* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: 0() -> n__0() U11(tt(),V1) -> U12(isNatList(activate(V1))) U12(tt()) -> tt() U21(tt(),V1) -> U22(isNat(activate(V1))) U22(tt()) -> tt() U31(tt(),V) -> U32(isNatList(activate(V))) U32(tt()) -> tt() U41(tt(),V1,V2) -> U42(isNat(activate(V1)),activate(V2)) U42(tt(),V2) -> U43(isNatIList(activate(V2))) U43(tt()) -> tt() U51(tt(),V1,V2) -> U52(isNat(activate(V1)),activate(V2)) U52(tt(),V2) -> U53(isNatList(activate(V2))) U53(tt()) -> tt() U61(tt(),V1,V2) -> U62(isNat(activate(V1)),activate(V2)) U62(tt(),V2) -> U63(isNatIList(activate(V2))) U63(tt()) -> tt() U71(tt(),L) -> s(length(activate(L))) U81(tt()) -> nil() U91(tt(),IL,M,N) -> cons(activate(N),n__take(activate(M),activate(IL))) activate(X) -> X activate(n__0()) -> 0() activate(n__and(X1,X2)) -> and(activate(X1),X2) activate(n__cons(X1,X2)) -> cons(activate(X1),X2) activate(n__isNat(X)) -> isNat(X) activate(n__isNatIListKind(X)) -> isNatIListKind(X) activate(n__isNatKind(X)) -> isNatKind(X) activate(n__length(X)) -> length(activate(X)) activate(n__nil()) -> nil() activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zeros()) -> zeros() and(X1,X2) -> n__and(X1,X2) and(tt(),X) -> activate(X) cons(X1,X2) -> n__cons(X1,X2) isNat(X) -> n__isNat(X) isNat(n__0()) -> tt() isNat(n__length(V1)) -> U11(isNatIListKind(activate(V1)),activate(V1)) isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1)) isNatIList(V) -> U31(isNatIListKind(activate(V)),activate(V)) isNatIList(n__cons(V1,V2)) -> U41(and(isNatKind(activate(V1)),n__isNatIListKind(activate(V2))) ,activate(V1) ,activate(V2)) isNatIList(n__zeros()) -> tt() isNatIListKind(X) -> n__isNatIListKind(X) isNatIListKind(n__cons(V1,V2)) -> and(isNatKind(activate(V1)),n__isNatIListKind(activate(V2))) isNatIListKind(n__nil()) -> tt() isNatIListKind(n__take(V1,V2)) -> and(isNatKind(activate(V1)),n__isNatIListKind(activate(V2))) isNatIListKind(n__zeros()) -> tt() isNatKind(X) -> n__isNatKind(X) isNatKind(n__0()) -> tt() isNatKind(n__length(V1)) -> isNatIListKind(activate(V1)) isNatKind(n__s(V1)) -> isNatKind(activate(V1)) isNatList(n__cons(V1,V2)) -> U51(and(isNatKind(activate(V1)),n__isNatIListKind(activate(V2))) ,activate(V1) ,activate(V2)) isNatList(n__nil()) -> tt() isNatList(n__take(V1,V2)) -> U61(and(isNatKind(activate(V1)),n__isNatIListKind(activate(V2))) ,activate(V1) ,activate(V2)) length(X) -> n__length(X) length(cons(N,L)) -> U71(and(and(isNatList(activate(L)),n__isNatIListKind(activate(L))) ,n__and(n__isNat(N),n__isNatKind(N))) ,activate(L)) length(nil()) -> 0() nil() -> n__nil() s(X) -> n__s(X) take(X1,X2) -> n__take(X1,X2) take(0(),IL) -> U81(and(isNatIList(IL),n__isNatIListKind(IL))) take(s(M),cons(N,IL)) -> U91(and(and(isNatIList(activate(IL)),n__isNatIListKind(activate(IL))) ,n__and(n__and(n__isNat(M),n__isNatKind(M)) ,n__and(n__isNat(N),n__isNatKind(N)))) ,activate(IL) ,M ,N) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {0/0,U11/2,U12/1,U21/2,U22/1,U31/2,U32/1,U41/3,U42/2,U43/1,U51/3,U52/2,U53/1,U61/3,U62/2,U63/1,U71/2,U81/1 ,U91/4,activate/1,and/2,cons/2,isNat/1,isNatIList/1,isNatIListKind/1,isNatKind/1,isNatList/1,length/1,nil/0 ,s/1,take/2,zeros/0} / {n__0/0,n__and/2,n__cons/2,n__isNat/1,n__isNatIListKind/1,n__isNatKind/1,n__length/1 ,n__nil/0,n__s/1,n__take/2,n__zeros/0,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U22,U31,U32,U41,U42,U43,U51,U52,U53,U61,U62 ,U63,U71,U81,U91,activate,and,cons,isNat,isNatIList,isNatIListKind,isNatKind,isNatList,length,nil,s,take ,zeros} and constructors {n__0,n__and,n__cons,n__isNat,n__isNatIListKind,n__isNatKind,n__length,n__nil,n__s ,n__take,n__zeros,tt} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: 0() -> n__0() U11(tt(),V1) -> U12(isNatList(activate(V1))) U12(tt()) -> tt() U21(tt(),V1) -> U22(isNat(activate(V1))) U22(tt()) -> tt() U31(tt(),V) -> U32(isNatList(activate(V))) U32(tt()) -> tt() U41(tt(),V1,V2) -> U42(isNat(activate(V1)),activate(V2)) U42(tt(),V2) -> U43(isNatIList(activate(V2))) U43(tt()) -> tt() U51(tt(),V1,V2) -> U52(isNat(activate(V1)),activate(V2)) U52(tt(),V2) -> U53(isNatList(activate(V2))) U53(tt()) -> tt() U61(tt(),V1,V2) -> U62(isNat(activate(V1)),activate(V2)) U62(tt(),V2) -> U63(isNatIList(activate(V2))) U63(tt()) -> tt() U71(tt(),L) -> s(length(activate(L))) U81(tt()) -> nil() U91(tt(),IL,M,N) -> cons(activate(N),n__take(activate(M),activate(IL))) activate(X) -> X activate(n__0()) -> 0() activate(n__and(X1,X2)) -> and(activate(X1),X2) activate(n__cons(X1,X2)) -> cons(activate(X1),X2) activate(n__isNat(X)) -> isNat(X) activate(n__isNatIListKind(X)) -> isNatIListKind(X) activate(n__isNatKind(X)) -> isNatKind(X) activate(n__length(X)) -> length(activate(X)) activate(n__nil()) -> nil() activate(n__s(X)) -> s(activate(X)) activate(n__take(X1,X2)) -> take(activate(X1),activate(X2)) activate(n__zeros()) -> zeros() and(X1,X2) -> n__and(X1,X2) and(tt(),X) -> activate(X) cons(X1,X2) -> n__cons(X1,X2) isNat(X) -> n__isNat(X) isNat(n__0()) -> tt() isNat(n__length(V1)) -> U11(isNatIListKind(activate(V1)),activate(V1)) isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1)) isNatIList(V) -> U31(isNatIListKind(activate(V)),activate(V)) isNatIList(n__cons(V1,V2)) -> U41(and(isNatKind(activate(V1)),n__isNatIListKind(activate(V2))) ,activate(V1) ,activate(V2)) isNatIList(n__zeros()) -> tt() isNatIListKind(X) -> n__isNatIListKind(X) isNatIListKind(n__cons(V1,V2)) -> and(isNatKind(activate(V1)),n__isNatIListKind(activate(V2))) isNatIListKind(n__nil()) -> tt() isNatIListKind(n__take(V1,V2)) -> and(isNatKind(activate(V1)),n__isNatIListKind(activate(V2))) isNatIListKind(n__zeros()) -> tt() isNatKind(X) -> n__isNatKind(X) isNatKind(n__0()) -> tt() isNatKind(n__length(V1)) -> isNatIListKind(activate(V1)) isNatKind(n__s(V1)) -> isNatKind(activate(V1)) isNatList(n__cons(V1,V2)) -> U51(and(isNatKind(activate(V1)),n__isNatIListKind(activate(V2))) ,activate(V1) ,activate(V2)) isNatList(n__nil()) -> tt() isNatList(n__take(V1,V2)) -> U61(and(isNatKind(activate(V1)),n__isNatIListKind(activate(V2))) ,activate(V1) ,activate(V2)) length(X) -> n__length(X) length(cons(N,L)) -> U71(and(and(isNatList(activate(L)),n__isNatIListKind(activate(L))) ,n__and(n__isNat(N),n__isNatKind(N))) ,activate(L)) length(nil()) -> 0() nil() -> n__nil() s(X) -> n__s(X) take(X1,X2) -> n__take(X1,X2) take(0(),IL) -> U81(and(isNatIList(IL),n__isNatIListKind(IL))) take(s(M),cons(N,IL)) -> U91(and(and(isNatIList(activate(IL)),n__isNatIListKind(activate(IL))) ,n__and(n__and(n__isNat(M),n__isNatKind(M)) ,n__and(n__isNat(N),n__isNatKind(N)))) ,activate(IL) ,M ,N) zeros() -> cons(0(),n__zeros()) zeros() -> n__zeros() - Signature: {0/0,U11/2,U12/1,U21/2,U22/1,U31/2,U32/1,U41/3,U42/2,U43/1,U51/3,U52/2,U53/1,U61/3,U62/2,U63/1,U71/2,U81/1 ,U91/4,activate/1,and/2,cons/2,isNat/1,isNatIList/1,isNatIListKind/1,isNatKind/1,isNatList/1,length/1,nil/0 ,s/1,take/2,zeros/0} / {n__0/0,n__and/2,n__cons/2,n__isNat/1,n__isNatIListKind/1,n__isNatKind/1,n__length/1 ,n__nil/0,n__s/1,n__take/2,n__zeros/0,tt/0} - Obligation: innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U22,U31,U32,U41,U42,U43,U51,U52,U53,U61,U62 ,U63,U71,U81,U91,activate,and,cons,isNat,isNatIList,isNatIListKind,isNatKind,isNatList,length,nil,s,take ,zeros} and constructors {n__0,n__and,n__cons,n__isNat,n__isNatIListKind,n__isNatKind,n__length,n__nil,n__s ,n__take,n__zeros,tt} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: activate(x){x -> n__and(x,y)} = activate(n__and(x,y)) ->^+ and(activate(x),y) = C[activate(x) = activate(x){}] WORST_CASE(Omega(n^1),?)