* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U31(tt()) -> 0()
            U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            and(tt(),X) -> activate(X)
            isNat(X) -> n__isNat(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            isNat(n__s(V1)) -> isNat(activate(V1))
            isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            plus(N,0()) -> U11(isNat(N),N)
            plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(N,0()) -> U31(isNat(N))
            x(N,s(M)) -> U41(and(isNat(M),n__isNat(N)),M,N)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1
            ,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,U31,U41,activate,and,isNat,plus,s
            ,x} and constructors {n__0,n__isNat,n__plus,n__s,n__x,tt}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U31(tt()) -> 0()
            U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            and(tt(),X) -> activate(X)
            isNat(X) -> n__isNat(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            isNat(n__s(V1)) -> isNat(activate(V1))
            isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            plus(N,0()) -> U11(isNat(N),N)
            plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(N,0()) -> U31(isNat(N))
            x(N,s(M)) -> U41(and(isNat(M),n__isNat(N)),M,N)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1
            ,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,U31,U41,activate,and,isNat,plus,s
            ,x} and constructors {n__0,n__isNat,n__plus,n__s,n__x,tt}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          activate(x){x -> n__plus(x,y)} =
            activate(n__plus(x,y)) ->^+ plus(activate(x),activate(y))
              = C[activate(x) = activate(x){}]

** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U31(tt()) -> 0()
            U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            and(tt(),X) -> activate(X)
            isNat(X) -> n__isNat(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            isNat(n__s(V1)) -> isNat(activate(V1))
            isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            plus(N,0()) -> U11(isNat(N),N)
            plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(N,0()) -> U31(isNat(N))
            x(N,s(M)) -> U41(and(isNat(M),n__isNat(N)),M,N)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1
            ,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,U31,U41,activate,and,isNat,plus,s
            ,x} and constructors {n__0,n__isNat,n__plus,n__s,n__x,tt}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          plus(N,0()) -> U11(isNat(N),N)
          plus(N,s(M)) -> U21(and(isNat(M),n__isNat(N)),M,N)
          x(N,0()) -> U31(isNat(N))
          x(N,s(M)) -> U41(and(isNat(M),n__isNat(N)),M,N)
        All above mentioned rules can be savely removed.
** Step 1.b:2: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U31(tt()) -> 0()
            U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            and(tt(),X) -> activate(X)
            isNat(X) -> n__isNat(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            isNat(n__s(V1)) -> isNat(activate(V1))
            isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1
            ,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,U31,U41,activate,and,isNat,plus,s
            ,x} and constructors {n__0,n__isNat,n__plus,n__s,n__x,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(isNat) = {1},
            uargs(n__isNat) = {1},
            uargs(plus) = {1,2},
            uargs(s) = {1},
            uargs(x) = {1,2}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
                 p(U11) = [1] x2 + [0]         
                 p(U21) = [1] x2 + [1] x3 + [0]
                 p(U31) = [0]                  
                 p(U41) = [1] x2 + [2] x3 + [0]
            p(activate) = [1] x1 + [0]         
                 p(and) = [1] x1 + [1] x2 + [7]
               p(isNat) = [1] x1 + [0]         
                p(n__0) = [0]                  
            p(n__isNat) = [1] x1 + [0]         
             p(n__plus) = [1] x1 + [1] x2 + [0]
                p(n__s) = [1] x1 + [0]         
                p(n__x) = [1] x1 + [1] x2 + [0]
                p(plus) = [1] x1 + [1] x2 + [0]
                   p(s) = [1] x1 + [0]         
                  p(tt) = [0]                  
                   p(x) = [1] x1 + [1] x2 + [5]
          
          Following rules are strictly oriented:
          and(tt(),X) = [1] X + [7]          
                      > [1] X + [0]          
                      = activate(X)          
          
             x(X1,X2) = [1] X1 + [1] X2 + [5]
                      > [1] X1 + [1] X2 + [0]
                      = n__x(X1,X2)          
          
          
          Following rules are (at-least) weakly oriented:
                               0() =  [0]                                            
                                   >= [0]                                            
                                   =  n__0()                                         
          
                       U11(tt(),N) =  [1] N + [0]                                    
                                   >= [1] N + [0]                                    
                                   =  activate(N)                                    
          
                     U21(tt(),M,N) =  [1] M + [1] N + [0]                            
                                   >= [1] M + [1] N + [0]                            
                                   =  s(plus(activate(N),activate(M)))               
          
                         U31(tt()) =  [0]                                            
                                   >= [0]                                            
                                   =  0()                                            
          
                     U41(tt(),M,N) =  [1] M + [2] N + [0]                            
                                   >= [1] M + [2] N + [5]                            
                                   =  plus(x(activate(N),activate(M)),activate(N))   
          
                       activate(X) =  [1] X + [0]                                    
                                   >= [1] X + [0]                                    
                                   =  X                                              
          
                  activate(n__0()) =  [0]                                            
                                   >= [0]                                            
                                   =  0()                                            
          
             activate(n__isNat(X)) =  [1] X + [0]                                    
                                   >= [1] X + [0]                                    
                                   =  isNat(X)                                       
          
          activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]                          
                                   >= [1] X1 + [1] X2 + [0]                          
                                   =  plus(activate(X1),activate(X2))                
          
                 activate(n__s(X)) =  [1] X + [0]                                    
                                   >= [1] X + [0]                                    
                                   =  s(activate(X))                                 
          
             activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [0]                          
                                   >= [1] X1 + [1] X2 + [5]                          
                                   =  x(activate(X1),activate(X2))                   
          
                          isNat(X) =  [1] X + [0]                                    
                                   >= [1] X + [0]                                    
                                   =  n__isNat(X)                                    
          
                     isNat(n__0()) =  [0]                                            
                                   >= [0]                                            
                                   =  tt()                                           
          
             isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [0]                          
                                   >= [1] V1 + [1] V2 + [7]                          
                                   =  and(isNat(activate(V1)),n__isNat(activate(V2)))
          
                   isNat(n__s(V1)) =  [1] V1 + [0]                                   
                                   >= [1] V1 + [0]                                   
                                   =  isNat(activate(V1))                            
          
                isNat(n__x(V1,V2)) =  [1] V1 + [1] V2 + [0]                          
                                   >= [1] V1 + [1] V2 + [7]                          
                                   =  and(isNat(activate(V1)),n__isNat(activate(V2)))
          
                       plus(X1,X2) =  [1] X1 + [1] X2 + [0]                          
                                   >= [1] X1 + [1] X2 + [0]                          
                                   =  n__plus(X1,X2)                                 
          
                              s(X) =  [1] X + [0]                                    
                                   >= [1] X + [0]                                    
                                   =  n__s(X)                                        
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:3: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U31(tt()) -> 0()
            U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(X) -> n__isNat(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            isNat(n__s(V1)) -> isNat(activate(V1))
            isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Weak TRS:
            and(tt(),X) -> activate(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1
            ,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,U31,U41,activate,and,isNat,plus,s
            ,x} and constructors {n__0,n__isNat,n__plus,n__s,n__x,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(isNat) = {1},
            uargs(n__isNat) = {1},
            uargs(plus) = {1,2},
            uargs(s) = {1},
            uargs(x) = {1,2}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [1]                  
                 p(U11) = [4] x2 + [0]         
                 p(U21) = [1] x2 + [1] x3 + [0]
                 p(U31) = [0]                  
                 p(U41) = [1] x2 + [2] x3 + [0]
            p(activate) = [1] x1 + [0]         
                 p(and) = [1] x1 + [1] x2 + [2]
               p(isNat) = [1] x1 + [1]         
                p(n__0) = [0]                  
            p(n__isNat) = [1] x1 + [0]         
             p(n__plus) = [1] x1 + [1] x2 + [1]
                p(n__s) = [1] x1 + [0]         
                p(n__x) = [1] x1 + [1] x2 + [0]
                p(plus) = [1] x1 + [1] x2 + [0]
                   p(s) = [1] x1 + [0]         
                  p(tt) = [4]                  
                   p(x) = [1] x1 + [1] x2 + [0]
          
          Following rules are strictly oriented:
                               0() = [1]                            
                                   > [0]                            
                                   = n__0()                         
          
          activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [1]          
                                   > [1] X1 + [1] X2 + [0]          
                                   = plus(activate(X1),activate(X2))
          
                          isNat(X) = [1] X + [1]                    
                                   > [1] X + [0]                    
                                   = n__isNat(X)                    
          
          
          Following rules are (at-least) weakly oriented:
                    U11(tt(),N) =  [4] N + [0]                                    
                                >= [1] N + [0]                                    
                                =  activate(N)                                    
          
                  U21(tt(),M,N) =  [1] M + [1] N + [0]                            
                                >= [1] M + [1] N + [0]                            
                                =  s(plus(activate(N),activate(M)))               
          
                      U31(tt()) =  [0]                                            
                                >= [1]                                            
                                =  0()                                            
          
                  U41(tt(),M,N) =  [1] M + [2] N + [0]                            
                                >= [1] M + [2] N + [0]                            
                                =  plus(x(activate(N),activate(M)),activate(N))   
          
                    activate(X) =  [1] X + [0]                                    
                                >= [1] X + [0]                                    
                                =  X                                              
          
               activate(n__0()) =  [0]                                            
                                >= [1]                                            
                                =  0()                                            
          
          activate(n__isNat(X)) =  [1] X + [0]                                    
                                >= [1] X + [1]                                    
                                =  isNat(X)                                       
          
              activate(n__s(X)) =  [1] X + [0]                                    
                                >= [1] X + [0]                                    
                                =  s(activate(X))                                 
          
          activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [0]                          
                                >= [1] X1 + [1] X2 + [0]                          
                                =  x(activate(X1),activate(X2))                   
          
                    and(tt(),X) =  [1] X + [6]                                    
                                >= [1] X + [0]                                    
                                =  activate(X)                                    
          
                  isNat(n__0()) =  [1]                                            
                                >= [4]                                            
                                =  tt()                                           
          
          isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [2]                          
                                >= [1] V1 + [1] V2 + [3]                          
                                =  and(isNat(activate(V1)),n__isNat(activate(V2)))
          
                isNat(n__s(V1)) =  [1] V1 + [1]                                   
                                >= [1] V1 + [1]                                   
                                =  isNat(activate(V1))                            
          
             isNat(n__x(V1,V2)) =  [1] V1 + [1] V2 + [1]                          
                                >= [1] V1 + [1] V2 + [3]                          
                                =  and(isNat(activate(V1)),n__isNat(activate(V2)))
          
                    plus(X1,X2) =  [1] X1 + [1] X2 + [0]                          
                                >= [1] X1 + [1] X2 + [1]                          
                                =  n__plus(X1,X2)                                 
          
                           s(X) =  [1] X + [0]                                    
                                >= [1] X + [0]                                    
                                =  n__s(X)                                        
          
                       x(X1,X2) =  [1] X1 + [1] X2 + [0]                          
                                >= [1] X1 + [1] X2 + [0]                          
                                =  n__x(X1,X2)                                    
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:4: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U31(tt()) -> 0()
            U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            isNat(n__s(V1)) -> isNat(activate(V1))
            isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Weak TRS:
            0() -> n__0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            and(tt(),X) -> activate(X)
            isNat(X) -> n__isNat(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1
            ,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,U31,U41,activate,and,isNat,plus,s
            ,x} and constructors {n__0,n__isNat,n__plus,n__s,n__x,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(isNat) = {1},
            uargs(n__isNat) = {1},
            uargs(plus) = {1,2},
            uargs(s) = {1},
            uargs(x) = {1,2}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
                 p(U11) = [1] x2 + [0]         
                 p(U21) = [1] x2 + [1] x3 + [0]
                 p(U31) = [0]                  
                 p(U41) = [1] x2 + [2] x3 + [0]
            p(activate) = [1] x1 + [0]         
                 p(and) = [1] x1 + [1] x2 + [0]
               p(isNat) = [1] x1 + [0]         
                p(n__0) = [0]                  
            p(n__isNat) = [1] x1 + [0]         
             p(n__plus) = [1] x1 + [1] x2 + [3]
                p(n__s) = [1] x1 + [0]         
                p(n__x) = [1] x1 + [1] x2 + [0]
                p(plus) = [1] x1 + [1] x2 + [3]
                   p(s) = [1] x1 + [5]         
                  p(tt) = [0]                  
                   p(x) = [1] x1 + [1] x2 + [0]
          
          Following rules are strictly oriented:
          isNat(n__plus(V1,V2)) = [1] V1 + [1] V2 + [3]                          
                                > [1] V1 + [1] V2 + [0]                          
                                = and(isNat(activate(V1)),n__isNat(activate(V2)))
          
                           s(X) = [1] X + [5]                                    
                                > [1] X + [0]                                    
                                = n__s(X)                                        
          
          
          Following rules are (at-least) weakly oriented:
                               0() =  [0]                                            
                                   >= [0]                                            
                                   =  n__0()                                         
          
                       U11(tt(),N) =  [1] N + [0]                                    
                                   >= [1] N + [0]                                    
                                   =  activate(N)                                    
          
                     U21(tt(),M,N) =  [1] M + [1] N + [0]                            
                                   >= [1] M + [1] N + [8]                            
                                   =  s(plus(activate(N),activate(M)))               
          
                         U31(tt()) =  [0]                                            
                                   >= [0]                                            
                                   =  0()                                            
          
                     U41(tt(),M,N) =  [1] M + [2] N + [0]                            
                                   >= [1] M + [2] N + [3]                            
                                   =  plus(x(activate(N),activate(M)),activate(N))   
          
                       activate(X) =  [1] X + [0]                                    
                                   >= [1] X + [0]                                    
                                   =  X                                              
          
                  activate(n__0()) =  [0]                                            
                                   >= [0]                                            
                                   =  0()                                            
          
             activate(n__isNat(X)) =  [1] X + [0]                                    
                                   >= [1] X + [0]                                    
                                   =  isNat(X)                                       
          
          activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [3]                          
                                   >= [1] X1 + [1] X2 + [3]                          
                                   =  plus(activate(X1),activate(X2))                
          
                 activate(n__s(X)) =  [1] X + [0]                                    
                                   >= [1] X + [5]                                    
                                   =  s(activate(X))                                 
          
             activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [0]                          
                                   >= [1] X1 + [1] X2 + [0]                          
                                   =  x(activate(X1),activate(X2))                   
          
                       and(tt(),X) =  [1] X + [0]                                    
                                   >= [1] X + [0]                                    
                                   =  activate(X)                                    
          
                          isNat(X) =  [1] X + [0]                                    
                                   >= [1] X + [0]                                    
                                   =  n__isNat(X)                                    
          
                     isNat(n__0()) =  [0]                                            
                                   >= [0]                                            
                                   =  tt()                                           
          
                   isNat(n__s(V1)) =  [1] V1 + [0]                                   
                                   >= [1] V1 + [0]                                   
                                   =  isNat(activate(V1))                            
          
                isNat(n__x(V1,V2)) =  [1] V1 + [1] V2 + [0]                          
                                   >= [1] V1 + [1] V2 + [0]                          
                                   =  and(isNat(activate(V1)),n__isNat(activate(V2)))
          
                       plus(X1,X2) =  [1] X1 + [1] X2 + [3]                          
                                   >= [1] X1 + [1] X2 + [3]                          
                                   =  n__plus(X1,X2)                                 
          
                          x(X1,X2) =  [1] X1 + [1] X2 + [0]                          
                                   >= [1] X1 + [1] X2 + [0]                          
                                   =  n__x(X1,X2)                                    
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:5: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U31(tt()) -> 0()
            U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__s(V1)) -> isNat(activate(V1))
            isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            plus(X1,X2) -> n__plus(X1,X2)
        - Weak TRS:
            0() -> n__0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            and(tt(),X) -> activate(X)
            isNat(X) -> n__isNat(X)
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1
            ,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,U31,U41,activate,and,isNat,plus,s
            ,x} and constructors {n__0,n__isNat,n__plus,n__s,n__x,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(isNat) = {1},
            uargs(n__isNat) = {1},
            uargs(plus) = {1,2},
            uargs(s) = {1},
            uargs(x) = {1,2}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                           
                 p(U11) = [2] x1 + [1] x2 + [3]         
                 p(U21) = [1] x1 + [1] x2 + [1] x3 + [5]
                 p(U31) = [1]                           
                 p(U41) = [4] x1 + [1] x2 + [2] x3 + [0]
            p(activate) = [1] x1 + [0]                  
                 p(and) = [1] x1 + [1] x2 + [1]         
               p(isNat) = [1] x1 + [2]                  
                p(n__0) = [0]                           
            p(n__isNat) = [1] x1 + [0]                  
             p(n__plus) = [1] x1 + [1] x2 + [1]         
                p(n__s) = [1] x1 + [4]                  
                p(n__x) = [1] x1 + [1] x2 + [0]         
                p(plus) = [1] x1 + [1] x2 + [1]         
                   p(s) = [1] x1 + [4]                  
                  p(tt) = [3]                           
                   p(x) = [1] x1 + [1] x2 + [0]         
          
          Following rules are strictly oriented:
              U11(tt(),N) = [1] N + [9]                                 
                          > [1] N + [0]                                 
                          = activate(N)                                 
          
            U21(tt(),M,N) = [1] M + [1] N + [8]                         
                          > [1] M + [1] N + [5]                         
                          = s(plus(activate(N),activate(M)))            
          
                U31(tt()) = [1]                                         
                          > [0]                                         
                          = 0()                                         
          
            U41(tt(),M,N) = [1] M + [2] N + [12]                        
                          > [1] M + [2] N + [1]                         
                          = plus(x(activate(N),activate(M)),activate(N))
          
          isNat(n__s(V1)) = [1] V1 + [6]                                
                          > [1] V1 + [2]                                
                          = isNat(activate(V1))                         
          
          
          Following rules are (at-least) weakly oriented:
                               0() =  [0]                                            
                                   >= [0]                                            
                                   =  n__0()                                         
          
                       activate(X) =  [1] X + [0]                                    
                                   >= [1] X + [0]                                    
                                   =  X                                              
          
                  activate(n__0()) =  [0]                                            
                                   >= [0]                                            
                                   =  0()                                            
          
             activate(n__isNat(X)) =  [1] X + [0]                                    
                                   >= [1] X + [2]                                    
                                   =  isNat(X)                                       
          
          activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [1]                          
                                   >= [1] X1 + [1] X2 + [1]                          
                                   =  plus(activate(X1),activate(X2))                
          
                 activate(n__s(X)) =  [1] X + [4]                                    
                                   >= [1] X + [4]                                    
                                   =  s(activate(X))                                 
          
             activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [0]                          
                                   >= [1] X1 + [1] X2 + [0]                          
                                   =  x(activate(X1),activate(X2))                   
          
                       and(tt(),X) =  [1] X + [4]                                    
                                   >= [1] X + [0]                                    
                                   =  activate(X)                                    
          
                          isNat(X) =  [1] X + [2]                                    
                                   >= [1] X + [0]                                    
                                   =  n__isNat(X)                                    
          
                     isNat(n__0()) =  [2]                                            
                                   >= [3]                                            
                                   =  tt()                                           
          
             isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [3]                          
                                   >= [1] V1 + [1] V2 + [3]                          
                                   =  and(isNat(activate(V1)),n__isNat(activate(V2)))
          
                isNat(n__x(V1,V2)) =  [1] V1 + [1] V2 + [2]                          
                                   >= [1] V1 + [1] V2 + [3]                          
                                   =  and(isNat(activate(V1)),n__isNat(activate(V2)))
          
                       plus(X1,X2) =  [1] X1 + [1] X2 + [1]                          
                                   >= [1] X1 + [1] X2 + [1]                          
                                   =  n__plus(X1,X2)                                 
          
                              s(X) =  [1] X + [4]                                    
                                   >= [1] X + [4]                                    
                                   =  n__s(X)                                        
          
                          x(X1,X2) =  [1] X1 + [1] X2 + [0]                          
                                   >= [1] X1 + [1] X2 + [0]                          
                                   =  n__x(X1,X2)                                    
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:6: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            plus(X1,X2) -> n__plus(X1,X2)
        - Weak TRS:
            0() -> n__0()
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U31(tt()) -> 0()
            U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            and(tt(),X) -> activate(X)
            isNat(X) -> n__isNat(X)
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            isNat(n__s(V1)) -> isNat(activate(V1))
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1
            ,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,U31,U41,activate,and,isNat,plus,s
            ,x} and constructors {n__0,n__isNat,n__plus,n__s,n__x,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(isNat) = {1},
            uargs(n__isNat) = {1},
            uargs(plus) = {1,2},
            uargs(s) = {1},
            uargs(x) = {1,2}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [2]                  
                 p(U11) = [5] x1 + [1] x2 + [0]
                 p(U21) = [2] x2 + [2] x3 + [3]
                 p(U31) = [5] x1 + [0]         
                 p(U41) = [2] x2 + [2] x3 + [5]
            p(activate) = [1] x1 + [0]         
                 p(and) = [1] x1 + [1] x2 + [0]
               p(isNat) = [1] x1 + [4]         
                p(n__0) = [2]                  
            p(n__isNat) = [1] x1 + [0]         
             p(n__plus) = [1] x1 + [1] x2 + [4]
                p(n__s) = [1] x1 + [0]         
                p(n__x) = [1] x1 + [1] x2 + [0]
                p(plus) = [1] x1 + [1] x2 + [0]
                   p(s) = [1] x1 + [1]         
                  p(tt) = [2]                  
                   p(x) = [1] x1 + [1] x2 + [5]
          
          Following rules are strictly oriented:
          isNat(n__0()) = [6] 
                        > [2] 
                        = tt()
          
          
          Following rules are (at-least) weakly oriented:
                               0() =  [2]                                            
                                   >= [2]                                            
                                   =  n__0()                                         
          
                       U11(tt(),N) =  [1] N + [10]                                   
                                   >= [1] N + [0]                                    
                                   =  activate(N)                                    
          
                     U21(tt(),M,N) =  [2] M + [2] N + [3]                            
                                   >= [1] M + [1] N + [1]                            
                                   =  s(plus(activate(N),activate(M)))               
          
                         U31(tt()) =  [10]                                           
                                   >= [2]                                            
                                   =  0()                                            
          
                     U41(tt(),M,N) =  [2] M + [2] N + [5]                            
                                   >= [1] M + [2] N + [5]                            
                                   =  plus(x(activate(N),activate(M)),activate(N))   
          
                       activate(X) =  [1] X + [0]                                    
                                   >= [1] X + [0]                                    
                                   =  X                                              
          
                  activate(n__0()) =  [2]                                            
                                   >= [2]                                            
                                   =  0()                                            
          
             activate(n__isNat(X)) =  [1] X + [0]                                    
                                   >= [1] X + [4]                                    
                                   =  isNat(X)                                       
          
          activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [4]                          
                                   >= [1] X1 + [1] X2 + [0]                          
                                   =  plus(activate(X1),activate(X2))                
          
                 activate(n__s(X)) =  [1] X + [0]                                    
                                   >= [1] X + [1]                                    
                                   =  s(activate(X))                                 
          
             activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [0]                          
                                   >= [1] X1 + [1] X2 + [5]                          
                                   =  x(activate(X1),activate(X2))                   
          
                       and(tt(),X) =  [1] X + [2]                                    
                                   >= [1] X + [0]                                    
                                   =  activate(X)                                    
          
                          isNat(X) =  [1] X + [4]                                    
                                   >= [1] X + [0]                                    
                                   =  n__isNat(X)                                    
          
             isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [8]                          
                                   >= [1] V1 + [1] V2 + [4]                          
                                   =  and(isNat(activate(V1)),n__isNat(activate(V2)))
          
                   isNat(n__s(V1)) =  [1] V1 + [4]                                   
                                   >= [1] V1 + [4]                                   
                                   =  isNat(activate(V1))                            
          
                isNat(n__x(V1,V2)) =  [1] V1 + [1] V2 + [4]                          
                                   >= [1] V1 + [1] V2 + [4]                          
                                   =  and(isNat(activate(V1)),n__isNat(activate(V2)))
          
                       plus(X1,X2) =  [1] X1 + [1] X2 + [0]                          
                                   >= [1] X1 + [1] X2 + [4]                          
                                   =  n__plus(X1,X2)                                 
          
                              s(X) =  [1] X + [1]                                    
                                   >= [1] X + [0]                                    
                                   =  n__s(X)                                        
          
                          x(X1,X2) =  [1] X1 + [1] X2 + [5]                          
                                   >= [1] X1 + [1] X2 + [0]                          
                                   =  n__x(X1,X2)                                    
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:7: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            plus(X1,X2) -> n__plus(X1,X2)
        - Weak TRS:
            0() -> n__0()
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U31(tt()) -> 0()
            U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            and(tt(),X) -> activate(X)
            isNat(X) -> n__isNat(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            isNat(n__s(V1)) -> isNat(activate(V1))
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1
            ,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,U31,U41,activate,and,isNat,plus,s
            ,x} and constructors {n__0,n__isNat,n__plus,n__s,n__x,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(isNat) = {1},
            uargs(n__isNat) = {1},
            uargs(plus) = {1,2},
            uargs(s) = {1},
            uargs(x) = {1,2}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                           
                 p(U11) = [4] x1 + [4] x2 + [5]         
                 p(U21) = [2] x1 + [5] x2 + [1] x3 + [6]
                 p(U31) = [2] x1 + [0]                  
                 p(U41) = [4] x1 + [4] x2 + [3] x3 + [4]
            p(activate) = [1] x1 + [0]                  
                 p(and) = [1] x1 + [1] x2 + [0]         
               p(isNat) = [1] x1 + [1]                  
                p(n__0) = [0]                           
            p(n__isNat) = [1] x1 + [0]                  
             p(n__plus) = [1] x1 + [1] x2 + [1]         
                p(n__s) = [1] x1 + [0]                  
                p(n__x) = [1] x1 + [1] x2 + [4]         
                p(plus) = [1] x1 + [1] x2 + [0]         
                   p(s) = [1] x1 + [0]                  
                  p(tt) = [1]                           
                   p(x) = [1] x1 + [1] x2 + [4]         
          
          Following rules are strictly oriented:
          isNat(n__x(V1,V2)) = [1] V1 + [1] V2 + [5]                          
                             > [1] V1 + [1] V2 + [1]                          
                             = and(isNat(activate(V1)),n__isNat(activate(V2)))
          
          
          Following rules are (at-least) weakly oriented:
                               0() =  [0]                                            
                                   >= [0]                                            
                                   =  n__0()                                         
          
                       U11(tt(),N) =  [4] N + [9]                                    
                                   >= [1] N + [0]                                    
                                   =  activate(N)                                    
          
                     U21(tt(),M,N) =  [5] M + [1] N + [8]                            
                                   >= [1] M + [1] N + [0]                            
                                   =  s(plus(activate(N),activate(M)))               
          
                         U31(tt()) =  [2]                                            
                                   >= [0]                                            
                                   =  0()                                            
          
                     U41(tt(),M,N) =  [4] M + [3] N + [8]                            
                                   >= [1] M + [2] N + [4]                            
                                   =  plus(x(activate(N),activate(M)),activate(N))   
          
                       activate(X) =  [1] X + [0]                                    
                                   >= [1] X + [0]                                    
                                   =  X                                              
          
                  activate(n__0()) =  [0]                                            
                                   >= [0]                                            
                                   =  0()                                            
          
             activate(n__isNat(X)) =  [1] X + [0]                                    
                                   >= [1] X + [1]                                    
                                   =  isNat(X)                                       
          
          activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [1]                          
                                   >= [1] X1 + [1] X2 + [0]                          
                                   =  plus(activate(X1),activate(X2))                
          
                 activate(n__s(X)) =  [1] X + [0]                                    
                                   >= [1] X + [0]                                    
                                   =  s(activate(X))                                 
          
             activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [4]                          
                                   >= [1] X1 + [1] X2 + [4]                          
                                   =  x(activate(X1),activate(X2))                   
          
                       and(tt(),X) =  [1] X + [1]                                    
                                   >= [1] X + [0]                                    
                                   =  activate(X)                                    
          
                          isNat(X) =  [1] X + [1]                                    
                                   >= [1] X + [0]                                    
                                   =  n__isNat(X)                                    
          
                     isNat(n__0()) =  [1]                                            
                                   >= [1]                                            
                                   =  tt()                                           
          
             isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [2]                          
                                   >= [1] V1 + [1] V2 + [1]                          
                                   =  and(isNat(activate(V1)),n__isNat(activate(V2)))
          
                   isNat(n__s(V1)) =  [1] V1 + [1]                                   
                                   >= [1] V1 + [1]                                   
                                   =  isNat(activate(V1))                            
          
                       plus(X1,X2) =  [1] X1 + [1] X2 + [0]                          
                                   >= [1] X1 + [1] X2 + [1]                          
                                   =  n__plus(X1,X2)                                 
          
                              s(X) =  [1] X + [0]                                    
                                   >= [1] X + [0]                                    
                                   =  n__s(X)                                        
          
                          x(X1,X2) =  [1] X1 + [1] X2 + [4]                          
                                   >= [1] X1 + [1] X2 + [4]                          
                                   =  n__x(X1,X2)                                    
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:8: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            plus(X1,X2) -> n__plus(X1,X2)
        - Weak TRS:
            0() -> n__0()
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U31(tt()) -> 0()
            U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            and(tt(),X) -> activate(X)
            isNat(X) -> n__isNat(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            isNat(n__s(V1)) -> isNat(activate(V1))
            isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1
            ,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,U31,U41,activate,and,isNat,plus,s
            ,x} and constructors {n__0,n__isNat,n__plus,n__s,n__x,tt}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(and) = {1,2},
            uargs(isNat) = {1},
            uargs(n__isNat) = {1},
            uargs(plus) = {1,2},
            uargs(s) = {1},
            uargs(x) = {1,2}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [3]                           
                 p(U11) = [3] x2 + [4]                  
                 p(U21) = [6] x1 + [5] x2 + [2] x3 + [3]
                 p(U31) = [2] x1 + [4]                  
                 p(U41) = [6] x1 + [2] x2 + [2] x3 + [3]
            p(activate) = [1] x1 + [2]                  
                 p(and) = [1] x1 + [1] x2 + [0]         
               p(isNat) = [1] x1 + [0]                  
                p(n__0) = [2]                           
            p(n__isNat) = [1] x1 + [0]                  
             p(n__plus) = [1] x1 + [1] x2 + [4]         
                p(n__s) = [1] x1 + [4]                  
                p(n__x) = [1] x1 + [1] x2 + [4]         
                p(plus) = [1] x1 + [1] x2 + [2]         
                   p(s) = [1] x1 + [4]                  
                  p(tt) = [2]                           
                   p(x) = [1] x1 + [1] x2 + [7]         
          
          Following rules are strictly oriented:
                    activate(X) = [1] X + [2]
                                > [1] X + [0]
                                = X          
          
               activate(n__0()) = [4]        
                                > [3]        
                                = 0()        
          
          activate(n__isNat(X)) = [1] X + [2]
                                > [1] X + [0]
                                = isNat(X)   
          
          
          Following rules are (at-least) weakly oriented:
                               0() =  [3]                                            
                                   >= [2]                                            
                                   =  n__0()                                         
          
                       U11(tt(),N) =  [3] N + [4]                                    
                                   >= [1] N + [2]                                    
                                   =  activate(N)                                    
          
                     U21(tt(),M,N) =  [5] M + [2] N + [15]                           
                                   >= [1] M + [1] N + [10]                           
                                   =  s(plus(activate(N),activate(M)))               
          
                         U31(tt()) =  [8]                                            
                                   >= [3]                                            
                                   =  0()                                            
          
                     U41(tt(),M,N) =  [2] M + [2] N + [15]                           
                                   >= [1] M + [2] N + [15]                           
                                   =  plus(x(activate(N),activate(M)),activate(N))   
          
          activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [6]                          
                                   >= [1] X1 + [1] X2 + [6]                          
                                   =  plus(activate(X1),activate(X2))                
          
                 activate(n__s(X)) =  [1] X + [6]                                    
                                   >= [1] X + [6]                                    
                                   =  s(activate(X))                                 
          
             activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [6]                          
                                   >= [1] X1 + [1] X2 + [11]                         
                                   =  x(activate(X1),activate(X2))                   
          
                       and(tt(),X) =  [1] X + [2]                                    
                                   >= [1] X + [2]                                    
                                   =  activate(X)                                    
          
                          isNat(X) =  [1] X + [0]                                    
                                   >= [1] X + [0]                                    
                                   =  n__isNat(X)                                    
          
                     isNat(n__0()) =  [2]                                            
                                   >= [2]                                            
                                   =  tt()                                           
          
             isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [4]                          
                                   >= [1] V1 + [1] V2 + [4]                          
                                   =  and(isNat(activate(V1)),n__isNat(activate(V2)))
          
                   isNat(n__s(V1)) =  [1] V1 + [4]                                   
                                   >= [1] V1 + [2]                                   
                                   =  isNat(activate(V1))                            
          
                isNat(n__x(V1,V2)) =  [1] V1 + [1] V2 + [4]                          
                                   >= [1] V1 + [1] V2 + [4]                          
                                   =  and(isNat(activate(V1)),n__isNat(activate(V2)))
          
                       plus(X1,X2) =  [1] X1 + [1] X2 + [2]                          
                                   >= [1] X1 + [1] X2 + [4]                          
                                   =  n__plus(X1,X2)                                 
          
                              s(X) =  [1] X + [4]                                    
                                   >= [1] X + [4]                                    
                                   =  n__s(X)                                        
          
                          x(X1,X2) =  [1] X1 + [1] X2 + [7]                          
                                   >= [1] X1 + [1] X2 + [4]                          
                                   =  n__x(X1,X2)                                    
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:9: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            plus(X1,X2) -> n__plus(X1,X2)
        - Weak TRS:
            0() -> n__0()
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U31(tt()) -> 0()
            U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            and(tt(),X) -> activate(X)
            isNat(X) -> n__isNat(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            isNat(n__s(V1)) -> isNat(activate(V1))
            isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1
            ,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,U31,U41,activate,and,isNat,plus,s
            ,x} and constructors {n__0,n__isNat,n__plus,n__s,n__x,tt}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isNat) = {1},
          uargs(n__isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1},
          uargs(x) = {1,2}
        
        Following symbols are considered usable:
          {0,U11,U21,U31,U41,activate,and,isNat,plus,s,x}
        TcT has computed the following interpretation:
                 p(0) = [2]                                    
                        [2]                                    
               p(U11) = [2 3] x_1 + [4 4] x_2 + [2]            
                        [0 0]       [2 1]       [3]            
               p(U21) = [3 4] x_1 + [2 3] x_2 + [1 4] x_3 + [6]
                        [4 4]       [4 2]       [0 1]       [0]
               p(U31) = [1 2] x_1 + [4]                        
                        [0 4]       [5]                        
               p(U41) = [1 6] x_2 + [4 7] x_3 + [0]            
                        [4 2]       [0 2]       [6]            
          p(activate) = [1 1] x_1 + [0]                        
                        [0 1]       [0]                        
               p(and) = [1 0] x_1 + [1 1] x_2 + [0]            
                        [0 0]       [0 1]       [0]            
             p(isNat) = [1 1] x_1 + [0]                        
                        [0 1]       [0]                        
              p(n__0) = [2]                                    
                        [2]                                    
          p(n__isNat) = [1 0] x_1 + [0]                        
                        [0 1]       [0]                        
           p(n__plus) = [1 2] x_1 + [1 1] x_2 + [0]            
                        [0 1]       [0 1]       [5]            
              p(n__s) = [1 1] x_1 + [7]                        
                        [0 1]       [1]                        
              p(n__x) = [1 2] x_1 + [1 1] x_2 + [0]            
                        [0 1]       [0 1]       [0]            
              p(plus) = [1 2] x_1 + [1 1] x_2 + [0]            
                        [0 1]       [0 1]       [5]            
                 p(s) = [1 1] x_1 + [7]                        
                        [0 1]       [1]                        
                p(tt) = [1]                                    
                        [1]                                    
                 p(x) = [1 2] x_1 + [1 1] x_2 + [0]            
                        [0 1]       [0 1]       [0]            
        
        Following rules are strictly oriented:
        activate(n__s(X)) = [1 2] X + [8] 
                            [0 1]     [1] 
                          > [1 2] X + [7] 
                            [0 1]     [1] 
                          = s(activate(X))
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [2]                                            
                                    [2]                                            
                                 >= [2]                                            
                                    [2]                                            
                                 =  n__0()                                         
        
                     U11(tt(),N) =  [4 4] N + [7]                                  
                                    [2 1]     [3]                                  
                                 >= [1 1] N + [0]                                  
                                    [0 1]     [0]                                  
                                 =  activate(N)                                    
        
                   U21(tt(),M,N) =  [2 3] M + [1 4] N + [13]                       
                                    [4 2]     [0 1]     [8]                        
                                 >= [1 3] M + [1 4] N + [12]                       
                                    [0 1]     [0 1]     [6]                        
                                 =  s(plus(activate(N),activate(M)))               
        
                       U31(tt()) =  [7]                                            
                                    [9]                                            
                                 >= [2]                                            
                                    [2]                                            
                                 =  0()                                            
        
                   U41(tt(),M,N) =  [1 6] M + [4 7] N + [0]                        
                                    [4 2]     [0 2]     [6]                        
                                 >= [1 4] M + [2 7] N + [0]                        
                                    [0 1]     [0 2]     [5]                        
                                 =  plus(x(activate(N),activate(M)),activate(N))   
        
                     activate(X) =  [1 1] X + [0]                                  
                                    [0 1]     [0]                                  
                                 >= [1 0] X + [0]                                  
                                    [0 1]     [0]                                  
                                 =  X                                              
        
                activate(n__0()) =  [4]                                            
                                    [2]                                            
                                 >= [2]                                            
                                    [2]                                            
                                 =  0()                                            
        
           activate(n__isNat(X)) =  [1 1] X + [0]                                  
                                    [0 1]     [0]                                  
                                 >= [1 1] X + [0]                                  
                                    [0 1]     [0]                                  
                                 =  isNat(X)                                       
        
        activate(n__plus(X1,X2)) =  [1 3] X1 + [1 2] X2 + [5]                      
                                    [0 1]      [0 1]      [5]                      
                                 >= [1 3] X1 + [1 2] X2 + [0]                      
                                    [0 1]      [0 1]      [5]                      
                                 =  plus(activate(X1),activate(X2))                
        
           activate(n__x(X1,X2)) =  [1 3] X1 + [1 2] X2 + [0]                      
                                    [0 1]      [0 1]      [0]                      
                                 >= [1 3] X1 + [1 2] X2 + [0]                      
                                    [0 1]      [0 1]      [0]                      
                                 =  x(activate(X1),activate(X2))                   
        
                     and(tt(),X) =  [1 1] X + [1]                                  
                                    [0 1]     [0]                                  
                                 >= [1 1] X + [0]                                  
                                    [0 1]     [0]                                  
                                 =  activate(X)                                    
        
                        isNat(X) =  [1 1] X + [0]                                  
                                    [0 1]     [0]                                  
                                 >= [1 0] X + [0]                                  
                                    [0 1]     [0]                                  
                                 =  n__isNat(X)                                    
        
                   isNat(n__0()) =  [4]                                            
                                    [2]                                            
                                 >= [1]                                            
                                    [1]                                            
                                 =  tt()                                           
        
           isNat(n__plus(V1,V2)) =  [1 3] V1 + [1 2] V2 + [5]                      
                                    [0 1]      [0 1]      [5]                      
                                 >= [1 2] V1 + [1 2] V2 + [0]                      
                                    [0 0]      [0 1]      [0]                      
                                 =  and(isNat(activate(V1)),n__isNat(activate(V2)))
        
                 isNat(n__s(V1)) =  [1 2] V1 + [8]                                 
                                    [0 1]      [1]                                 
                                 >= [1 2] V1 + [0]                                 
                                    [0 1]      [0]                                 
                                 =  isNat(activate(V1))                            
        
              isNat(n__x(V1,V2)) =  [1 3] V1 + [1 2] V2 + [0]                      
                                    [0 1]      [0 1]      [0]                      
                                 >= [1 2] V1 + [1 2] V2 + [0]                      
                                    [0 0]      [0 1]      [0]                      
                                 =  and(isNat(activate(V1)),n__isNat(activate(V2)))
        
                     plus(X1,X2) =  [1 2] X1 + [1 1] X2 + [0]                      
                                    [0 1]      [0 1]      [5]                      
                                 >= [1 2] X1 + [1 1] X2 + [0]                      
                                    [0 1]      [0 1]      [5]                      
                                 =  n__plus(X1,X2)                                 
        
                            s(X) =  [1 1] X + [7]                                  
                                    [0 1]     [1]                                  
                                 >= [1 1] X + [7]                                  
                                    [0 1]     [1]                                  
                                 =  n__s(X)                                        
        
                        x(X1,X2) =  [1 2] X1 + [1 1] X2 + [0]                      
                                    [0 1]      [0 1]      [0]                      
                                 >= [1 2] X1 + [1 1] X2 + [0]                      
                                    [0 1]      [0 1]      [0]                      
                                 =  n__x(X1,X2)                                    
        
** Step 1.b:10: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            plus(X1,X2) -> n__plus(X1,X2)
        - Weak TRS:
            0() -> n__0()
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U31(tt()) -> 0()
            U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            and(tt(),X) -> activate(X)
            isNat(X) -> n__isNat(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            isNat(n__s(V1)) -> isNat(activate(V1))
            isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1
            ,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,U31,U41,activate,and,isNat,plus,s
            ,x} and constructors {n__0,n__isNat,n__plus,n__s,n__x,tt}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isNat) = {1},
          uargs(n__isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1},
          uargs(x) = {1,2}
        
        Following symbols are considered usable:
          {0,U11,U21,U31,U41,activate,and,isNat,plus,s,x}
        TcT has computed the following interpretation:
                 p(0) = [2]                                    
                        [3]                                    
               p(U11) = [6 0] x_1 + [2 2] x_2 + [0]            
                        [6 0]       [1 1]       [2]            
               p(U21) = [0 2] x_1 + [1 4] x_2 + [1 6] x_3 + [7]
                        [0 1]       [0 4]       [0 4]       [2]
               p(U31) = [0 0] x_1 + [2]                        
                        [4 1]       [2]                        
               p(U41) = [4 0] x_1 + [1 3] x_2 + [4 7] x_3 + [4]
                        [6 0]       [1 4]       [0 2]       [1]
          p(activate) = [1 1] x_1 + [0]                        
                        [0 1]       [0]                        
               p(and) = [1 0] x_1 + [1 2] x_2 + [1]            
                        [0 0]       [0 1]       [0]            
             p(isNat) = [1 2] x_1 + [2]                        
                        [0 0]       [4]                        
              p(n__0) = [2]                                    
                        [3]                                    
          p(n__isNat) = [1 2] x_1 + [0]                        
                        [0 0]       [4]                        
           p(n__plus) = [1 1] x_1 + [1 1] x_2 + [0]            
                        [0 1]       [0 1]       [5]            
              p(n__s) = [1 2] x_1 + [4]                        
                        [0 1]       [0]                        
              p(n__x) = [1 3] x_1 + [1 1] x_2 + [5]            
                        [0 1]       [0 1]       [2]            
              p(plus) = [1 1] x_1 + [1 1] x_2 + [0]            
                        [0 1]       [0 1]       [5]            
                 p(s) = [1 2] x_1 + [4]                        
                        [0 1]       [0]                        
                p(tt) = [2]                                    
                        [4]                                    
                 p(x) = [1 3] x_1 + [1 1] x_2 + [5]            
                        [0 1]       [0 1]       [2]            
        
        Following rules are strictly oriented:
        activate(n__x(X1,X2)) = [1 4] X1 + [1 2] X2 + [7]   
                                [0 1]      [0 1]      [2]   
                              > [1 4] X1 + [1 2] X2 + [5]   
                                [0 1]      [0 1]      [2]   
                              = x(activate(X1),activate(X2))
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [2]                                            
                                    [3]                                            
                                 >= [2]                                            
                                    [3]                                            
                                 =  n__0()                                         
        
                     U11(tt(),N) =  [2 2] N + [12]                                 
                                    [1 1]     [14]                                 
                                 >= [1 1] N + [0]                                  
                                    [0 1]     [0]                                  
                                 =  activate(N)                                    
        
                   U21(tt(),M,N) =  [1 4] M + [1 6] N + [15]                       
                                    [0 4]     [0 4]     [6]                        
                                 >= [1 4] M + [1 4] N + [14]                       
                                    [0 1]     [0 1]     [5]                        
                                 =  s(plus(activate(N),activate(M)))               
        
                       U31(tt()) =  [2]                                            
                                    [14]                                           
                                 >= [2]                                            
                                    [3]                                            
                                 =  0()                                            
        
                   U41(tt(),M,N) =  [1 3] M + [4 7] N + [12]                       
                                    [1 4]     [0 2]     [13]                       
                                 >= [1 3] M + [2 7] N + [7]                        
                                    [0 1]     [0 2]     [7]                        
                                 =  plus(x(activate(N),activate(M)),activate(N))   
        
                     activate(X) =  [1 1] X + [0]                                  
                                    [0 1]     [0]                                  
                                 >= [1 0] X + [0]                                  
                                    [0 1]     [0]                                  
                                 =  X                                              
        
                activate(n__0()) =  [5]                                            
                                    [3]                                            
                                 >= [2]                                            
                                    [3]                                            
                                 =  0()                                            
        
           activate(n__isNat(X)) =  [1 2] X + [4]                                  
                                    [0 0]     [4]                                  
                                 >= [1 2] X + [2]                                  
                                    [0 0]     [4]                                  
                                 =  isNat(X)                                       
        
        activate(n__plus(X1,X2)) =  [1 2] X1 + [1 2] X2 + [5]                      
                                    [0 1]      [0 1]      [5]                      
                                 >= [1 2] X1 + [1 2] X2 + [0]                      
                                    [0 1]      [0 1]      [5]                      
                                 =  plus(activate(X1),activate(X2))                
        
               activate(n__s(X)) =  [1 3] X + [4]                                  
                                    [0 1]     [0]                                  
                                 >= [1 3] X + [4]                                  
                                    [0 1]     [0]                                  
                                 =  s(activate(X))                                 
        
                     and(tt(),X) =  [1 2] X + [3]                                  
                                    [0 1]     [0]                                  
                                 >= [1 1] X + [0]                                  
                                    [0 1]     [0]                                  
                                 =  activate(X)                                    
        
                        isNat(X) =  [1 2] X + [2]                                  
                                    [0 0]     [4]                                  
                                 >= [1 2] X + [0]                                  
                                    [0 0]     [4]                                  
                                 =  n__isNat(X)                                    
        
                   isNat(n__0()) =  [10]                                           
                                    [4]                                            
                                 >= [2]                                            
                                    [4]                                            
                                 =  tt()                                           
        
           isNat(n__plus(V1,V2)) =  [1 3] V1 + [1 3] V2 + [12]                     
                                    [0 0]      [0 0]      [4]                      
                                 >= [1 3] V1 + [1 3] V2 + [11]                     
                                    [0 0]      [0 0]      [4]                      
                                 =  and(isNat(activate(V1)),n__isNat(activate(V2)))
        
                 isNat(n__s(V1)) =  [1 4] V1 + [6]                                 
                                    [0 0]      [4]                                 
                                 >= [1 3] V1 + [2]                                 
                                    [0 0]      [4]                                 
                                 =  isNat(activate(V1))                            
        
              isNat(n__x(V1,V2)) =  [1 5] V1 + [1 3] V2 + [11]                     
                                    [0 0]      [0 0]      [4]                      
                                 >= [1 3] V1 + [1 3] V2 + [11]                     
                                    [0 0]      [0 0]      [4]                      
                                 =  and(isNat(activate(V1)),n__isNat(activate(V2)))
        
                     plus(X1,X2) =  [1 1] X1 + [1 1] X2 + [0]                      
                                    [0 1]      [0 1]      [5]                      
                                 >= [1 1] X1 + [1 1] X2 + [0]                      
                                    [0 1]      [0 1]      [5]                      
                                 =  n__plus(X1,X2)                                 
        
                            s(X) =  [1 2] X + [4]                                  
                                    [0 1]     [0]                                  
                                 >= [1 2] X + [4]                                  
                                    [0 1]     [0]                                  
                                 =  n__s(X)                                        
        
                        x(X1,X2) =  [1 3] X1 + [1 1] X2 + [5]                      
                                    [0 1]      [0 1]      [2]                      
                                 >= [1 3] X1 + [1 1] X2 + [5]                      
                                    [0 1]      [0 1]      [2]                      
                                 =  n__x(X1,X2)                                    
        
** Step 1.b:11: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            plus(X1,X2) -> n__plus(X1,X2)
        - Weak TRS:
            0() -> n__0()
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U31(tt()) -> 0()
            U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            and(tt(),X) -> activate(X)
            isNat(X) -> n__isNat(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            isNat(n__s(V1)) -> isNat(activate(V1))
            isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1
            ,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,U31,U41,activate,and,isNat,plus,s
            ,x} and constructors {n__0,n__isNat,n__plus,n__s,n__x,tt}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(and) = {1,2},
          uargs(isNat) = {1},
          uargs(n__isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1},
          uargs(x) = {1,2}
        
        Following symbols are considered usable:
          {0,U11,U21,U31,U41,activate,and,isNat,plus,s,x}
        TcT has computed the following interpretation:
                 p(0) = [1]                                    
                        [0]                                    
               p(U11) = [0 0] x_1 + [1 4] x_2 + [0]            
                        [3 0]       [1 1]       [0]            
               p(U21) = [3 2] x_1 + [4 4] x_2 + [1 4] x_3 + [1]
                        [4 0]       [0 4]       [4 4]       [1]
               p(U31) = [0 0] x_1 + [3]                        
                        [4 0]       [0]                        
               p(U41) = [0 0] x_1 + [2 6] x_2 + [4 7] x_3 + [6]
                        [1 4]       [4 4]       [4 4]       [4]
          p(activate) = [1 1] x_1 + [0]                        
                        [0 1]       [0]                        
               p(and) = [1 0] x_1 + [1 4] x_2 + [0]            
                        [0 0]       [0 1]       [0]            
             p(isNat) = [1 0] x_1 + [0]                        
                        [0 0]       [0]                        
              p(n__0) = [1]                                    
                        [0]                                    
          p(n__isNat) = [1 0] x_1 + [0]                        
                        [0 0]       [0]                        
           p(n__plus) = [1 2] x_1 + [1 2] x_2 + [0]            
                        [0 1]       [0 1]       [2]            
              p(n__s) = [1 1] x_1 + [0]                        
                        [0 1]       [0]                        
              p(n__x) = [1 1] x_1 + [1 1] x_2 + [4]            
                        [0 1]       [0 1]       [0]            
              p(plus) = [1 2] x_1 + [1 2] x_2 + [2]            
                        [0 1]       [0 1]       [2]            
                 p(s) = [1 1] x_1 + [0]                        
                        [0 1]       [0]                        
                p(tt) = [1]                                    
                        [0]                                    
                 p(x) = [1 1] x_1 + [1 1] x_2 + [4]            
                        [0 1]       [0 1]       [0]            
        
        Following rules are strictly oriented:
        plus(X1,X2) = [1 2] X1 + [1 2] X2 + [2]
                      [0 1]      [0 1]      [2]
                    > [1 2] X1 + [1 2] X2 + [0]
                      [0 1]      [0 1]      [2]
                    = n__plus(X1,X2)           
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [1]                                            
                                    [0]                                            
                                 >= [1]                                            
                                    [0]                                            
                                 =  n__0()                                         
        
                     U11(tt(),N) =  [1 4] N + [0]                                  
                                    [1 1]     [3]                                  
                                 >= [1 1] N + [0]                                  
                                    [0 1]     [0]                                  
                                 =  activate(N)                                    
        
                   U21(tt(),M,N) =  [4 4] M + [1 4] N + [4]                        
                                    [0 4]     [4 4]     [5]                        
                                 >= [1 4] M + [1 4] N + [4]                        
                                    [0 1]     [0 1]     [2]                        
                                 =  s(plus(activate(N),activate(M)))               
        
                       U31(tt()) =  [3]                                            
                                    [4]                                            
                                 >= [1]                                            
                                    [0]                                            
                                 =  0()                                            
        
                   U41(tt(),M,N) =  [2 6] M + [4 7] N + [6]                        
                                    [4 4]     [4 4]     [5]                        
                                 >= [1 4] M + [2 7] N + [6]                        
                                    [0 1]     [0 2]     [2]                        
                                 =  plus(x(activate(N),activate(M)),activate(N))   
        
                     activate(X) =  [1 1] X + [0]                                  
                                    [0 1]     [0]                                  
                                 >= [1 0] X + [0]                                  
                                    [0 1]     [0]                                  
                                 =  X                                              
        
                activate(n__0()) =  [1]                                            
                                    [0]                                            
                                 >= [1]                                            
                                    [0]                                            
                                 =  0()                                            
        
           activate(n__isNat(X)) =  [1 0] X + [0]                                  
                                    [0 0]     [0]                                  
                                 >= [1 0] X + [0]                                  
                                    [0 0]     [0]                                  
                                 =  isNat(X)                                       
        
        activate(n__plus(X1,X2)) =  [1 3] X1 + [1 3] X2 + [2]                      
                                    [0 1]      [0 1]      [2]                      
                                 >= [1 3] X1 + [1 3] X2 + [2]                      
                                    [0 1]      [0 1]      [2]                      
                                 =  plus(activate(X1),activate(X2))                
        
               activate(n__s(X)) =  [1 2] X + [0]                                  
                                    [0 1]     [0]                                  
                                 >= [1 2] X + [0]                                  
                                    [0 1]     [0]                                  
                                 =  s(activate(X))                                 
        
           activate(n__x(X1,X2)) =  [1 2] X1 + [1 2] X2 + [4]                      
                                    [0 1]      [0 1]      [0]                      
                                 >= [1 2] X1 + [1 2] X2 + [4]                      
                                    [0 1]      [0 1]      [0]                      
                                 =  x(activate(X1),activate(X2))                   
        
                     and(tt(),X) =  [1 4] X + [1]                                  
                                    [0 1]     [0]                                  
                                 >= [1 1] X + [0]                                  
                                    [0 1]     [0]                                  
                                 =  activate(X)                                    
        
                        isNat(X) =  [1 0] X + [0]                                  
                                    [0 0]     [0]                                  
                                 >= [1 0] X + [0]                                  
                                    [0 0]     [0]                                  
                                 =  n__isNat(X)                                    
        
                   isNat(n__0()) =  [1]                                            
                                    [0]                                            
                                 >= [1]                                            
                                    [0]                                            
                                 =  tt()                                           
        
           isNat(n__plus(V1,V2)) =  [1 2] V1 + [1 2] V2 + [0]                      
                                    [0 0]      [0 0]      [0]                      
                                 >= [1 1] V1 + [1 1] V2 + [0]                      
                                    [0 0]      [0 0]      [0]                      
                                 =  and(isNat(activate(V1)),n__isNat(activate(V2)))
        
                 isNat(n__s(V1)) =  [1 1] V1 + [0]                                 
                                    [0 0]      [0]                                 
                                 >= [1 1] V1 + [0]                                 
                                    [0 0]      [0]                                 
                                 =  isNat(activate(V1))                            
        
              isNat(n__x(V1,V2)) =  [1 1] V1 + [1 1] V2 + [4]                      
                                    [0 0]      [0 0]      [0]                      
                                 >= [1 1] V1 + [1 1] V2 + [0]                      
                                    [0 0]      [0 0]      [0]                      
                                 =  and(isNat(activate(V1)),n__isNat(activate(V2)))
        
                            s(X) =  [1 1] X + [0]                                  
                                    [0 1]     [0]                                  
                                 >= [1 1] X + [0]                                  
                                    [0 1]     [0]                                  
                                 =  n__s(X)                                        
        
                        x(X1,X2) =  [1 1] X1 + [1 1] X2 + [4]                      
                                    [0 1]      [0 1]      [0]                      
                                 >= [1 1] X1 + [1 1] X2 + [4]                      
                                    [0 1]      [0 1]      [0]                      
                                 =  n__x(X1,X2)                                    
        
** Step 1.b:12: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            0() -> n__0()
            U11(tt(),N) -> activate(N)
            U21(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U31(tt()) -> 0()
            U41(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__isNat(X)) -> isNat(X)
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            and(tt(),X) -> activate(X)
            isNat(X) -> n__isNat(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            isNat(n__s(V1)) -> isNat(activate(V1))
            isNat(n__x(V1,V2)) -> and(isNat(activate(V1)),n__isNat(activate(V2)))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U21/3,U31/1,U41/3,activate/1,and/2,isNat/1,plus/2,s/1,x/2} / {n__0/0,n__isNat/1,n__plus/2,n__s/1
            ,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U21,U31,U41,activate,and,isNat,plus,s
            ,x} and constructors {n__0,n__isNat,n__plus,n__s,n__x,tt}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^2))