* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatIList(activate(V2)))
            U42(tt()) -> tt()
            U51(tt(),V2) -> U52(isNatList(activate(V2)))
            U52(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatIList(activate(V2)))
            U62(tt()) -> tt()
            U71(tt(),L,N) -> U72(isNat(activate(N)),activate(L))
            U72(tt(),L) -> s(length(activate(L)))
            U81(tt()) -> nil()
            U91(tt(),IL,M,N) -> U92(isNat(activate(M)),activate(IL),activate(M),activate(N))
            U92(tt(),IL,M,N) -> U93(isNat(activate(N)),activate(IL),activate(M),activate(N))
            U93(tt(),IL,M,N) -> cons(activate(N),n__take(activate(M),activate(IL)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
            activate(n__length(X)) -> length(activate(X))
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(activate(X))
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            activate(n__zeros()) -> zeros()
            cons(X1,X2) -> n__cons(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__length(V1)) -> U11(isNatList(activate(V1)))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNatIList(V) -> U31(isNatList(activate(V)))
            isNatIList(n__cons(V1,V2)) -> U41(isNat(activate(V1)),activate(V2))
            isNatIList(n__zeros()) -> tt()
            isNatList(n__cons(V1,V2)) -> U51(isNat(activate(V1)),activate(V2))
            isNatList(n__nil()) -> tt()
            isNatList(n__take(V1,V2)) -> U61(isNat(activate(V1)),activate(V2))
            length(X) -> n__length(X)
            length(cons(N,L)) -> U71(isNatList(activate(L)),activate(L),N)
            length(nil()) -> 0()
            nil() -> n__nil()
            s(X) -> n__s(X)
            take(X1,X2) -> n__take(X1,X2)
            take(0(),IL) -> U81(isNatIList(IL))
            take(s(M),cons(N,IL)) -> U91(isNatIList(activate(IL)),activate(IL),M,N)
            zeros() -> cons(0(),n__zeros())
            zeros() -> n__zeros()
        - Signature:
            {0/0,U11/1,U21/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/2,U62/1,U71/3,U72/2,U81/1,U91/4,U92/4,U93/4,activate/1
            ,cons/2,isNat/1,isNatIList/1,isNatList/1,length/1,nil/0,s/1,take/2,zeros/0} / {n__0/0,n__cons/2,n__length/1
            ,n__nil/0,n__s/1,n__take/2,n__zeros/0,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,U31,U41,U42,U51,U52,U61,U62,U71,U72,U81,U91,U92
            ,U93,activate,cons,isNat,isNatIList,isNatList,length,nil,s,take,zeros} and constructors {n__0,n__cons
            ,n__length,n__nil,n__s,n__take,n__zeros,tt}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatIList(activate(V2)))
            U42(tt()) -> tt()
            U51(tt(),V2) -> U52(isNatList(activate(V2)))
            U52(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatIList(activate(V2)))
            U62(tt()) -> tt()
            U71(tt(),L,N) -> U72(isNat(activate(N)),activate(L))
            U72(tt(),L) -> s(length(activate(L)))
            U81(tt()) -> nil()
            U91(tt(),IL,M,N) -> U92(isNat(activate(M)),activate(IL),activate(M),activate(N))
            U92(tt(),IL,M,N) -> U93(isNat(activate(N)),activate(IL),activate(M),activate(N))
            U93(tt(),IL,M,N) -> cons(activate(N),n__take(activate(M),activate(IL)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__cons(X1,X2)) -> cons(activate(X1),X2)
            activate(n__length(X)) -> length(activate(X))
            activate(n__nil()) -> nil()
            activate(n__s(X)) -> s(activate(X))
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            activate(n__zeros()) -> zeros()
            cons(X1,X2) -> n__cons(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__length(V1)) -> U11(isNatList(activate(V1)))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNatIList(V) -> U31(isNatList(activate(V)))
            isNatIList(n__cons(V1,V2)) -> U41(isNat(activate(V1)),activate(V2))
            isNatIList(n__zeros()) -> tt()
            isNatList(n__cons(V1,V2)) -> U51(isNat(activate(V1)),activate(V2))
            isNatList(n__nil()) -> tt()
            isNatList(n__take(V1,V2)) -> U61(isNat(activate(V1)),activate(V2))
            length(X) -> n__length(X)
            length(cons(N,L)) -> U71(isNatList(activate(L)),activate(L),N)
            length(nil()) -> 0()
            nil() -> n__nil()
            s(X) -> n__s(X)
            take(X1,X2) -> n__take(X1,X2)
            take(0(),IL) -> U81(isNatIList(IL))
            take(s(M),cons(N,IL)) -> U91(isNatIList(activate(IL)),activate(IL),M,N)
            zeros() -> cons(0(),n__zeros())
            zeros() -> n__zeros()
        - Signature:
            {0/0,U11/1,U21/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/2,U62/1,U71/3,U72/2,U81/1,U91/4,U92/4,U93/4,activate/1
            ,cons/2,isNat/1,isNatIList/1,isNatList/1,length/1,nil/0,s/1,take/2,zeros/0} / {n__0/0,n__cons/2,n__length/1
            ,n__nil/0,n__s/1,n__take/2,n__zeros/0,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,U31,U41,U42,U51,U52,U61,U62,U71,U72,U81,U91,U92
            ,U93,activate,cons,isNat,isNatIList,isNatList,length,nil,s,take,zeros} and constructors {n__0,n__cons
            ,n__length,n__nil,n__s,n__take,n__zeros,tt}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          activate(x){x -> n__cons(x,y)} =
            activate(n__cons(x,y)) ->^+ cons(activate(x),y)
              = C[activate(x) = activate(x){}]

WORST_CASE(Omega(n^1),?)