* Step 1: Sum WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            U41(tt(),N) -> activate(N)
            U51(tt(),M,N) -> U52(isNat(activate(N)),activate(M),activate(N))
            U52(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U61(tt()) -> 0()
            U71(tt(),M,N) -> U72(isNat(activate(N)),activate(M),activate(N))
            U72(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(N,0()) -> U41(isNat(N),N)
            plus(N,s(M)) -> U51(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(N,0()) -> U61(isNat(N))
            x(N,s(M)) -> U71(isNat(M),M,N)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1
            ,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate
            ,isNat,plus,s,x} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: InnermostRuleRemoval WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            U41(tt(),N) -> activate(N)
            U51(tt(),M,N) -> U52(isNat(activate(N)),activate(M),activate(N))
            U52(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U61(tt()) -> 0()
            U71(tt(),M,N) -> U72(isNat(activate(N)),activate(M),activate(N))
            U72(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(N,0()) -> U41(isNat(N),N)
            plus(N,s(M)) -> U51(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(N,0()) -> U61(isNat(N))
            x(N,s(M)) -> U71(isNat(M),M,N)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1
            ,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate
            ,isNat,plus,s,x} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          plus(N,0()) -> U41(isNat(N),N)
          plus(N,s(M)) -> U51(isNat(M),M,N)
          x(N,0()) -> U61(isNat(N))
          x(N,s(M)) -> U71(isNat(M),M,N)
        All above mentioned rules can be savely removed.
* Step 3: MI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            U41(tt(),N) -> activate(N)
            U51(tt(),M,N) -> U52(isNat(activate(N)),activate(M),activate(N))
            U52(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U61(tt()) -> 0()
            U71(tt(),M,N) -> U72(isNat(activate(N)),activate(M),activate(N))
            U72(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1
            ,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate
            ,isNat,plus,s,x} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U31) = {1,2},
          uargs(U32) = {1},
          uargs(U52) = {1,2,3},
          uargs(U72) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1},
          uargs(x) = {1,2}
        
        Following symbols are considered usable:
          {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate,isNat,plus,s,x}
        TcT has computed the following interpretation:
                 p(0) = [0]                                
               p(U11) = [1] x_1 + [8] x_2 + [8]            
               p(U12) = [1] x_1 + [0]                      
               p(U21) = [1] x_1 + [0]                      
               p(U31) = [1] x_1 + [8] x_2 + [8]            
               p(U32) = [1] x_1 + [1]                      
               p(U41) = [1] x_2 + [1]                      
               p(U51) = [1] x_1 + [5] x_2 + [10] x_3 + [12]
               p(U52) = [1] x_1 + [4] x_2 + [2] x_3 + [1]  
               p(U61) = [8]                                
               p(U71) = [1] x_1 + [1] x_2 + [11] x_3 + [15]
               p(U72) = [1] x_1 + [1] x_2 + [3] x_3 + [8]  
          p(activate) = [1] x_1 + [0]                      
             p(isNat) = [8] x_1 + [7]                      
              p(n__0) = [0]                                
           p(n__plus) = [1] x_1 + [1] x_2 + [1]            
              p(n__s) = [1] x_1 + [0]                      
              p(n__x) = [1] x_1 + [1] x_2 + [1]            
              p(plus) = [1] x_1 + [1] x_2 + [1]            
                 p(s) = [1] x_1 + [0]                      
                p(tt) = [0]                                
                 p(x) = [1] x_1 + [1] x_2 + [1]            
        
        Following rules are strictly oriented:
         U11(tt(),V2) = [8] V2 + [8]                                   
                      > [8] V2 + [7]                                   
                      = U12(isNat(activate(V2)))                       
        
            U32(tt()) = [1]                                            
                      > [0]                                            
                      = tt()                                           
        
          U41(tt(),N) = [1] N + [1]                                    
                      > [1] N + [0]                                    
                      = activate(N)                                    
        
        U51(tt(),M,N) = [5] M + [10] N + [12]                          
                      > [4] M + [10] N + [8]                           
                      = U52(isNat(activate(N)),activate(M),activate(N))
        
            U61(tt()) = [8]                                            
                      > [0]                                            
                      = 0()                                            
        
        U72(tt(),M,N) = [1] M + [3] N + [8]                            
                      > [1] M + [2] N + [2]                            
                      = plus(x(activate(N),activate(M)),activate(N))   
        
        isNat(n__0()) = [7]                                            
                      > [0]                                            
                      = tt()                                           
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                                            
                                 >= [0]                                            
                                 =  n__0()                                         
        
                       U12(tt()) =  [0]                                            
                                 >= [0]                                            
                                 =  tt()                                           
        
                       U21(tt()) =  [0]                                            
                                 >= [0]                                            
                                 =  tt()                                           
        
                    U31(tt(),V2) =  [8] V2 + [8]                                   
                                 >= [8] V2 + [8]                                   
                                 =  U32(isNat(activate(V2)))                       
        
                   U52(tt(),M,N) =  [4] M + [2] N + [1]                            
                                 >= [1] M + [1] N + [1]                            
                                 =  s(plus(activate(N),activate(M)))               
        
                   U71(tt(),M,N) =  [1] M + [11] N + [15]                          
                                 >= [1] M + [11] N + [15]                          
                                 =  U72(isNat(activate(N)),activate(M),activate(N))
        
                     activate(X) =  [1] X + [0]                                    
                                 >= [1] X + [0]                                    
                                 =  X                                              
        
                activate(n__0()) =  [0]                                            
                                 >= [0]                                            
                                 =  0()                                            
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [1]                          
                                 >= [1] X1 + [1] X2 + [1]                          
                                 =  plus(X1,X2)                                    
        
               activate(n__s(X)) =  [1] X + [0]                                    
                                 >= [1] X + [0]                                    
                                 =  s(X)                                           
        
           activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [1]                          
                                 >= [1] X1 + [1] X2 + [1]                          
                                 =  x(X1,X2)                                       
        
           isNat(n__plus(V1,V2)) =  [8] V1 + [8] V2 + [15]                         
                                 >= [8] V1 + [8] V2 + [15]                         
                                 =  U11(isNat(activate(V1)),activate(V2))          
        
                 isNat(n__s(V1)) =  [8] V1 + [7]                                   
                                 >= [8] V1 + [7]                                   
                                 =  U21(isNat(activate(V1)))                       
        
              isNat(n__x(V1,V2)) =  [8] V1 + [8] V2 + [15]                         
                                 >= [8] V1 + [8] V2 + [15]                         
                                 =  U31(isNat(activate(V1)),activate(V2))          
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [1]                          
                                 >= [1] X1 + [1] X2 + [1]                          
                                 =  n__plus(X1,X2)                                 
        
                            s(X) =  [1] X + [0]                                    
                                 >= [1] X + [0]                                    
                                 =  n__s(X)                                        
        
                        x(X1,X2) =  [1] X1 + [1] X2 + [1]                          
                                 >= [1] X1 + [1] X2 + [1]                          
                                 =  n__x(X1,X2)                                    
        
* Step 4: MI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U52(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U71(tt(),M,N) -> U72(isNat(activate(N)),activate(M),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Weak TRS:
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U32(tt()) -> tt()
            U41(tt(),N) -> activate(N)
            U51(tt(),M,N) -> U52(isNat(activate(N)),activate(M),activate(N))
            U61(tt()) -> 0()
            U72(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            isNat(n__0()) -> tt()
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1
            ,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate
            ,isNat,plus,s,x} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U31) = {1,2},
          uargs(U32) = {1},
          uargs(U52) = {1,2,3},
          uargs(U72) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1},
          uargs(x) = {1,2}
        
        Following symbols are considered usable:
          {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate,isNat,plus,s,x}
        TcT has computed the following interpretation:
                 p(0) = [0]                               
               p(U11) = [1] x_1 + [4] x_2 + [4]           
               p(U12) = [1] x_1 + [0]                     
               p(U21) = [1] x_1 + [10]                    
               p(U31) = [1] x_1 + [4] x_2 + [0]           
               p(U32) = [1] x_1 + [0]                     
               p(U41) = [1] x_1 + [2] x_2 + [13]          
               p(U51) = [8] x_1 + [2] x_2 + [12] x_3 + [9]
               p(U52) = [1] x_1 + [2] x_2 + [8] x_3 + [7] 
               p(U61) = [1] x_1 + [6]                     
               p(U71) = [1] x_2 + [13] x_3 + [3]          
               p(U72) = [2] x_1 + [1] x_2 + [4] x_3 + [3] 
          p(activate) = [1] x_1 + [0]                     
             p(isNat) = [4] x_1 + [0]                     
              p(n__0) = [0]                               
           p(n__plus) = [1] x_1 + [1] x_2 + [1]           
              p(n__s) = [1] x_1 + [6]                     
              p(n__x) = [1] x_1 + [1] x_2 + [0]           
              p(plus) = [1] x_1 + [1] x_2 + [1]           
                 p(s) = [1] x_1 + [6]                     
                p(tt) = [0]                               
                 p(x) = [1] x_1 + [1] x_2 + [0]           
        
        Following rules are strictly oriented:
              U21(tt()) = [10]                    
                        > [0]                     
                        = tt()                    
        
        isNat(n__s(V1)) = [4] V1 + [24]           
                        > [4] V1 + [10]           
                        = U21(isNat(activate(V1)))
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                                            
                                 >= [0]                                            
                                 =  n__0()                                         
        
                    U11(tt(),V2) =  [4] V2 + [4]                                   
                                 >= [4] V2 + [0]                                   
                                 =  U12(isNat(activate(V2)))                       
        
                       U12(tt()) =  [0]                                            
                                 >= [0]                                            
                                 =  tt()                                           
        
                    U31(tt(),V2) =  [4] V2 + [0]                                   
                                 >= [4] V2 + [0]                                   
                                 =  U32(isNat(activate(V2)))                       
        
                       U32(tt()) =  [0]                                            
                                 >= [0]                                            
                                 =  tt()                                           
        
                     U41(tt(),N) =  [2] N + [13]                                   
                                 >= [1] N + [0]                                    
                                 =  activate(N)                                    
        
                   U51(tt(),M,N) =  [2] M + [12] N + [9]                           
                                 >= [2] M + [12] N + [7]                           
                                 =  U52(isNat(activate(N)),activate(M),activate(N))
        
                   U52(tt(),M,N) =  [2] M + [8] N + [7]                            
                                 >= [1] M + [1] N + [7]                            
                                 =  s(plus(activate(N),activate(M)))               
        
                       U61(tt()) =  [6]                                            
                                 >= [0]                                            
                                 =  0()                                            
        
                   U71(tt(),M,N) =  [1] M + [13] N + [3]                           
                                 >= [1] M + [12] N + [3]                           
                                 =  U72(isNat(activate(N)),activate(M),activate(N))
        
                   U72(tt(),M,N) =  [1] M + [4] N + [3]                            
                                 >= [1] M + [2] N + [1]                            
                                 =  plus(x(activate(N),activate(M)),activate(N))   
        
                     activate(X) =  [1] X + [0]                                    
                                 >= [1] X + [0]                                    
                                 =  X                                              
        
                activate(n__0()) =  [0]                                            
                                 >= [0]                                            
                                 =  0()                                            
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [1]                          
                                 >= [1] X1 + [1] X2 + [1]                          
                                 =  plus(X1,X2)                                    
        
               activate(n__s(X)) =  [1] X + [6]                                    
                                 >= [1] X + [6]                                    
                                 =  s(X)                                           
        
           activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [0]                          
                                 >= [1] X1 + [1] X2 + [0]                          
                                 =  x(X1,X2)                                       
        
                   isNat(n__0()) =  [0]                                            
                                 >= [0]                                            
                                 =  tt()                                           
        
           isNat(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [4]                          
                                 >= [4] V1 + [4] V2 + [4]                          
                                 =  U11(isNat(activate(V1)),activate(V2))          
        
              isNat(n__x(V1,V2)) =  [4] V1 + [4] V2 + [0]                          
                                 >= [4] V1 + [4] V2 + [0]                          
                                 =  U31(isNat(activate(V1)),activate(V2))          
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [1]                          
                                 >= [1] X1 + [1] X2 + [1]                          
                                 =  n__plus(X1,X2)                                 
        
                            s(X) =  [1] X + [6]                                    
                                 >= [1] X + [6]                                    
                                 =  n__s(X)                                        
        
                        x(X1,X2) =  [1] X1 + [1] X2 + [0]                          
                                 >= [1] X1 + [1] X2 + [0]                          
                                 =  n__x(X1,X2)                                    
        
* Step 5: MI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U12(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U52(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U71(tt(),M,N) -> U72(isNat(activate(N)),activate(M),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Weak TRS:
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U21(tt()) -> tt()
            U32(tt()) -> tt()
            U41(tt(),N) -> activate(N)
            U51(tt(),M,N) -> U52(isNat(activate(N)),activate(M),activate(N))
            U61(tt()) -> 0()
            U72(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            isNat(n__0()) -> tt()
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1
            ,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate
            ,isNat,plus,s,x} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U31) = {1,2},
          uargs(U32) = {1},
          uargs(U52) = {1,2,3},
          uargs(U72) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1},
          uargs(x) = {1,2}
        
        Following symbols are considered usable:
          {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate,isNat,plus,s,x}
        TcT has computed the following interpretation:
                 p(0) = [8]                               
               p(U11) = [1] x_1 + [2] x_2 + [0]           
               p(U12) = [1] x_1 + [2]                     
               p(U21) = [1] x_1 + [0]                     
               p(U31) = [1] x_1 + [2] x_2 + [8]           
               p(U32) = [1] x_1 + [10]                    
               p(U41) = [8] x_1 + [1] x_2 + [0]           
               p(U51) = [1] x_2 + [6] x_3 + [0]           
               p(U52) = [2] x_1 + [1] x_2 + [2] x_3 + [0] 
               p(U61) = [8]                               
               p(U71) = [2] x_1 + [4] x_2 + [10] x_3 + [3]
               p(U72) = [1] x_1 + [4] x_2 + [8] x_3 + [6] 
          p(activate) = [1] x_1 + [0]                     
             p(isNat) = [2] x_1 + [0]                     
              p(n__0) = [8]                               
           p(n__plus) = [1] x_1 + [1] x_2 + [1]           
              p(n__s) = [1] x_1 + [0]                     
              p(n__x) = [1] x_1 + [1] x_2 + [7]           
              p(plus) = [1] x_1 + [1] x_2 + [1]           
                 p(s) = [1] x_1 + [0]                     
                p(tt) = [2]                               
                 p(x) = [1] x_1 + [1] x_2 + [7]           
        
        Following rules are strictly oriented:
                    U12(tt()) = [4]                                            
                              > [2]                                            
                              = tt()                                           
        
                U52(tt(),M,N) = [1] M + [2] N + [4]                            
                              > [1] M + [1] N + [1]                            
                              = s(plus(activate(N),activate(M)))               
        
                U71(tt(),M,N) = [4] M + [10] N + [7]                           
                              > [4] M + [10] N + [6]                           
                              = U72(isNat(activate(N)),activate(M),activate(N))
        
        isNat(n__plus(V1,V2)) = [2] V1 + [2] V2 + [2]                          
                              > [2] V1 + [2] V2 + [0]                          
                              = U11(isNat(activate(V1)),activate(V2))          
        
           isNat(n__x(V1,V2)) = [2] V1 + [2] V2 + [14]                         
                              > [2] V1 + [2] V2 + [8]                          
                              = U31(isNat(activate(V1)),activate(V2))          
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [8]                                            
                                 >= [8]                                            
                                 =  n__0()                                         
        
                    U11(tt(),V2) =  [2] V2 + [2]                                   
                                 >= [2] V2 + [2]                                   
                                 =  U12(isNat(activate(V2)))                       
        
                       U21(tt()) =  [2]                                            
                                 >= [2]                                            
                                 =  tt()                                           
        
                    U31(tt(),V2) =  [2] V2 + [10]                                  
                                 >= [2] V2 + [10]                                  
                                 =  U32(isNat(activate(V2)))                       
        
                       U32(tt()) =  [12]                                           
                                 >= [2]                                            
                                 =  tt()                                           
        
                     U41(tt(),N) =  [1] N + [16]                                   
                                 >= [1] N + [0]                                    
                                 =  activate(N)                                    
        
                   U51(tt(),M,N) =  [1] M + [6] N + [0]                            
                                 >= [1] M + [6] N + [0]                            
                                 =  U52(isNat(activate(N)),activate(M),activate(N))
        
                       U61(tt()) =  [8]                                            
                                 >= [8]                                            
                                 =  0()                                            
        
                   U72(tt(),M,N) =  [4] M + [8] N + [8]                            
                                 >= [1] M + [2] N + [8]                            
                                 =  plus(x(activate(N),activate(M)),activate(N))   
        
                     activate(X) =  [1] X + [0]                                    
                                 >= [1] X + [0]                                    
                                 =  X                                              
        
                activate(n__0()) =  [8]                                            
                                 >= [8]                                            
                                 =  0()                                            
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [1]                          
                                 >= [1] X1 + [1] X2 + [1]                          
                                 =  plus(X1,X2)                                    
        
               activate(n__s(X)) =  [1] X + [0]                                    
                                 >= [1] X + [0]                                    
                                 =  s(X)                                           
        
           activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [7]                          
                                 >= [1] X1 + [1] X2 + [7]                          
                                 =  x(X1,X2)                                       
        
                   isNat(n__0()) =  [16]                                           
                                 >= [2]                                            
                                 =  tt()                                           
        
                 isNat(n__s(V1)) =  [2] V1 + [0]                                   
                                 >= [2] V1 + [0]                                   
                                 =  U21(isNat(activate(V1)))                       
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [1]                          
                                 >= [1] X1 + [1] X2 + [1]                          
                                 =  n__plus(X1,X2)                                 
        
                            s(X) =  [1] X + [0]                                    
                                 >= [1] X + [0]                                    
                                 =  n__s(X)                                        
        
                        x(X1,X2) =  [1] X1 + [1] X2 + [7]                          
                                 >= [1] X1 + [1] X2 + [7]                          
                                 =  n__x(X1,X2)                                    
        
* Step 6: MI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Weak TRS:
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U32(tt()) -> tt()
            U41(tt(),N) -> activate(N)
            U51(tt(),M,N) -> U52(isNat(activate(N)),activate(M),activate(N))
            U52(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U61(tt()) -> 0()
            U71(tt(),M,N) -> U72(isNat(activate(N)),activate(M),activate(N))
            U72(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1
            ,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate
            ,isNat,plus,s,x} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U31) = {1,2},
          uargs(U32) = {1},
          uargs(U52) = {1,2,3},
          uargs(U72) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1},
          uargs(x) = {1,2}
        
        Following symbols are considered usable:
          {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate,isNat,plus,s,x}
        TcT has computed the following interpretation:
                 p(0) = [0]                               
               p(U11) = [1] x_1 + [1] x_2 + [0]           
               p(U12) = [1] x_1 + [0]                     
               p(U21) = [1] x_1 + [0]                     
               p(U31) = [1] x_1 + [1] x_2 + [2]           
               p(U32) = [1] x_1 + [0]                     
               p(U41) = [1] x_2 + [0]                     
               p(U51) = [1] x_1 + [2] x_2 + [8] x_3 + [4] 
               p(U52) = [1] x_1 + [2] x_2 + [1] x_3 + [4] 
               p(U61) = [8]                               
               p(U71) = [1] x_1 + [2] x_2 + [4] x_3 + [11]
               p(U72) = [2] x_1 + [2] x_2 + [2] x_3 + [3] 
          p(activate) = [1] x_1 + [0]                     
             p(isNat) = [1] x_1 + [8]                     
              p(n__0) = [0]                               
           p(n__plus) = [1] x_1 + [1] x_2 + [0]           
              p(n__s) = [1] x_1 + [0]                     
              p(n__x) = [1] x_1 + [1] x_2 + [2]           
              p(plus) = [1] x_1 + [1] x_2 + [0]           
                 p(s) = [1] x_1 + [0]                     
                p(tt) = [8]                               
                 p(x) = [1] x_1 + [1] x_2 + [2]           
        
        Following rules are strictly oriented:
        U31(tt(),V2) = [1] V2 + [10]           
                     > [1] V2 + [8]            
                     = U32(isNat(activate(V2)))
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [0]                                            
                                 >= [0]                                            
                                 =  n__0()                                         
        
                    U11(tt(),V2) =  [1] V2 + [8]                                   
                                 >= [1] V2 + [8]                                   
                                 =  U12(isNat(activate(V2)))                       
        
                       U12(tt()) =  [8]                                            
                                 >= [8]                                            
                                 =  tt()                                           
        
                       U21(tt()) =  [8]                                            
                                 >= [8]                                            
                                 =  tt()                                           
        
                       U32(tt()) =  [8]                                            
                                 >= [8]                                            
                                 =  tt()                                           
        
                     U41(tt(),N) =  [1] N + [0]                                    
                                 >= [1] N + [0]                                    
                                 =  activate(N)                                    
        
                   U51(tt(),M,N) =  [2] M + [8] N + [12]                           
                                 >= [2] M + [2] N + [12]                           
                                 =  U52(isNat(activate(N)),activate(M),activate(N))
        
                   U52(tt(),M,N) =  [2] M + [1] N + [12]                           
                                 >= [1] M + [1] N + [0]                            
                                 =  s(plus(activate(N),activate(M)))               
        
                       U61(tt()) =  [8]                                            
                                 >= [0]                                            
                                 =  0()                                            
        
                   U71(tt(),M,N) =  [2] M + [4] N + [19]                           
                                 >= [2] M + [4] N + [19]                           
                                 =  U72(isNat(activate(N)),activate(M),activate(N))
        
                   U72(tt(),M,N) =  [2] M + [2] N + [19]                           
                                 >= [1] M + [2] N + [2]                            
                                 =  plus(x(activate(N),activate(M)),activate(N))   
        
                     activate(X) =  [1] X + [0]                                    
                                 >= [1] X + [0]                                    
                                 =  X                                              
        
                activate(n__0()) =  [0]                                            
                                 >= [0]                                            
                                 =  0()                                            
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]                          
                                 >= [1] X1 + [1] X2 + [0]                          
                                 =  plus(X1,X2)                                    
        
               activate(n__s(X)) =  [1] X + [0]                                    
                                 >= [1] X + [0]                                    
                                 =  s(X)                                           
        
           activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [2]                          
                                 >= [1] X1 + [1] X2 + [2]                          
                                 =  x(X1,X2)                                       
        
                   isNat(n__0()) =  [8]                                            
                                 >= [8]                                            
                                 =  tt()                                           
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [8]                          
                                 >= [1] V1 + [1] V2 + [8]                          
                                 =  U11(isNat(activate(V1)),activate(V2))          
        
                 isNat(n__s(V1)) =  [1] V1 + [8]                                   
                                 >= [1] V1 + [8]                                   
                                 =  U21(isNat(activate(V1)))                       
        
              isNat(n__x(V1,V2)) =  [1] V1 + [1] V2 + [10]                         
                                 >= [1] V1 + [1] V2 + [10]                         
                                 =  U31(isNat(activate(V1)),activate(V2))          
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [0]                          
                                 >= [1] X1 + [1] X2 + [0]                          
                                 =  n__plus(X1,X2)                                 
        
                            s(X) =  [1] X + [0]                                    
                                 >= [1] X + [0]                                    
                                 =  n__s(X)                                        
        
                        x(X1,X2) =  [1] X1 + [1] X2 + [2]                          
                                 >= [1] X1 + [1] X2 + [2]                          
                                 =  n__x(X1,X2)                                    
        
* Step 7: MI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Weak TRS:
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            U41(tt(),N) -> activate(N)
            U51(tt(),M,N) -> U52(isNat(activate(N)),activate(M),activate(N))
            U52(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U61(tt()) -> 0()
            U71(tt(),M,N) -> U72(isNat(activate(N)),activate(M),activate(N))
            U72(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1
            ,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate
            ,isNat,plus,s,x} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U31) = {1,2},
          uargs(U32) = {1},
          uargs(U52) = {1,2,3},
          uargs(U72) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1},
          uargs(x) = {1,2}
        
        Following symbols are considered usable:
          {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate,isNat,plus,s,x}
        TcT has computed the following interpretation:
                 p(0) = [1]                                
               p(U11) = [1] x_1 + [4] x_2 + [0]            
               p(U12) = [1] x_1 + [0]                      
               p(U21) = [1] x_1 + [0]                      
               p(U31) = [1] x_1 + [4] x_2 + [4]            
               p(U32) = [1] x_1 + [4]                      
               p(U41) = [2] x_1 + [1] x_2 + [12]           
               p(U51) = [4] x_1 + [1] x_2 + [5] x_3 + [8]  
               p(U52) = [1] x_1 + [1] x_2 + [1] x_3 + [1]  
               p(U61) = [2] x_1 + [2]                      
               p(U71) = [1] x_1 + [8] x_2 + [10] x_3 + [15]
               p(U72) = [2] x_1 + [1] x_2 + [2] x_3 + [3]  
          p(activate) = [1] x_1 + [1]                      
             p(isNat) = [4] x_1 + [0]                      
              p(n__0) = [1]                                
           p(n__plus) = [1] x_1 + [1] x_2 + [2]            
              p(n__s) = [1] x_1 + [1]                      
              p(n__x) = [1] x_1 + [1] x_2 + [5]            
              p(plus) = [1] x_1 + [1] x_2 + [2]            
                 p(s) = [1] x_1 + [1]                      
                p(tt) = [4]                                
                 p(x) = [1] x_1 + [1] x_2 + [6]            
        
        Following rules are strictly oriented:
                     activate(X) = [1] X + [1]          
                                 > [1] X + [0]          
                                 = X                    
        
                activate(n__0()) = [2]                  
                                 > [1]                  
                                 = 0()                  
        
        activate(n__plus(X1,X2)) = [1] X1 + [1] X2 + [3]
                                 > [1] X1 + [1] X2 + [2]
                                 = plus(X1,X2)          
        
               activate(n__s(X)) = [1] X + [2]          
                                 > [1] X + [1]          
                                 = s(X)                 
        
                        x(X1,X2) = [1] X1 + [1] X2 + [6]
                                 > [1] X1 + [1] X2 + [5]
                                 = n__x(X1,X2)          
        
        
        Following rules are (at-least) weakly oriented:
                          0() =  [1]                                            
                              >= [1]                                            
                              =  n__0()                                         
        
                 U11(tt(),V2) =  [4] V2 + [4]                                   
                              >= [4] V2 + [4]                                   
                              =  U12(isNat(activate(V2)))                       
        
                    U12(tt()) =  [4]                                            
                              >= [4]                                            
                              =  tt()                                           
        
                    U21(tt()) =  [4]                                            
                              >= [4]                                            
                              =  tt()                                           
        
                 U31(tt(),V2) =  [4] V2 + [8]                                   
                              >= [4] V2 + [8]                                   
                              =  U32(isNat(activate(V2)))                       
        
                    U32(tt()) =  [8]                                            
                              >= [4]                                            
                              =  tt()                                           
        
                  U41(tt(),N) =  [1] N + [20]                                   
                              >= [1] N + [1]                                    
                              =  activate(N)                                    
        
                U51(tt(),M,N) =  [1] M + [5] N + [24]                           
                              >= [1] M + [5] N + [7]                            
                              =  U52(isNat(activate(N)),activate(M),activate(N))
        
                U52(tt(),M,N) =  [1] M + [1] N + [5]                            
                              >= [1] M + [1] N + [5]                            
                              =  s(plus(activate(N),activate(M)))               
        
                    U61(tt()) =  [10]                                           
                              >= [1]                                            
                              =  0()                                            
        
                U71(tt(),M,N) =  [8] M + [10] N + [19]                          
                              >= [1] M + [10] N + [14]                          
                              =  U72(isNat(activate(N)),activate(M),activate(N))
        
                U72(tt(),M,N) =  [1] M + [2] N + [11]                           
                              >= [1] M + [2] N + [11]                           
                              =  plus(x(activate(N),activate(M)),activate(N))   
        
        activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [6]                          
                              >= [1] X1 + [1] X2 + [6]                          
                              =  x(X1,X2)                                       
        
                isNat(n__0()) =  [4]                                            
                              >= [4]                                            
                              =  tt()                                           
        
        isNat(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [8]                          
                              >= [4] V1 + [4] V2 + [8]                          
                              =  U11(isNat(activate(V1)),activate(V2))          
        
              isNat(n__s(V1)) =  [4] V1 + [4]                                   
                              >= [4] V1 + [4]                                   
                              =  U21(isNat(activate(V1)))                       
        
           isNat(n__x(V1,V2)) =  [4] V1 + [4] V2 + [20]                         
                              >= [4] V1 + [4] V2 + [12]                         
                              =  U31(isNat(activate(V1)),activate(V2))          
        
                  plus(X1,X2) =  [1] X1 + [1] X2 + [2]                          
                              >= [1] X1 + [1] X2 + [2]                          
                              =  n__plus(X1,X2)                                 
        
                         s(X) =  [1] X + [1]                                    
                              >= [1] X + [1]                                    
                              =  n__s(X)                                        
        
* Step 8: MI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            activate(n__x(X1,X2)) -> x(X1,X2)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Weak TRS:
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            U41(tt(),N) -> activate(N)
            U51(tt(),M,N) -> U52(isNat(activate(N)),activate(M),activate(N))
            U52(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U61(tt()) -> 0()
            U71(tt(),M,N) -> U72(isNat(activate(N)),activate(M),activate(N))
            U72(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1
            ,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate
            ,isNat,plus,s,x} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U31) = {1,2},
          uargs(U32) = {1},
          uargs(U52) = {1,2,3},
          uargs(U72) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1},
          uargs(x) = {1,2}
        
        Following symbols are considered usable:
          {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate,isNat,plus,s,x}
        TcT has computed the following interpretation:
                 p(0) = [1]                               
               p(U11) = [1] x_1 + [2] x_2 + [10]          
               p(U12) = [1] x_1 + [7]                     
               p(U21) = [1] x_1 + [6]                     
               p(U31) = [1] x_1 + [2] x_2 + [4]           
               p(U32) = [1] x_1 + [1]                     
               p(U41) = [2] x_1 + [1] x_2 + [1]           
               p(U51) = [3] x_1 + [8] x_2 + [6] x_3 + [11]
               p(U52) = [1] x_1 + [8] x_2 + [2] x_3 + [8] 
               p(U61) = [4] x_1 + [10]                    
               p(U71) = [5] x_1 + [8] x_2 + [10] x_3 + [4]
               p(U72) = [3] x_1 + [1] x_2 + [4] x_3 + [0] 
          p(activate) = [1] x_1 + [1]                     
             p(isNat) = [2] x_1 + [6]                     
              p(n__0) = [0]                               
           p(n__plus) = [1] x_1 + [1] x_2 + [7]           
              p(n__s) = [1] x_1 + [4]                     
              p(n__x) = [1] x_1 + [1] x_2 + [4]           
              p(plus) = [1] x_1 + [1] x_2 + [7]           
                 p(s) = [1] x_1 + [4]                     
                p(tt) = [5]                               
                 p(x) = [1] x_1 + [1] x_2 + [5]           
        
        Following rules are strictly oriented:
        0() = [1]   
            > [0]   
            = n__0()
        
        
        Following rules are (at-least) weakly oriented:
                    U11(tt(),V2) =  [2] V2 + [15]                                  
                                 >= [2] V2 + [15]                                  
                                 =  U12(isNat(activate(V2)))                       
        
                       U12(tt()) =  [12]                                           
                                 >= [5]                                            
                                 =  tt()                                           
        
                       U21(tt()) =  [11]                                           
                                 >= [5]                                            
                                 =  tt()                                           
        
                    U31(tt(),V2) =  [2] V2 + [9]                                   
                                 >= [2] V2 + [9]                                   
                                 =  U32(isNat(activate(V2)))                       
        
                       U32(tt()) =  [6]                                            
                                 >= [5]                                            
                                 =  tt()                                           
        
                     U41(tt(),N) =  [1] N + [11]                                   
                                 >= [1] N + [1]                                    
                                 =  activate(N)                                    
        
                   U51(tt(),M,N) =  [8] M + [6] N + [26]                           
                                 >= [8] M + [4] N + [26]                           
                                 =  U52(isNat(activate(N)),activate(M),activate(N))
        
                   U52(tt(),M,N) =  [8] M + [2] N + [13]                           
                                 >= [1] M + [1] N + [13]                           
                                 =  s(plus(activate(N),activate(M)))               
        
                       U61(tt()) =  [30]                                           
                                 >= [1]                                            
                                 =  0()                                            
        
                   U71(tt(),M,N) =  [8] M + [10] N + [29]                          
                                 >= [1] M + [10] N + [29]                          
                                 =  U72(isNat(activate(N)),activate(M),activate(N))
        
                   U72(tt(),M,N) =  [1] M + [4] N + [15]                           
                                 >= [1] M + [2] N + [15]                           
                                 =  plus(x(activate(N),activate(M)),activate(N))   
        
                     activate(X) =  [1] X + [1]                                    
                                 >= [1] X + [0]                                    
                                 =  X                                              
        
                activate(n__0()) =  [1]                                            
                                 >= [1]                                            
                                 =  0()                                            
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [8]                          
                                 >= [1] X1 + [1] X2 + [7]                          
                                 =  plus(X1,X2)                                    
        
               activate(n__s(X)) =  [1] X + [5]                                    
                                 >= [1] X + [4]                                    
                                 =  s(X)                                           
        
           activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [5]                          
                                 >= [1] X1 + [1] X2 + [5]                          
                                 =  x(X1,X2)                                       
        
                   isNat(n__0()) =  [6]                                            
                                 >= [5]                                            
                                 =  tt()                                           
        
           isNat(n__plus(V1,V2)) =  [2] V1 + [2] V2 + [20]                         
                                 >= [2] V1 + [2] V2 + [20]                         
                                 =  U11(isNat(activate(V1)),activate(V2))          
        
                 isNat(n__s(V1)) =  [2] V1 + [14]                                  
                                 >= [2] V1 + [14]                                  
                                 =  U21(isNat(activate(V1)))                       
        
              isNat(n__x(V1,V2)) =  [2] V1 + [2] V2 + [14]                         
                                 >= [2] V1 + [2] V2 + [14]                         
                                 =  U31(isNat(activate(V1)),activate(V2))          
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [7]                          
                                 >= [1] X1 + [1] X2 + [7]                          
                                 =  n__plus(X1,X2)                                 
        
                            s(X) =  [1] X + [4]                                    
                                 >= [1] X + [4]                                    
                                 =  n__s(X)                                        
        
                        x(X1,X2) =  [1] X1 + [1] X2 + [5]                          
                                 >= [1] X1 + [1] X2 + [4]                          
                                 =  n__x(X1,X2)                                    
        
* Step 9: MI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(n__x(X1,X2)) -> x(X1,X2)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            U41(tt(),N) -> activate(N)
            U51(tt(),M,N) -> U52(isNat(activate(N)),activate(M),activate(N))
            U52(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U61(tt()) -> 0()
            U71(tt(),M,N) -> U72(isNat(activate(N)),activate(M),activate(N))
            U72(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1
            ,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate
            ,isNat,plus,s,x} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(U11) = {1,2},
          uargs(U12) = {1},
          uargs(U21) = {1},
          uargs(U31) = {1,2},
          uargs(U32) = {1},
          uargs(U52) = {1,2,3},
          uargs(U72) = {1,2,3},
          uargs(isNat) = {1},
          uargs(plus) = {1,2},
          uargs(s) = {1},
          uargs(x) = {1,2}
        
        Following symbols are considered usable:
          {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate,isNat,plus,s,x}
        TcT has computed the following interpretation:
                 p(0) = [4]                               
               p(U11) = [1] x_1 + [1] x_2 + [0]           
               p(U12) = [1] x_1 + [2]                     
               p(U21) = [1] x_1 + [0]                     
               p(U31) = [1] x_1 + [1] x_2 + [6]           
               p(U32) = [1] x_1 + [0]                     
               p(U41) = [2] x_1 + [1] x_2 + [9]           
               p(U51) = [6] x_1 + [1] x_2 + [3] x_3 + [0] 
               p(U52) = [2] x_1 + [1] x_2 + [1] x_3 + [14]
               p(U61) = [1] x_1 + [9]                     
               p(U71) = [8] x_1 + [8] x_2 + [5] x_3 + [0] 
               p(U72) = [1] x_1 + [4] x_2 + [4] x_3 + [15]
          p(activate) = [1] x_1 + [1]                     
             p(isNat) = [1] x_1 + [0]                     
              p(n__0) = [4]                               
           p(n__plus) = [1] x_1 + [1] x_2 + [4]           
              p(n__s) = [1] x_1 + [1]                     
              p(n__x) = [1] x_1 + [1] x_2 + [8]           
              p(plus) = [1] x_1 + [1] x_2 + [5]           
                 p(s) = [1] x_1 + [2]                     
                p(tt) = [3]                               
                 p(x) = [1] x_1 + [1] x_2 + [8]           
        
        Following rules are strictly oriented:
        activate(n__x(X1,X2)) = [1] X1 + [1] X2 + [9]
                              > [1] X1 + [1] X2 + [8]
                              = x(X1,X2)             
        
                  plus(X1,X2) = [1] X1 + [1] X2 + [5]
                              > [1] X1 + [1] X2 + [4]
                              = n__plus(X1,X2)       
        
                         s(X) = [1] X + [2]          
                              > [1] X + [1]          
                              = n__s(X)              
        
        
        Following rules are (at-least) weakly oriented:
                             0() =  [4]                                            
                                 >= [4]                                            
                                 =  n__0()                                         
        
                    U11(tt(),V2) =  [1] V2 + [3]                                   
                                 >= [1] V2 + [3]                                   
                                 =  U12(isNat(activate(V2)))                       
        
                       U12(tt()) =  [5]                                            
                                 >= [3]                                            
                                 =  tt()                                           
        
                       U21(tt()) =  [3]                                            
                                 >= [3]                                            
                                 =  tt()                                           
        
                    U31(tt(),V2) =  [1] V2 + [9]                                   
                                 >= [1] V2 + [1]                                   
                                 =  U32(isNat(activate(V2)))                       
        
                       U32(tt()) =  [3]                                            
                                 >= [3]                                            
                                 =  tt()                                           
        
                     U41(tt(),N) =  [1] N + [15]                                   
                                 >= [1] N + [1]                                    
                                 =  activate(N)                                    
        
                   U51(tt(),M,N) =  [1] M + [3] N + [18]                           
                                 >= [1] M + [3] N + [18]                           
                                 =  U52(isNat(activate(N)),activate(M),activate(N))
        
                   U52(tt(),M,N) =  [1] M + [1] N + [20]                           
                                 >= [1] M + [1] N + [9]                            
                                 =  s(plus(activate(N),activate(M)))               
        
                       U61(tt()) =  [12]                                           
                                 >= [4]                                            
                                 =  0()                                            
        
                   U71(tt(),M,N) =  [8] M + [5] N + [24]                           
                                 >= [4] M + [5] N + [24]                           
                                 =  U72(isNat(activate(N)),activate(M),activate(N))
        
                   U72(tt(),M,N) =  [4] M + [4] N + [18]                           
                                 >= [1] M + [2] N + [16]                           
                                 =  plus(x(activate(N),activate(M)),activate(N))   
        
                     activate(X) =  [1] X + [1]                                    
                                 >= [1] X + [0]                                    
                                 =  X                                              
        
                activate(n__0()) =  [5]                                            
                                 >= [4]                                            
                                 =  0()                                            
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [5]                          
                                 >= [1] X1 + [1] X2 + [5]                          
                                 =  plus(X1,X2)                                    
        
               activate(n__s(X)) =  [1] X + [2]                                    
                                 >= [1] X + [2]                                    
                                 =  s(X)                                           
        
                   isNat(n__0()) =  [4]                                            
                                 >= [3]                                            
                                 =  tt()                                           
        
           isNat(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [4]                          
                                 >= [1] V1 + [1] V2 + [2]                          
                                 =  U11(isNat(activate(V1)),activate(V2))          
        
                 isNat(n__s(V1)) =  [1] V1 + [1]                                   
                                 >= [1] V1 + [1]                                   
                                 =  U21(isNat(activate(V1)))                       
        
              isNat(n__x(V1,V2)) =  [1] V1 + [1] V2 + [8]                          
                                 >= [1] V1 + [1] V2 + [8]                          
                                 =  U31(isNat(activate(V1)),activate(V2))          
        
                        x(X1,X2) =  [1] X1 + [1] X2 + [8]                          
                                 >= [1] X1 + [1] X2 + [8]                          
                                 =  n__x(X1,X2)                                    
        
* Step 10: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            U41(tt(),N) -> activate(N)
            U51(tt(),M,N) -> U52(isNat(activate(N)),activate(M),activate(N))
            U52(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U61(tt()) -> 0()
            U71(tt(),M,N) -> U72(isNat(activate(N)),activate(M),activate(N))
            U72(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1
            ,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate
            ,isNat,plus,s,x} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^1))