + [0] p(U31) = [1] x1 + [1] p(U41) = [1] x1 + [1] x2 + [1] p(U42) = [1] x1 + [0] p(U51) = [1] x1 + [1] x2 + [3] p(U52) = [1] x1 + [0] p(U61) = [1] x1 + [0] p(U71) = [4] x2 + [7] p(U72) = [1] x1 + [0] p(U81) = [1] x1 + [0] p(__) = [1] x1 + [1] x2 + [0] p(a) = [0] p(activate) = [1] x1 + [2] p(e) = [0] p(i) = [6] p(isList) = [1] x1 + [5] p(isNeList) = [1] x1 + [3] p(isNePal) = [1] x1 + [2] p(isPal) = [1] x1 + [4] p(isQid) = [1] x1 + [0] p(n____) = [1] x1 + [1] x2 + [7] p(n__a) = [7] p(n__e) = [7] p(n__i) = [4] p(n__nil) = [0] p(n__o) = [4] p(n__u) = [4] p(nil) = [2] p(o) = [4] p(tt) = [4] p(u) = [5] Following rules are strictly oriented: activate(X) = [1] X + [2] > [1] X + [0] = X activate(n__o()) = [6] > [4] = o() activate(n__u()) = [6] > [5] = u() i() = [6] > [4] = n__i() nil() = [2] > [0] = n__nil() Following rules are (at-least) weakly oriented: U11(tt()) = [4] >= [4] = tt() U21(tt(),V2) = [1] V2 + [7] >= [1] V2 + [7] = U22(isList(activate(V2))) U22(tt()) = [4] >= [4] = tt() U31(tt()) = [5] >= [4] = tt() U41(tt(),V2) = [1] V2 + [5] >= [1] V2 + [5] = U42(isNeList(activate(V2))) U42(tt()) = [4] >= [4] = tt() U51(tt(),V2) = [1] V2 + [7] >= [1] V2 + [7] = U52(isList(activate(V2))) U52(tt()) = [4] >= [4] = tt() U61(tt()) = [4] >= [4] = tt() U71(tt(),P) = [4] P + [7] >= [1] P + [6] = U72(isPal(activate(P))) U72(tt()) = [4] >= [4] = tt() U81(tt()) = [4] >= [4] = tt() __(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [7] = n____(X1,X2) a() = [0] >= [7] = n__a() activate(n____(X1,X2)) = [1] X1 + [1] X2 + [9] >= [1] X1 + [1] X2 + [0] = __(X1,X2) activate(n__a()) = [9] >= [0] = a() activate(n__e()) = [9] >= [0] = e() activate(n__i()) = [6] >= [6] = i() activate(n__nil()) = [2] >= [2] = nil() e() = [0] >= [7] = n__e() isList(V) = [1] V + [5] >= [1] V + [5] = U11(isNeList(activate(V))) isList(n____(V1,V2)) = [1] V1 + [1] V2 + [12] >= [1] V1 + [1] V2 + [12] = U21(isList(activate(V1)),activate(V2)) isList(n__nil()) = [5] >= [4] = tt() isNeList(V) = [1] V + [3] >= [1] V + [3] = U31(isQid(activate(V))) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [10] >= [1] V1 + [1] V2 + [10] = U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [10] >= [1] V1 + [1] V2 + [10] = U51(isNeList(activate(V1)),activate(V2)) isNePal(V) = [1] V + [2] >= [1] V + [2] = U61(isQid(activate(V))) isPal(V) = [1] V + [4] >= [1] V + [4] = U81(isNePal(activate(V))) isPal(n__nil()) = [4] >= [4] = tt() isQid(n__a()) = [7] >= [4] = tt() isQid(n__e()) = [7] >= [4] = tt() isQid(n__i()) = [4] >= [4] = tt() isQid(n__o()) = [4] >= [4] = tt() isQid(n__u()) = [4] >= [4] = tt() o() = [4] >= [4] = n__o() u() = [5] >= [4] = n__u() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 11: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: __(X1,X2) -> n____(X1,X2) a() -> n__a() e() -> n__e() - Weak TRS: U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() activate(X) -> X activate(n____(X1,X2)) -> __(X1,X2) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__nil()) -> nil() activate(n__o()) -> o() activate(n__u()) -> u() i() -> n__i() isList(V) -> U11(isNeList(activate(V))) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() o() -> n__o() u() -> n__u() - Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0 ,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0 ,n__o/0,n__u/0,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a ,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__nil ,n__o,n__u,tt} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1}, uargs(U21) = {1,2}, uargs(U22) = {1}, uargs(U31) = {1}, uargs(U41) = {1,2}, uargs(U42) = {1}, uargs(U51) = {1,2}, uargs(U52) = {1}, uargs(U61) = {1}, uargs(U72) = {1}, uargs(U81) = {1}, uargs(isList) = {1}, uargs(isNeList) = {1}, uargs(isNePal) = {1}, uargs(isPal) = {1}, uargs(isQid) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(U11) = [1] x1 + [0] p(U21) = [1] x1 + [1] x2 + [5] p(U22) = [1] x1 + [0] p(U31) = [1] x1 + [0] p(U41) = [1] x1 + [1] x2 + [4] p(U42) = [1] x1 + [2] p(U51) = [1] x1 + [1] x2 + [4] p(U52) = [1] x1 + [1] p(U61) = [1] x1 + [1] p(U71) = [4] x2 + [6] p(U72) = [1] x1 + [1] p(U81) = [1] x1 + [1] p(__) = [1] x1 + [1] x2 + [0] p(a) = [1] p(activate) = [1] x1 + [1] p(e) = [0] p(i) = [1] p(isList) = [1] x1 + [2] p(isNeList) = [1] x1 + [1] p(isNePal) = [1] x1 + [2] p(isPal) = [1] x1 + [4] p(isQid) = [1] x1 + [0] p(n____) = [1] x1 + [1] x2 + [7] p(n__a) = [0] p(n__e) = [4] p(n__i) = [0] p(n__nil) = [0] p(n__o) = [2] p(n__u) = [4] p(nil) = [0] p(o) = [2] p(tt) = [0] p(u) = [4] Following rules are strictly oriented: a() = [1] > [0] = n__a() Following rules are (at-least) weakly oriented: U11(tt()) = [0] >= [0] = tt() U21(tt(),V2) = [1] V2 + [5] >= [1] V2 + [3] = U22(isList(activate(V2))) U22(tt()) = [0] >= [0] = tt() U31(tt()) = [0] >= [0] = tt() U41(tt(),V2) = [1] V2 + [4] >= [1] V2 + [4] = U42(isNeList(activate(V2))) U42(tt()) = [2] >= [0] = tt() U51(tt(),V2) = [1] V2 + [4] >= [1] V2 + [4] = U52(isList(activate(V2))) U52(tt()) = [1] >= [0] = tt() U61(tt()) = [1] >= [0] = tt() U71(tt(),P) = [4] P + [6] >= [1] P + [6] = U72(isPal(activate(P))) U72(tt()) = [1] >= [0] = tt() U81(tt()) = [1] >= [0] = tt() __(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [7] = n____(X1,X2) activate(X) = [1] X + [1] >= [1] X + [0] = X activate(n____(X1,X2)) = [1] X1 + [1] X2 + [8] >= [1] X1 + [1] X2 + [0] = __(X1,X2) activate(n__a()) = [1] >= [1] = a() activate(n__e()) = [5] >= [0] = e() activate(n__i()) = [1] >= [1] = i() activate(n__nil()) = [1] >= [0] = nil() activate(n__o()) = [3] >= [2] = o() activate(n__u()) = [5] >= [4] = u() e() = [0] >= [4] = n__e() i() = [1] >= [0] = n__i() isList(V) = [1] V + [2] >= [1] V + [2] = U11(isNeList(activate(V))) isList(n____(V1,V2)) = [1] V1 + [1] V2 + [9] >= [1] V1 + [1] V2 + [9] = U21(isList(activate(V1)),activate(V2)) isList(n__nil()) = [2] >= [0] = tt() isNeList(V) = [1] V + [1] >= [1] V + [1] = U31(isQid(activate(V))) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [8] >= [1] V1 + [1] V2 + [8] = U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [8] >= [1] V1 + [1] V2 + [7] = U51(isNeList(activate(V1)),activate(V2)) isNePal(V) = [1] V + [2] >= [1] V + [2] = U61(isQid(activate(V))) isPal(V) = [1] V + [4] >= [1] V + [4] = U81(isNePal(activate(V))) isPal(n__nil()) = [4] >= [0] = tt() isQid(n__a()) = [0] >= [0] = tt() isQid(n__e()) = [4] >= [0] = tt() isQid(n__i()) = [0] >= [0] = tt() isQid(n__o()) = [2] >= [0] = tt() isQid(n__u()) = [4] >= [0] = tt() nil() = [0] >= [0] = n__nil() o() = [2] >= [2] = n__o() u() = [4] >= [4] = n__u() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 12: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: __(X1,X2) -> n____(X1,X2) e() -> n__e() - Weak TRS: U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() a() -> n__a() activate(X) -> X activate(n____(X1,X2)) -> __(X1,X2) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__nil()) -> nil() activate(n__o()) -> o() activate(n__u()) -> u() i() -> n__i() isList(V) -> U11(isNeList(activate(V))) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() o() -> n__o() u() -> n__u() - Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0 ,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0 ,n__o/0,n__u/0,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a ,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__nil ,n__o,n__u,tt} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1}, uargs(U21) = {1,2}, uargs(U22) = {1}, uargs(U31) = {1}, uargs(U41) = {1,2}, uargs(U42) = {1}, uargs(U51) = {1,2}, uargs(U52) = {1}, uargs(U61) = {1}, uargs(U72) = {1}, uargs(U81) = {1}, uargs(isList) = {1}, uargs(isNeList) = {1}, uargs(isNePal) = {1}, uargs(isPal) = {1}, uargs(isQid) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(U11) = [1] x1 + [0] p(U21) = [1] x1 + [1] x2 + [4] p(U22) = [1] x1 + [0] p(U31) = [1] x1 + [3] p(U41) = [1] x1 + [1] x2 + [4] p(U42) = [1] x1 + [2] p(U51) = [1] x1 + [1] x2 + [5] p(U52) = [1] x1 + [2] p(U61) = [1] x1 + [0] p(U71) = [4] x2 + [6] p(U72) = [1] x1 + [2] p(U81) = [1] x1 + [0] p(__) = [1] x1 + [1] x2 + [0] p(a) = [3] p(activate) = [1] x1 + [1] p(e) = [5] p(i) = [3] p(isList) = [1] x1 + [5] p(isNeList) = [1] x1 + [4] p(isNePal) = [1] x1 + [2] p(isPal) = [1] x1 + [3] p(isQid) = [1] x1 + [0] p(n____) = [1] x1 + [1] x2 + [7] p(n__a) = [3] p(n__e) = [4] p(n__i) = [3] p(n__nil) = [6] p(n__o) = [4] p(n__u) = [5] p(nil) = [7] p(o) = [4] p(tt) = [3] p(u) = [5] Following rules are strictly oriented: e() = [5] > [4] = n__e() Following rules are (at-least) weakly oriented: U11(tt()) = [3] >= [3] = tt() U21(tt(),V2) = [1] V2 + [7] >= [1] V2 + [6] = U22(isList(activate(V2))) U22(tt()) = [3] >= [3] = tt() U31(tt()) = [6] >= [3] = tt() U41(tt(),V2) = [1] V2 + [7] >= [1] V2 + [7] = U42(isNeList(activate(V2))) U42(tt()) = [5] >= [3] = tt() U51(tt(),V2) = [1] V2 + [8] >= [1] V2 + [8] = U52(isList(activate(V2))) U52(tt()) = [5] >= [3] = tt() U61(tt()) = [3] >= [3] = tt() U71(tt(),P) = [4] P + [6] >= [1] P + [6] = U72(isPal(activate(P))) U72(tt()) = [5] >= [3] = tt() U81(tt()) = [3] >= [3] = tt() __(X1,X2) = [1] X1 + [1] X2 + [0] >= [1] X1 + [1] X2 + [7] = n____(X1,X2) a() = [3] >= [3] = n__a() activate(X) = [1] X + [1] >= [1] X + [0] = X activate(n____(X1,X2)) = [1] X1 + [1] X2 + [8] >= [1] X1 + [1] X2 + [0] = __(X1,X2) activate(n__a()) = [4] >= [3] = a() activate(n__e()) = [5] >= [5] = e() activate(n__i()) = [4] >= [3] = i() activate(n__nil()) = [7] >= [7] = nil() activate(n__o()) = [5] >= [4] = o() activate(n__u()) = [6] >= [5] = u() i() = [3] >= [3] = n__i() isList(V) = [1] V + [5] >= [1] V + [5] = U11(isNeList(activate(V))) isList(n____(V1,V2)) = [1] V1 + [1] V2 + [12] >= [1] V1 + [1] V2 + [11] = U21(isList(activate(V1)),activate(V2)) isList(n__nil()) = [11] >= [3] = tt() isNeList(V) = [1] V + [4] >= [1] V + [4] = U31(isQid(activate(V))) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [11] >= [1] V1 + [1] V2 + [11] = U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [11] >= [1] V1 + [1] V2 + [11] = U51(isNeList(activate(V1)),activate(V2)) isNePal(V) = [1] V + [2] >= [1] V + [1] = U61(isQid(activate(V))) isPal(V) = [1] V + [3] >= [1] V + [3] = U81(isNePal(activate(V))) isPal(n__nil()) = [9] >= [3] = tt() isQid(n__a()) = [3] >= [3] = tt() isQid(n__e()) = [4] >= [3] = tt() isQid(n__i()) = [3] >= [3] = tt() isQid(n__o()) = [4] >= [3] = tt() isQid(n__u()) = [5] >= [3] = tt() nil() = [7] >= [6] = n__nil() o() = [4] >= [4] = n__o() u() = [5] >= [5] = n__u() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 13: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: __(X1,X2) -> n____(X1,X2) - Weak TRS: U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() a() -> n__a() activate(X) -> X activate(n____(X1,X2)) -> __(X1,X2) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__nil()) -> nil() activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() isList(V) -> U11(isNeList(activate(V))) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() o() -> n__o() u() -> n__u() - Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0 ,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0 ,n__o/0,n__u/0,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a ,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__nil ,n__o,n__u,tt} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(U11) = {1}, uargs(U21) = {1,2}, uargs(U22) = {1}, uargs(U31) = {1}, uargs(U41) = {1,2}, uargs(U42) = {1}, uargs(U51) = {1,2}, uargs(U52) = {1}, uargs(U61) = {1}, uargs(U72) = {1}, uargs(U81) = {1}, uargs(isList) = {1}, uargs(isNeList) = {1}, uargs(isNePal) = {1}, uargs(isPal) = {1}, uargs(isQid) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(U11) = [1] x1 + [0] p(U21) = [1] x1 + [1] x2 + [1] p(U22) = [1] x1 + [0] p(U31) = [1] x1 + [0] p(U41) = [1] x1 + [1] x2 + [1] p(U42) = [1] x1 + [1] p(U51) = [1] x1 + [1] x2 + [1] p(U52) = [1] x1 + [0] p(U61) = [1] x1 + [0] p(U71) = [6] x1 + [2] x2 + [0] p(U72) = [1] x1 + [5] p(U81) = [1] x1 + [0] p(__) = [1] x1 + [1] x2 + [5] p(a) = [6] p(activate) = [1] x1 + [1] p(e) = [4] p(i) = [2] p(isList) = [1] x1 + [2] p(isNeList) = [1] x1 + [1] p(isNePal) = [1] x1 + [5] p(isPal) = [1] x1 + [6] p(isQid) = [1] x1 + [0] p(n____) = [1] x1 + [1] x2 + [4] p(n__a) = [6] p(n__e) = [3] p(n__i) = [2] p(n__nil) = [2] p(n__o) = [3] p(n__u) = [2] p(nil) = [2] p(o) = [3] p(tt) = [2] p(u) = [3] Following rules are strictly oriented: __(X1,X2) = [1] X1 + [1] X2 + [5] > [1] X1 + [1] X2 + [4] = n____(X1,X2) Following rules are (at-least) weakly oriented: U11(tt()) = [2] >= [2] = tt() U21(tt(),V2) = [1] V2 + [3] >= [1] V2 + [3] = U22(isList(activate(V2))) U22(tt()) = [2] >= [2] = tt() U31(tt()) = [2] >= [2] = tt() U41(tt(),V2) = [1] V2 + [3] >= [1] V2 + [3] = U42(isNeList(activate(V2))) U42(tt()) = [3] >= [2] = tt() U51(tt(),V2) = [1] V2 + [3] >= [1] V2 + [3] = U52(isList(activate(V2))) U52(tt()) = [2] >= [2] = tt() U61(tt()) = [2] >= [2] = tt() U71(tt(),P) = [2] P + [12] >= [1] P + [12] = U72(isPal(activate(P))) U72(tt()) = [7] >= [2] = tt() U81(tt()) = [2] >= [2] = tt() a() = [6] >= [6] = n__a() activate(X) = [1] X + [1] >= [1] X + [0] = X activate(n____(X1,X2)) = [1] X1 + [1] X2 + [5] >= [1] X1 + [1] X2 + [5] = __(X1,X2) activate(n__a()) = [7] >= [6] = a() activate(n__e()) = [4] >= [4] = e() activate(n__i()) = [3] >= [2] = i() activate(n__nil()) = [3] >= [2] = nil() activate(n__o()) = [4] >= [3] = o() activate(n__u()) = [3] >= [3] = u() e() = [4] >= [3] = n__e() i() = [2] >= [2] = n__i() isList(V) = [1] V + [2] >= [1] V + [2] = U11(isNeList(activate(V))) isList(n____(V1,V2)) = [1] V1 + [1] V2 + [6] >= [1] V1 + [1] V2 + [5] = U21(isList(activate(V1)),activate(V2)) isList(n__nil()) = [4] >= [2] = tt() isNeList(V) = [1] V + [1] >= [1] V + [1] = U31(isQid(activate(V))) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [5] >= [1] V1 + [1] V2 + [5] = U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [5] >= [1] V1 + [1] V2 + [4] = U51(isNeList(activate(V1)),activate(V2)) isNePal(V) = [1] V + [5] >= [1] V + [1] = U61(isQid(activate(V))) isPal(V) = [1] V + [6] >= [1] V + [6] = U81(isNePal(activate(V))) isPal(n__nil()) = [8] >= [2] = tt() isQid(n__a()) = [6] >= [2] = tt() isQid(n__e()) = [3] >= [2] = tt() isQid(n__i()) = [2] >= [2] = tt() isQid(n__o()) = [3] >= [2] = tt() isQid(n__u()) = [2] >= [2] = tt() nil() = [2] >= [2] = n__nil() o() = [3] >= [3] = n__o() u() = [3] >= [2] = n__u() Further, it can be verified that all rules not oriented are covered by the weightgap condition. * Step 14: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: U11(tt()) -> tt() U21(tt(),V2) -> U22(isList(activate(V2))) U22(tt()) -> tt() U31(tt()) -> tt() U41(tt(),V2) -> U42(isNeList(activate(V2))) U42(tt()) -> tt() U51(tt(),V2) -> U52(isList(activate(V2))) U52(tt()) -> tt() U61(tt()) -> tt() U71(tt(),P) -> U72(isPal(activate(P))) U72(tt()) -> tt() U81(tt()) -> tt() __(X1,X2) -> n____(X1,X2) a() -> n__a() activate(X) -> X activate(n____(X1,X2)) -> __(X1,X2) activate(n__a()) -> a() activate(n__e()) -> e() activate(n__i()) -> i() activate(n__nil()) -> nil() activate(n__o()) -> o() activate(n__u()) -> u() e() -> n__e() i() -> n__i() isList(V) -> U11(isNeList(activate(V))) isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2)) isList(n__nil()) -> tt() isNeList(V) -> U31(isQid(activate(V))) isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2)) isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2)) isNePal(V) -> U61(isQid(activate(V))) isPal(V) -> U81(isNePal(activate(V))) isPal(n__nil()) -> tt() isQid(n__a()) -> tt() isQid(n__e()) -> tt() isQid(n__i()) -> tt() isQid(n__o()) -> tt() isQid(n__u()) -> tt() nil() -> n__nil() o() -> n__o() u() -> n__u() - Signature: {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0 ,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0 ,n__o/0,n__u/0,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a ,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u} and constructors {n____,n__a,n__e,n__i,n__nil ,n__o,n__u,tt} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(?,O(n^1))