* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            U41(tt(),N) -> activate(N)
            U51(tt(),M,N) -> U52(isNat(activate(N)),activate(M),activate(N))
            U52(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U61(tt()) -> 0()
            U71(tt(),M,N) -> U72(isNat(activate(N)),activate(M),activate(N))
            U72(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(N,0()) -> U41(isNat(N),N)
            plus(N,s(M)) -> U51(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(N,0()) -> U61(isNat(N))
            x(N,s(M)) -> U71(isNat(M),M,N)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1
            ,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate
            ,isNat,plus,s,x} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            U41(tt(),N) -> activate(N)
            U51(tt(),M,N) -> U52(isNat(activate(N)),activate(M),activate(N))
            U52(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U61(tt()) -> 0()
            U71(tt(),M,N) -> U72(isNat(activate(N)),activate(M),activate(N))
            U72(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(N,0()) -> U41(isNat(N),N)
            plus(N,s(M)) -> U51(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(N,0()) -> U61(isNat(N))
            x(N,s(M)) -> U71(isNat(M),M,N)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1
            ,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate
            ,isNat,plus,s,x} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          activate(x){x -> n__plus(x,y)} =
            activate(n__plus(x,y)) ->^+ plus(activate(x),activate(y))
              = C[activate(x) = activate(x){}]

** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            U41(tt(),N) -> activate(N)
            U51(tt(),M,N) -> U52(isNat(activate(N)),activate(M),activate(N))
            U52(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U61(tt()) -> 0()
            U71(tt(),M,N) -> U72(isNat(activate(N)),activate(M),activate(N))
            U72(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(N,0()) -> U41(isNat(N),N)
            plus(N,s(M)) -> U51(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(N,0()) -> U61(isNat(N))
            x(N,s(M)) -> U71(isNat(M),M,N)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1
            ,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate
            ,isNat,plus,s,x} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          plus(N,0()) -> U41(isNat(N),N)
          plus(N,s(M)) -> U51(isNat(M),M,N)
          x(N,0()) -> U61(isNat(N))
          x(N,s(M)) -> U71(isNat(M),M,N)
        All above mentioned rules can be savely removed.
** Step 1.b:2: DependencyPairs WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            U41(tt(),N) -> activate(N)
            U51(tt(),M,N) -> U52(isNat(activate(N)),activate(M),activate(N))
            U52(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U61(tt()) -> 0()
            U71(tt(),M,N) -> U72(isNat(activate(N)),activate(M),activate(N))
            U72(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1
            ,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U11,U12,U21,U31,U32,U41,U51,U52,U61,U71,U72,activate
            ,isNat,plus,s,x} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          0#() -> c_1()
          U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          U12#(tt()) -> c_3()
          U21#(tt()) -> c_4()
          U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          U32#(tt()) -> c_6()
          U41#(tt(),N) -> c_7(activate#(N))
          U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                               ,isNat#(activate(N))
                               ,activate#(N)
                               ,activate#(M)
                               ,activate#(N))
          U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M)))
                               ,plus#(activate(N),activate(M))
                               ,activate#(N)
                               ,activate#(M))
          U61#(tt()) -> c_10(0#())
          U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                ,isNat#(activate(N))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N))
                                ,x#(activate(N),activate(M))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          activate#(X) -> c_13()
          activate#(n__0()) -> c_14(0#())
          activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X))
          activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
          isNat#(n__0()) -> c_18()
          isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                        ,isNat#(activate(V1))
                                        ,activate#(V1)
                                        ,activate#(V2))
          isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
          isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                     ,isNat#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V2))
          plus#(X1,X2) -> c_22()
          s#(X) -> c_23()
          x#(X1,X2) -> c_24()
        Weak DPs
          
        
        and mark the set of starting terms.
** Step 1.b:3: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            0#() -> c_1()
            U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U12#(tt()) -> c_3()
            U21#(tt()) -> c_4()
            U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U32#(tt()) -> c_6()
            U41#(tt(),N) -> c_7(activate#(N))
            U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                 ,isNat#(activate(N))
                                 ,activate#(N)
                                 ,activate#(M)
                                 ,activate#(N))
            U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M)))
                                 ,plus#(activate(N),activate(M))
                                 ,activate#(N)
                                 ,activate#(M))
            U61#(tt()) -> c_10(0#())
            U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N))
                                  ,x#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            activate#(X) -> c_13()
            activate#(n__0()) -> c_14(0#())
            activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X))
            activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
            isNat#(n__0()) -> c_18()
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                       ,isNat#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V2))
            plus#(X1,X2) -> c_22()
            s#(X) -> c_23()
            x#(X1,X2) -> c_24()
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            U41(tt(),N) -> activate(N)
            U51(tt(),M,N) -> U52(isNat(activate(N)),activate(M),activate(N))
            U52(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U61(tt()) -> 0()
            U71(tt(),M,N) -> U72(isNat(activate(N)),activate(M),activate(N))
            U72(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/3,c_3/0,c_4/0,c_5/3,c_6/0,c_7/1,c_8/5
            ,c_9/4,c_10/1,c_11/5,c_12/5,c_13/0,c_14/1,c_15/3,c_16/2,c_17/3,c_18/0,c_19/4,c_20/3,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          0() -> n__0()
          U11(tt(),V2) -> U12(isNat(activate(V2)))
          U12(tt()) -> tt()
          U21(tt()) -> tt()
          U31(tt(),V2) -> U32(isNat(activate(V2)))
          U32(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
          activate(n__s(X)) -> s(activate(X))
          activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
          isNat(n__s(V1)) -> U21(isNat(activate(V1)))
          isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
          x(X1,X2) -> n__x(X1,X2)
          0#() -> c_1()
          U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          U12#(tt()) -> c_3()
          U21#(tt()) -> c_4()
          U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          U32#(tt()) -> c_6()
          U41#(tt(),N) -> c_7(activate#(N))
          U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                               ,isNat#(activate(N))
                               ,activate#(N)
                               ,activate#(M)
                               ,activate#(N))
          U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M)))
                               ,plus#(activate(N),activate(M))
                               ,activate#(N)
                               ,activate#(M))
          U61#(tt()) -> c_10(0#())
          U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                ,isNat#(activate(N))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N))
                                ,x#(activate(N),activate(M))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          activate#(X) -> c_13()
          activate#(n__0()) -> c_14(0#())
          activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X))
          activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
          isNat#(n__0()) -> c_18()
          isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                        ,isNat#(activate(V1))
                                        ,activate#(V1)
                                        ,activate#(V2))
          isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
          isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                     ,isNat#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V2))
          plus#(X1,X2) -> c_22()
          s#(X) -> c_23()
          x#(X1,X2) -> c_24()
** Step 1.b:4: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            0#() -> c_1()
            U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U12#(tt()) -> c_3()
            U21#(tt()) -> c_4()
            U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U32#(tt()) -> c_6()
            U41#(tt(),N) -> c_7(activate#(N))
            U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                 ,isNat#(activate(N))
                                 ,activate#(N)
                                 ,activate#(M)
                                 ,activate#(N))
            U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M)))
                                 ,plus#(activate(N),activate(M))
                                 ,activate#(N)
                                 ,activate#(M))
            U61#(tt()) -> c_10(0#())
            U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N))
                                  ,x#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            activate#(X) -> c_13()
            activate#(n__0()) -> c_14(0#())
            activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X))
            activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
            isNat#(n__0()) -> c_18()
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                       ,isNat#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V2))
            plus#(X1,X2) -> c_22()
            s#(X) -> c_23()
            x#(X1,X2) -> c_24()
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/3,c_3/0,c_4/0,c_5/3,c_6/0,c_7/1,c_8/5
            ,c_9/4,c_10/1,c_11/5,c_12/5,c_13/0,c_14/1,c_15/3,c_16/2,c_17/3,c_18/0,c_19/4,c_20/3,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,3,4,6,13,18,22,23,24}
        by application of
          Pre({1,3,4,6,13,18,22,23,24}) = {2,5,7,8,9,10,11,12,14,15,16,17,19,20,21}.
        Here rules are labelled as follows:
          1: 0#() -> c_1()
          2: U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          3: U12#(tt()) -> c_3()
          4: U21#(tt()) -> c_4()
          5: U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          6: U32#(tt()) -> c_6()
          7: U41#(tt(),N) -> c_7(activate#(N))
          8: U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
          9: U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M)))
                                  ,plus#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M))
          10: U61#(tt()) -> c_10(0#())
          11: U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                    ,isNat#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          12: U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N))
                                    ,x#(activate(N),activate(M))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          13: activate#(X) -> c_13()
          14: activate#(n__0()) -> c_14(0#())
          15: activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
          16: activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X))
          17: activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
          18: isNat#(n__0()) -> c_18()
          19: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                            ,isNat#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2))
          20: isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
          21: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                         ,isNat#(activate(V1))
                                         ,activate#(V1)
                                         ,activate#(V2))
          22: plus#(X1,X2) -> c_22()
          23: s#(X) -> c_23()
          24: x#(X1,X2) -> c_24()
** Step 1.b:5: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U41#(tt(),N) -> c_7(activate#(N))
            U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                 ,isNat#(activate(N))
                                 ,activate#(N)
                                 ,activate#(M)
                                 ,activate#(N))
            U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M)))
                                 ,plus#(activate(N),activate(M))
                                 ,activate#(N)
                                 ,activate#(M))
            U61#(tt()) -> c_10(0#())
            U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N))
                                  ,x#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            activate#(n__0()) -> c_14(0#())
            activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X))
            activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                       ,isNat#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V2))
        - Weak DPs:
            0#() -> c_1()
            U12#(tt()) -> c_3()
            U21#(tt()) -> c_4()
            U32#(tt()) -> c_6()
            activate#(X) -> c_13()
            isNat#(n__0()) -> c_18()
            plus#(X1,X2) -> c_22()
            s#(X) -> c_23()
            x#(X1,X2) -> c_24()
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/3,c_3/0,c_4/0,c_5/3,c_6/0,c_7/1,c_8/5
            ,c_9/4,c_10/1,c_11/5,c_12/5,c_13/0,c_14/1,c_15/3,c_16/2,c_17/3,c_18/0,c_19/4,c_20/3,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {6,9}
        by application of
          Pre({6,9}) = {1,2,3,4,5,7,8,10,11,12,13,14,15}.
        Here rules are labelled as follows:
          1: U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          2: U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          3: U41#(tt(),N) -> c_7(activate#(N))
          4: U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
          5: U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M)))
                                  ,plus#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M))
          6: U61#(tt()) -> c_10(0#())
          7: U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                   ,isNat#(activate(N))
                                   ,activate#(N)
                                   ,activate#(M)
                                   ,activate#(N))
          8: U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N))
                                   ,x#(activate(N),activate(M))
                                   ,activate#(N)
                                   ,activate#(M)
                                   ,activate#(N))
          9: activate#(n__0()) -> c_14(0#())
          10: activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
          11: activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X))
          12: activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
          13: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                            ,isNat#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2))
          14: isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
          15: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                         ,isNat#(activate(V1))
                                         ,activate#(V1)
                                         ,activate#(V2))
          16: 0#() -> c_1()
          17: U12#(tt()) -> c_3()
          18: U21#(tt()) -> c_4()
          19: U32#(tt()) -> c_6()
          20: activate#(X) -> c_13()
          21: isNat#(n__0()) -> c_18()
          22: plus#(X1,X2) -> c_22()
          23: s#(X) -> c_23()
          24: x#(X1,X2) -> c_24()
** Step 1.b:6: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U41#(tt(),N) -> c_7(activate#(N))
            U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                 ,isNat#(activate(N))
                                 ,activate#(N)
                                 ,activate#(M)
                                 ,activate#(N))
            U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M)))
                                 ,plus#(activate(N),activate(M))
                                 ,activate#(N)
                                 ,activate#(M))
            U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N))
                                  ,x#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X))
            activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                       ,isNat#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V2))
        - Weak DPs:
            0#() -> c_1()
            U12#(tt()) -> c_3()
            U21#(tt()) -> c_4()
            U32#(tt()) -> c_6()
            U61#(tt()) -> c_10(0#())
            activate#(X) -> c_13()
            activate#(n__0()) -> c_14(0#())
            isNat#(n__0()) -> c_18()
            plus#(X1,X2) -> c_22()
            s#(X) -> c_23()
            x#(X1,X2) -> c_24()
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/3,c_3/0,c_4/0,c_5/3,c_6/0,c_7/1,c_8/5
            ,c_9/4,c_10/1,c_11/5,c_12/5,c_13/0,c_14/1,c_15/3,c_16/2,c_17/3,c_18/0,c_19/4,c_20/3,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
             -->_3 activate#(n__0()) -> c_14(0#()):20
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):13
             -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):11
             -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_2 isNat#(n__0()) -> c_18():21
             -->_3 activate#(X) -> c_13():19
             -->_1 U12#(tt()) -> c_3():15
          
          2:S:U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
             -->_3 activate#(n__0()) -> c_14(0#()):20
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):13
             -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):11
             -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_2 isNat#(n__0()) -> c_18():21
             -->_3 activate#(X) -> c_13():19
             -->_1 U32#(tt()) -> c_6():17
          
          3:S:U41#(tt(),N) -> c_7(activate#(N))
             -->_1 activate#(n__0()) -> c_14(0#()):20
             -->_1 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_1 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_1 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_1 activate#(X) -> c_13():19
          
          4:S:U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                   ,isNat#(activate(N))
                                   ,activate#(N)
                                   ,activate#(M)
                                   ,activate#(N))
             -->_5 activate#(n__0()) -> c_14(0#()):20
             -->_4 activate#(n__0()) -> c_14(0#()):20
             -->_3 activate#(n__0()) -> c_14(0#()):20
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):13
             -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):11
             -->_5 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_5 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_5 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_1 U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M)))
                                        ,plus#(activate(N),activate(M))
                                        ,activate#(N)
                                        ,activate#(M)):5
             -->_2 isNat#(n__0()) -> c_18():21
             -->_5 activate#(X) -> c_13():19
             -->_4 activate#(X) -> c_13():19
             -->_3 activate#(X) -> c_13():19
          
          5:S:U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M)))
                                   ,plus#(activate(N),activate(M))
                                   ,activate#(N)
                                   ,activate#(M))
             -->_4 activate#(n__0()) -> c_14(0#()):20
             -->_3 activate#(n__0()) -> c_14(0#()):20
             -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_1 s#(X) -> c_23():23
             -->_2 plus#(X1,X2) -> c_22():22
             -->_4 activate#(X) -> c_13():19
             -->_3 activate#(X) -> c_13():19
          
          6:S:U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                    ,isNat#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
             -->_5 activate#(n__0()) -> c_14(0#()):20
             -->_4 activate#(n__0()) -> c_14(0#()):20
             -->_3 activate#(n__0()) -> c_14(0#()):20
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):13
             -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):11
             -->_5 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_5 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_5 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_1 U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N))
                                         ,x#(activate(N),activate(M))
                                         ,activate#(N)
                                         ,activate#(M)
                                         ,activate#(N)):7
             -->_2 isNat#(n__0()) -> c_18():21
             -->_5 activate#(X) -> c_13():19
             -->_4 activate#(X) -> c_13():19
             -->_3 activate#(X) -> c_13():19
          
          7:S:U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N))
                                    ,x#(activate(N),activate(M))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
             -->_5 activate#(n__0()) -> c_14(0#()):20
             -->_4 activate#(n__0()) -> c_14(0#()):20
             -->_3 activate#(n__0()) -> c_14(0#()):20
             -->_5 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_5 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_5 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_2 x#(X1,X2) -> c_24():24
             -->_1 plus#(X1,X2) -> c_22():22
             -->_5 activate#(X) -> c_13():19
             -->_4 activate#(X) -> c_13():19
             -->_3 activate#(X) -> c_13():19
          
          8:S:activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
             -->_3 activate#(n__0()) -> c_14(0#()):20
             -->_2 activate#(n__0()) -> c_14(0#()):20
             -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_2 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_2 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_1 plus#(X1,X2) -> c_22():22
             -->_3 activate#(X) -> c_13():19
             -->_2 activate#(X) -> c_13():19
             -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_2 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
          
          9:S:activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X))
             -->_2 activate#(n__0()) -> c_14(0#()):20
             -->_2 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_1 s#(X) -> c_23():23
             -->_2 activate#(X) -> c_13():19
             -->_2 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_2 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
          
          10:S:activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
             -->_3 activate#(n__0()) -> c_14(0#()):20
             -->_2 activate#(n__0()) -> c_14(0#()):20
             -->_1 x#(X1,X2) -> c_24():24
             -->_3 activate#(X) -> c_13():19
             -->_2 activate#(X) -> c_13():19
             -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_2 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_2 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_2 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
          
          11:S:isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                             ,isNat#(activate(V1))
                                             ,activate#(V1)
                                             ,activate#(V2))
             -->_4 activate#(n__0()) -> c_14(0#()):20
             -->_3 activate#(n__0()) -> c_14(0#()):20
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):13
             -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
             -->_2 isNat#(n__0()) -> c_18():21
             -->_4 activate#(X) -> c_13():19
             -->_3 activate#(X) -> c_13():19
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):11
             -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_1 U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):1
          
          12:S:isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
             -->_3 activate#(n__0()) -> c_14(0#()):20
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):13
             -->_2 isNat#(n__0()) -> c_18():21
             -->_3 activate#(X) -> c_13():19
             -->_1 U21#(tt()) -> c_4():16
             -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):11
             -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
          
          13:S:isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2))
             -->_4 activate#(n__0()) -> c_14(0#()):20
             -->_3 activate#(n__0()) -> c_14(0#()):20
             -->_2 isNat#(n__0()) -> c_18():21
             -->_4 activate#(X) -> c_13():19
             -->_3 activate#(X) -> c_13():19
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):13
             -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):11
             -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_1 U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):2
          
          14:W:0#() -> c_1()
             
          
          15:W:U12#(tt()) -> c_3()
             
          
          16:W:U21#(tt()) -> c_4()
             
          
          17:W:U32#(tt()) -> c_6()
             
          
          18:W:U61#(tt()) -> c_10(0#())
             -->_1 0#() -> c_1():14
          
          19:W:activate#(X) -> c_13()
             
          
          20:W:activate#(n__0()) -> c_14(0#())
             -->_1 0#() -> c_1():14
          
          21:W:isNat#(n__0()) -> c_18()
             
          
          22:W:plus#(X1,X2) -> c_22()
             
          
          23:W:s#(X) -> c_23()
             
          
          24:W:x#(X1,X2) -> c_24()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          18: U61#(tt()) -> c_10(0#())
          15: U12#(tt()) -> c_3()
          17: U32#(tt()) -> c_6()
          22: plus#(X1,X2) -> c_22()
          23: s#(X) -> c_23()
          24: x#(X1,X2) -> c_24()
          16: U21#(tt()) -> c_4()
          19: activate#(X) -> c_13()
          21: isNat#(n__0()) -> c_18()
          20: activate#(n__0()) -> c_14(0#())
          14: 0#() -> c_1()
** Step 1.b:7: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U41#(tt(),N) -> c_7(activate#(N))
            U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                 ,isNat#(activate(N))
                                 ,activate#(N)
                                 ,activate#(M)
                                 ,activate#(N))
            U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M)))
                                 ,plus#(activate(N),activate(M))
                                 ,activate#(N)
                                 ,activate#(M))
            U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N))
                                  ,x#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X))
            activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                       ,isNat#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V2))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/3,c_3/0,c_4/0,c_5/3,c_6/0,c_7/1,c_8/5
            ,c_9/4,c_10/1,c_11/5,c_12/5,c_13/0,c_14/1,c_15/3,c_16/2,c_17/3,c_18/0,c_19/4,c_20/3,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):13
             -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):11
             -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
          
          2:S:U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):13
             -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):11
             -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
          
          3:S:U41#(tt(),N) -> c_7(activate#(N))
             -->_1 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_1 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_1 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
          
          4:S:U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                   ,isNat#(activate(N))
                                   ,activate#(N)
                                   ,activate#(M)
                                   ,activate#(N))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):13
             -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):11
             -->_5 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_5 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_5 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_1 U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M)))
                                        ,plus#(activate(N),activate(M))
                                        ,activate#(N)
                                        ,activate#(M)):5
          
          5:S:U52#(tt(),M,N) -> c_9(s#(plus(activate(N),activate(M)))
                                   ,plus#(activate(N),activate(M))
                                   ,activate#(N)
                                   ,activate#(M))
             -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
          
          6:S:U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                    ,isNat#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):13
             -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):11
             -->_5 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_5 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_5 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_1 U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N))
                                         ,x#(activate(N),activate(M))
                                         ,activate#(N)
                                         ,activate#(M)
                                         ,activate#(N)):7
          
          7:S:U72#(tt(),M,N) -> c_12(plus#(x(activate(N),activate(M)),activate(N))
                                    ,x#(activate(N),activate(M))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
             -->_5 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_5 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_5 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
          
          8:S:activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
             -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_2 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_2 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_2 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
          
          9:S:activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X))
             -->_2 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_2 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_2 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
          
          10:S:activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2))
             -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_2 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_2 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_2 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
          
          11:S:isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                             ,isNat#(activate(V1))
                                             ,activate#(V1)
                                             ,activate#(V2))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):13
             -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):11
             -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_1 U11#(tt(),V2) -> c_2(U12#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):1
          
          12:S:isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):13
             -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):11
             -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
          
          13:S:isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):13
             -->_2 isNat#(n__s(V1)) -> c_20(U21#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):12
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):11
             -->_4 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_3 activate#(n__x(X1,X2)) -> c_17(x#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):10
             -->_4 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_3 activate#(n__s(X)) -> c_16(s#(activate(X)),activate#(X)):9
             -->_4 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_3 activate#(n__plus(X1,X2)) -> c_15(plus#(activate(X1),activate(X2)),activate#(X1),activate#(X2)):8
             -->_1 U31#(tt(),V2) -> c_5(U32#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):2
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
          U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
          U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
          U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
          activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_16(activate#(X))
          activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
          isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
** Step 1.b:8: RemoveHeads WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
            U41#(tt(),N) -> c_7(activate#(N))
            U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                 ,isNat#(activate(N))
                                 ,activate#(N)
                                 ,activate#(M)
                                 ,activate#(N))
            U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
            U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
            activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_16(activate#(X))
            activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                       ,isNat#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V2))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
            ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        RemoveHeads
    + Details:
        Consider the dependency graph
        
        1:S:U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
           -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                            ,isNat#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2)):13
           -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):12
           -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                               ,isNat#(activate(V1))
                                               ,activate#(V1)
                                               ,activate#(V2)):11
           -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_2 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
        
        2:S:U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
           -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                            ,isNat#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2)):13
           -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):12
           -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                               ,isNat#(activate(V1))
                                               ,activate#(V1)
                                               ,activate#(V2)):11
           -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_2 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
        
        3:S:U41#(tt(),N) -> c_7(activate#(N))
           -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_1 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
        
        4:S:U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                 ,isNat#(activate(N))
                                 ,activate#(N)
                                 ,activate#(M)
                                 ,activate#(N))
           -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                            ,isNat#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2)):13
           -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):12
           -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                               ,isNat#(activate(V1))
                                               ,activate#(V1)
                                               ,activate#(V2)):11
           -->_5 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_5 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_4 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_3 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_5 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
           -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
           -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
           -->_1 U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)):5
        
        5:S:U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
           -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_2 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_1 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
           -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
        
        6:S:U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
           -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                            ,isNat#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2)):13
           -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):12
           -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                               ,isNat#(activate(V1))
                                               ,activate#(V1)
                                               ,activate#(V2)):11
           -->_5 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_5 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_4 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_3 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_5 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
           -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
           -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
           -->_1 U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)):7
        
        7:S:U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
           -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_3 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_2 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_1 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
           -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
           -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
        
        8:S:activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
           -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_2 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_1 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
           -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
        
        9:S:activate#(n__s(X)) -> c_16(activate#(X))
           -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_1 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
        
        10:S:activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
           -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_2 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_1 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
           -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
        
        11:S:isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                           ,isNat#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V2))
           -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                            ,isNat#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2)):13
           -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):12
           -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                               ,isNat#(activate(V1))
                                               ,activate#(V1)
                                               ,activate#(V2)):11
           -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_4 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_3 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
           -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
           -->_1 U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)):1
        
        12:S:isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
           -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                            ,isNat#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2)):13
           -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):12
           -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                               ,isNat#(activate(V1))
                                               ,activate#(V1)
                                               ,activate#(V2)):11
           -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_2 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
        
        13:S:isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                        ,isNat#(activate(V1))
                                        ,activate#(V1)
                                        ,activate#(V2))
           -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                            ,isNat#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2)):13
           -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):12
           -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                               ,isNat#(activate(V1))
                                               ,activate#(V1)
                                               ,activate#(V2)):11
           -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):10
           -->_4 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_3 activate#(n__s(X)) -> c_16(activate#(X)):9
           -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
           -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):8
           -->_1 U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)):2
        
        
        Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
        
        [(3,U41#(tt(),N) -> c_7(activate#(N)))]
** Step 1.b:9: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
            U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                 ,isNat#(activate(N))
                                 ,activate#(N)
                                 ,activate#(M)
                                 ,activate#(N))
            U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
            U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
            activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_16(activate#(X))
            activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                       ,isNat#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V2))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
            ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
              U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
              activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
              activate#(n__s(X)) -> c_16(activate#(X))
              activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
              isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                            ,isNat#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2))
              isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
              isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                         ,isNat#(activate(V1))
                                         ,activate#(V1)
                                         ,activate#(V2))
          - Weak DPs:
              U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                   ,isNat#(activate(N))
                                   ,activate#(N)
                                   ,activate#(M)
                                   ,activate#(N))
              U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
              U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                    ,isNat#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
              U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
          - Weak TRS:
              0() -> n__0()
              U11(tt(),V2) -> U12(isNat(activate(V2)))
              U12(tt()) -> tt()
              U21(tt()) -> tt()
              U31(tt(),V2) -> U32(isNat(activate(V2)))
              U32(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
              activate(n__s(X)) -> s(activate(X))
              activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
              isNat(n__s(V1)) -> U21(isNat(activate(V1)))
              isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
              x(X1,X2) -> n__x(X1,X2)
          - Signature:
              {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
              ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
              ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
              ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
              ,c_24/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#
              ,U72#,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
        
        Problem (S)
          - Strict DPs:
              U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                   ,isNat#(activate(N))
                                   ,activate#(N)
                                   ,activate#(M)
                                   ,activate#(N))
              U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
              U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                    ,isNat#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
              U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
          - Weak DPs:
              U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
              U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
              activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
              activate#(n__s(X)) -> c_16(activate#(X))
              activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
              isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                            ,isNat#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2))
              isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
              isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                         ,isNat#(activate(V1))
                                         ,activate#(V1)
                                         ,activate#(V2))
          - Weak TRS:
              0() -> n__0()
              U11(tt(),V2) -> U12(isNat(activate(V2)))
              U12(tt()) -> tt()
              U21(tt()) -> tt()
              U31(tt(),V2) -> U32(isNat(activate(V2)))
              U32(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
              activate(n__s(X)) -> s(activate(X))
              activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
              isNat(n__s(V1)) -> U21(isNat(activate(V1)))
              isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
              x(X1,X2) -> n__x(X1,X2)
          - Signature:
              {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
              ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
              ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
              ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
              ,c_24/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#
              ,U72#,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
*** Step 1.b:9.a:1: DecomposeDG WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
            activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_16(activate#(X))
            activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                       ,isNat#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V2))
        - Weak DPs:
            U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                 ,isNat#(activate(N))
                                 ,activate#(N)
                                 ,activate#(M)
                                 ,activate#(N))
            U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
            U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
            ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
    + Details:
        We decompose the input problem according to the dependency graph into the upper component
          U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
          U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
          U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                               ,isNat#(activate(N))
                               ,activate#(N)
                               ,activate#(M)
                               ,activate#(N))
          U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
          U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                ,isNat#(activate(N))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
          isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                        ,isNat#(activate(V1))
                                        ,activate#(V1)
                                        ,activate#(V2))
          isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
          isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                     ,isNat#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V2))
        and a lower component
          activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
          activate#(n__s(X)) -> c_16(activate#(X))
          activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
        Further, following extension rules are added to the lower component.
          U11#(tt(),V2) -> activate#(V2)
          U11#(tt(),V2) -> isNat#(activate(V2))
          U31#(tt(),V2) -> activate#(V2)
          U31#(tt(),V2) -> isNat#(activate(V2))
          U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
          U51#(tt(),M,N) -> activate#(M)
          U51#(tt(),M,N) -> activate#(N)
          U51#(tt(),M,N) -> isNat#(activate(N))
          U52#(tt(),M,N) -> activate#(M)
          U52#(tt(),M,N) -> activate#(N)
          U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
          U71#(tt(),M,N) -> activate#(M)
          U71#(tt(),M,N) -> activate#(N)
          U71#(tt(),M,N) -> isNat#(activate(N))
          U72#(tt(),M,N) -> activate#(M)
          U72#(tt(),M,N) -> activate#(N)
          isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
          isNat#(n__plus(V1,V2)) -> activate#(V1)
          isNat#(n__plus(V1,V2)) -> activate#(V2)
          isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
          isNat#(n__s(V1)) -> activate#(V1)
          isNat#(n__s(V1)) -> isNat#(activate(V1))
          isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
          isNat#(n__x(V1,V2)) -> activate#(V1)
          isNat#(n__x(V1,V2)) -> activate#(V2)
          isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
**** Step 1.b:9.a:1.a:1: PredecessorEstimation WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
            U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                 ,isNat#(activate(N))
                                 ,activate#(N)
                                 ,activate#(M)
                                 ,activate#(N))
            U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
            U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                       ,isNat#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V2))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
            ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {4,6}
        by application of
          Pre({4,6}) = {3,5}.
        Here rules are labelled as follows:
          1: U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
          2: U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
          3: U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
          4: U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
          5: U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                   ,isNat#(activate(N))
                                   ,activate#(N)
                                   ,activate#(M)
                                   ,activate#(N))
          6: U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
          7: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                           ,isNat#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V2))
          8: isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
          9: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                        ,isNat#(activate(V1))
                                        ,activate#(V1)
                                        ,activate#(V2))
**** Step 1.b:9.a:1.a:2: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
            U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                 ,isNat#(activate(N))
                                 ,activate#(N)
                                 ,activate#(M)
                                 ,activate#(N))
            U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                       ,isNat#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V2))
        - Weak DPs:
            U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
            U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
            ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
             -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):7
             -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
             -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):5
          
          2:S:U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
             -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):7
             -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
             -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):5
          
          3:S:U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                   ,isNat#(activate(N))
                                   ,activate#(N)
                                   ,activate#(M)
                                   ,activate#(N))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):7
             -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):5
             -->_1 U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)):8
          
          4:S:U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                    ,isNat#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):7
             -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):5
             -->_1 U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)):9
          
          5:S:isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                            ,isNat#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):7
             -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):5
             -->_1 U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)):1
          
          6:S:isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
             -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):7
             -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
             -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):5
          
          7:S:isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                         ,isNat#(activate(V1))
                                         ,activate#(V1)
                                         ,activate#(V2))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):7
             -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):5
             -->_1 U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)):2
          
          8:W:U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
             
          
          9:W:U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          9: U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
          8: U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
**** Step 1.b:9.a:1.a:3: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
            U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                 ,isNat#(activate(N))
                                 ,activate#(N)
                                 ,activate#(M)
                                 ,activate#(N))
            U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                       ,isNat#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V2))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
            ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
             -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):7
             -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
             -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):5
          
          2:S:U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
             -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):7
             -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
             -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):5
          
          3:S:U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                   ,isNat#(activate(N))
                                   ,activate#(N)
                                   ,activate#(M)
                                   ,activate#(N))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):7
             -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):5
          
          4:S:U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                    ,isNat#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):7
             -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):5
          
          5:S:isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                            ,isNat#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):7
             -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):5
             -->_1 U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)):1
          
          6:S:isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
             -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):7
             -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
             -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):5
          
          7:S:isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                         ,isNat#(activate(V1))
                                         ,activate#(V1)
                                         ,activate#(V2))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):7
             -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):6
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):5
             -->_1 U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)):2
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
          U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
          U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
          U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
          isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
          isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
**** Step 1.b:9.a:1.a:4: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
            U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
            U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          4: U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
          6: isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
          
        Consider the set of all dependency pairs
          1: U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
          2: U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
          3: U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
          4: U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
          5: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          6: isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
          7: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {4,6}
        These cover all (indirect) predecessors of dependency pairs
          {3,4,6}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
***** Step 1.b:9.a:1.a:4.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
            U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
            U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_5) = {1},
          uargs(c_8) = {1},
          uargs(c_11) = {1},
          uargs(c_19) = {1,2},
          uargs(c_20) = {1},
          uargs(c_21) = {1,2}
        
        Following symbols are considered usable:
          {0,activate,plus,s,x,0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#
          ,x#}
        TcT has computed the following interpretation:
                  p(0) = [0]                           
                p(U11) = [1] x2 + [2]                  
                p(U12) = [2]                           
                p(U21) = [5] x1 + [0]                  
                p(U31) = [2]                           
                p(U32) = [7]                           
                p(U41) = [1] x1 + [4]                  
                p(U51) = [1]                           
                p(U52) = [4] x1 + [1]                  
                p(U61) = [2]                           
                p(U71) = [1] x2 + [1]                  
                p(U72) = [1] x2 + [1] x3 + [1]         
           p(activate) = [1] x1 + [0]                  
              p(isNat) = [1]                           
               p(n__0) = [0]                           
            p(n__plus) = [1] x1 + [1] x2 + [0]         
               p(n__s) = [1] x1 + [2]                  
               p(n__x) = [1] x1 + [1] x2 + [0]         
               p(plus) = [1] x1 + [1] x2 + [0]         
                  p(s) = [1] x1 + [2]                  
                 p(tt) = [0]                           
                  p(x) = [1] x1 + [1] x2 + [0]         
                 p(0#) = [0]                           
               p(U11#) = [4] x2 + [0]                  
               p(U12#) = [2] x1 + [0]                  
               p(U21#) = [0]                           
               p(U31#) = [4] x2 + [0]                  
               p(U32#) = [1] x1 + [0]                  
               p(U41#) = [1]                           
               p(U51#) = [4] x3 + [5]                  
               p(U52#) = [4] x1 + [4] x3 + [4]         
               p(U61#) = [0]                           
               p(U71#) = [2] x1 + [4] x3 + [5]         
               p(U72#) = [4] x3 + [0]                  
          p(activate#) = [0]                           
             p(isNat#) = [4] x1 + [0]                  
              p(plus#) = [0]                           
                 p(s#) = [0]                           
                 p(x#) = [0]                           
                p(c_1) = [0]                           
                p(c_2) = [1] x1 + [0]                  
                p(c_3) = [0]                           
                p(c_4) = [0]                           
                p(c_5) = [1] x1 + [0]                  
                p(c_6) = [1]                           
                p(c_7) = [1]                           
                p(c_8) = [1] x1 + [5]                  
                p(c_9) = [0]                           
               p(c_10) = [0]                           
               p(c_11) = [1] x1 + [0]                  
               p(c_12) = [2] x1 + [1] x2 + [2] x3 + [4]
               p(c_13) = [4]                           
               p(c_14) = [1] x1 + [0]                  
               p(c_15) = [2] x1 + [1] x2 + [0]         
               p(c_16) = [4] x1 + [0]                  
               p(c_17) = [1] x1 + [1] x2 + [0]         
               p(c_18) = [4]                           
               p(c_19) = [1] x1 + [1] x2 + [0]         
               p(c_20) = [1] x1 + [3]                  
               p(c_21) = [1] x1 + [1] x2 + [0]         
               p(c_22) = [0]                           
               p(c_23) = [0]                           
               p(c_24) = [0]                           
        
        Following rules are strictly oriented:
          U71#(tt(),M,N) = [4] N + [5]               
                         > [4] N + [0]               
                         = c_11(isNat#(activate(N))) 
        
        isNat#(n__s(V1)) = [4] V1 + [8]              
                         > [4] V1 + [3]              
                         = c_20(isNat#(activate(V1)))
        
        
        Following rules are (at-least) weakly oriented:
                   U11#(tt(),V2) =  [4] V2 + [0]                                                     
                                 >= [4] V2 + [0]                                                     
                                 =  c_2(isNat#(activate(V2)))                                        
        
                   U31#(tt(),V2) =  [4] V2 + [0]                                                     
                                 >= [4] V2 + [0]                                                     
                                 =  c_5(isNat#(activate(V2)))                                        
        
                  U51#(tt(),M,N) =  [4] N + [5]                                                      
                                 >= [4] N + [5]                                                      
                                 =  c_8(isNat#(activate(N)))                                         
        
          isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [0]                                            
                                 >= [4] V1 + [4] V2 + [0]                                            
                                 =  c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
             isNat#(n__x(V1,V2)) =  [4] V1 + [4] V2 + [0]                                            
                                 >= [4] V1 + [4] V2 + [0]                                            
                                 =  c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
                             0() =  [0]                                                              
                                 >= [0]                                                              
                                 =  n__0()                                                           
        
                     activate(X) =  [1] X + [0]                                                      
                                 >= [1] X + [0]                                                      
                                 =  X                                                                
        
                activate(n__0()) =  [0]                                                              
                                 >= [0]                                                              
                                 =  0()                                                              
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]                                            
                                 >= [1] X1 + [1] X2 + [0]                                            
                                 =  plus(activate(X1),activate(X2))                                  
        
               activate(n__s(X)) =  [1] X + [2]                                                      
                                 >= [1] X + [2]                                                      
                                 =  s(activate(X))                                                   
        
           activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [0]                                            
                                 >= [1] X1 + [1] X2 + [0]                                            
                                 =  x(activate(X1),activate(X2))                                     
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [0]                                            
                                 >= [1] X1 + [1] X2 + [0]                                            
                                 =  n__plus(X1,X2)                                                   
        
                            s(X) =  [1] X + [2]                                                      
                                 >= [1] X + [2]                                                      
                                 =  n__s(X)                                                          
        
                        x(X1,X2) =  [1] X1 + [1] X2 + [0]                                            
                                 >= [1] X1 + [1] X2 + [0]                                            
                                 =  n__x(X1,X2)                                                      
        
***** Step 1.b:9.a:1.a:4.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
            U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        - Weak DPs:
            U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:9.a:1.a:4.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        - Weak DPs:
            U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
            U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
          
        Consider the set of all dependency pairs
          1: U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
          2: U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
          3: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          4: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          5: U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
          6: U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
          7: isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,5,6}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
****** Step 1.b:9.a:1.a:4.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        - Weak DPs:
            U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
            U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_5) = {1},
          uargs(c_8) = {1},
          uargs(c_11) = {1},
          uargs(c_19) = {1,2},
          uargs(c_20) = {1},
          uargs(c_21) = {1,2}
        
        Following symbols are considered usable:
          {0,activate,plus,s,x,0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#
          ,x#}
        TcT has computed the following interpretation:
                  p(0) = [0]                  
                p(U11) = [2] x2 + [3]         
                p(U12) = [4]                  
                p(U21) = [0]                  
                p(U31) = [2] x2 + [2]         
                p(U32) = [1] x1 + [0]         
                p(U41) = [0]                  
                p(U51) = [0]                  
                p(U52) = [1] x1 + [4] x3 + [0]
                p(U61) = [0]                  
                p(U71) = [1] x2 + [0]         
                p(U72) = [1] x3 + [0]         
           p(activate) = [1] x1 + [0]         
              p(isNat) = [0]                  
               p(n__0) = [0]                  
            p(n__plus) = [1] x1 + [1] x2 + [3]
               p(n__s) = [1] x1 + [3]         
               p(n__x) = [1] x1 + [1] x2 + [0]
               p(plus) = [1] x1 + [1] x2 + [3]
                  p(s) = [1] x1 + [3]         
                 p(tt) = [0]                  
                  p(x) = [1] x1 + [1] x2 + [0]
                 p(0#) = [1]                  
               p(U11#) = [2] x2 + [6]         
               p(U12#) = [4]                  
               p(U21#) = [1] x1 + [4]         
               p(U31#) = [2] x2 + [0]         
               p(U32#) = [2] x1 + [0]         
               p(U41#) = [1] x2 + [1]         
               p(U51#) = [4] x3 + [4]         
               p(U52#) = [1] x3 + [0]         
               p(U61#) = [1] x1 + [1]         
               p(U71#) = [1] x1 + [4] x3 + [0]
               p(U72#) = [2] x1 + [0]         
          p(activate#) = [0]                  
             p(isNat#) = [2] x1 + [0]         
              p(plus#) = [1] x1 + [2]         
                 p(s#) = [1] x1 + [0]         
                 p(x#) = [0]                  
                p(c_1) = [0]                  
                p(c_2) = [1] x1 + [0]         
                p(c_3) = [1]                  
                p(c_4) = [0]                  
                p(c_5) = [1] x1 + [0]         
                p(c_6) = [2]                  
                p(c_7) = [1] x1 + [0]         
                p(c_8) = [1] x1 + [0]         
                p(c_9) = [1] x1 + [1] x2 + [0]
               p(c_10) = [1]                  
               p(c_11) = [1] x1 + [0]         
               p(c_12) = [2] x1 + [2] x3 + [0]
               p(c_13) = [1]                  
               p(c_14) = [1] x1 + [0]         
               p(c_15) = [1] x1 + [0]         
               p(c_16) = [4]                  
               p(c_17) = [2] x2 + [0]         
               p(c_18) = [4]                  
               p(c_19) = [1] x1 + [1] x2 + [0]
               p(c_20) = [1] x1 + [6]         
               p(c_21) = [1] x1 + [1] x2 + [0]
               p(c_22) = [4]                  
               p(c_23) = [0]                  
               p(c_24) = [0]                  
        
        Following rules are strictly oriented:
        U11#(tt(),V2) = [2] V2 + [6]             
                      > [2] V2 + [0]             
                      = c_2(isNat#(activate(V2)))
        
        
        Following rules are (at-least) weakly oriented:
                   U31#(tt(),V2) =  [2] V2 + [0]                                                     
                                 >= [2] V2 + [0]                                                     
                                 =  c_5(isNat#(activate(V2)))                                        
        
                  U51#(tt(),M,N) =  [4] N + [4]                                                      
                                 >= [2] N + [0]                                                      
                                 =  c_8(isNat#(activate(N)))                                         
        
                  U71#(tt(),M,N) =  [4] N + [0]                                                      
                                 >= [2] N + [0]                                                      
                                 =  c_11(isNat#(activate(N)))                                        
        
          isNat#(n__plus(V1,V2)) =  [2] V1 + [2] V2 + [6]                                            
                                 >= [2] V1 + [2] V2 + [6]                                            
                                 =  c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
                isNat#(n__s(V1)) =  [2] V1 + [6]                                                     
                                 >= [2] V1 + [6]                                                     
                                 =  c_20(isNat#(activate(V1)))                                       
        
             isNat#(n__x(V1,V2)) =  [2] V1 + [2] V2 + [0]                                            
                                 >= [2] V1 + [2] V2 + [0]                                            
                                 =  c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
                             0() =  [0]                                                              
                                 >= [0]                                                              
                                 =  n__0()                                                           
        
                     activate(X) =  [1] X + [0]                                                      
                                 >= [1] X + [0]                                                      
                                 =  X                                                                
        
                activate(n__0()) =  [0]                                                              
                                 >= [0]                                                              
                                 =  0()                                                              
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [3]                                            
                                 >= [1] X1 + [1] X2 + [3]                                            
                                 =  plus(activate(X1),activate(X2))                                  
        
               activate(n__s(X)) =  [1] X + [3]                                                      
                                 >= [1] X + [3]                                                      
                                 =  s(activate(X))                                                   
        
           activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [0]                                            
                                 >= [1] X1 + [1] X2 + [0]                                            
                                 =  x(activate(X1),activate(X2))                                     
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [3]                                            
                                 >= [1] X1 + [1] X2 + [3]                                            
                                 =  n__plus(X1,X2)                                                   
        
                            s(X) =  [1] X + [3]                                                      
                                 >= [1] X + [3]                                                      
                                 =  n__s(X)                                                          
        
                        x(X1,X2) =  [1] X1 + [1] X2 + [0]                                            
                                 >= [1] X1 + [1] X2 + [0]                                            
                                 =  n__x(X1,X2)                                                      
        
****** Step 1.b:9.a:1.a:4.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        - Weak DPs:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
            U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
            U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

****** Step 1.b:9.a:1.a:4.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        - Weak DPs:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
            U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
            U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          3: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          
        Consider the set of all dependency pairs
          1: U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
          2: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          3: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          4: U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
          5: U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
          6: U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
          7: isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {3}
        These cover all (indirect) predecessors of dependency pairs
          {1,3,5,6}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
******* Step 1.b:9.a:1.a:4.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        - Weak DPs:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
            U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
            U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_5) = {1},
          uargs(c_8) = {1},
          uargs(c_11) = {1},
          uargs(c_19) = {1,2},
          uargs(c_20) = {1},
          uargs(c_21) = {1,2}
        
        Following symbols are considered usable:
          {0,activate,plus,s,x,0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#
          ,x#}
        TcT has computed the following interpretation:
                  p(0) = [0]                           
                p(U11) = [1]                           
                p(U12) = [1]                           
                p(U21) = [4]                           
                p(U31) = [1] x1 + [5] x2 + [0]         
                p(U32) = [1] x1 + [3]                  
                p(U41) = [0]                           
                p(U51) = [1] x2 + [1] x3 + [0]         
                p(U52) = [1] x1 + [1] x2 + [4] x3 + [0]
                p(U61) = [0]                           
                p(U71) = [1] x2 + [1]                  
                p(U72) = [2] x3 + [4]                  
           p(activate) = [1] x1 + [0]                  
              p(isNat) = [0]                           
               p(n__0) = [0]                           
            p(n__plus) = [1] x1 + [1] x2 + [0]         
               p(n__s) = [1] x1 + [0]                  
               p(n__x) = [1] x1 + [1] x2 + [2]         
               p(plus) = [1] x1 + [1] x2 + [0]         
                  p(s) = [1] x1 + [0]                  
                 p(tt) = [0]                           
                  p(x) = [1] x1 + [1] x2 + [2]         
                 p(0#) = [0]                           
               p(U11#) = [4] x2 + [0]                  
               p(U12#) = [1] x1 + [0]                  
               p(U21#) = [0]                           
               p(U31#) = [4] x2 + [0]                  
               p(U32#) = [0]                           
               p(U41#) = [0]                           
               p(U51#) = [4] x3 + [0]                  
               p(U52#) = [0]                           
               p(U61#) = [0]                           
               p(U71#) = [4] x3 + [7]                  
               p(U72#) = [0]                           
          p(activate#) = [0]                           
             p(isNat#) = [4] x1 + [0]                  
              p(plus#) = [0]                           
                 p(s#) = [0]                           
                 p(x#) = [0]                           
                p(c_1) = [0]                           
                p(c_2) = [1] x1 + [0]                  
                p(c_3) = [0]                           
                p(c_4) = [0]                           
                p(c_5) = [1] x1 + [0]                  
                p(c_6) = [0]                           
                p(c_7) = [0]                           
                p(c_8) = [1] x1 + [0]                  
                p(c_9) = [0]                           
               p(c_10) = [0]                           
               p(c_11) = [1] x1 + [0]                  
               p(c_12) = [1] x1 + [0]                  
               p(c_13) = [0]                           
               p(c_14) = [0]                           
               p(c_15) = [1] x1 + [0]                  
               p(c_16) = [4] x1 + [0]                  
               p(c_17) = [4] x1 + [1] x2 + [0]         
               p(c_18) = [4]                           
               p(c_19) = [1] x1 + [1] x2 + [0]         
               p(c_20) = [1] x1 + [0]                  
               p(c_21) = [1] x1 + [1] x2 + [7]         
               p(c_22) = [0]                           
               p(c_23) = [1]                           
               p(c_24) = [0]                           
        
        Following rules are strictly oriented:
        isNat#(n__x(V1,V2)) = [4] V1 + [4] V2 + [8]                                            
                            > [4] V1 + [4] V2 + [7]                                            
                            = c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
        
        Following rules are (at-least) weakly oriented:
                   U11#(tt(),V2) =  [4] V2 + [0]                                                     
                                 >= [4] V2 + [0]                                                     
                                 =  c_2(isNat#(activate(V2)))                                        
        
                   U31#(tt(),V2) =  [4] V2 + [0]                                                     
                                 >= [4] V2 + [0]                                                     
                                 =  c_5(isNat#(activate(V2)))                                        
        
                  U51#(tt(),M,N) =  [4] N + [0]                                                      
                                 >= [4] N + [0]                                                      
                                 =  c_8(isNat#(activate(N)))                                         
        
                  U71#(tt(),M,N) =  [4] N + [7]                                                      
                                 >= [4] N + [0]                                                      
                                 =  c_11(isNat#(activate(N)))                                        
        
          isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [0]                                            
                                 >= [4] V1 + [4] V2 + [0]                                            
                                 =  c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
                isNat#(n__s(V1)) =  [4] V1 + [0]                                                     
                                 >= [4] V1 + [0]                                                     
                                 =  c_20(isNat#(activate(V1)))                                       
        
                             0() =  [0]                                                              
                                 >= [0]                                                              
                                 =  n__0()                                                           
        
                     activate(X) =  [1] X + [0]                                                      
                                 >= [1] X + [0]                                                      
                                 =  X                                                                
        
                activate(n__0()) =  [0]                                                              
                                 >= [0]                                                              
                                 =  0()                                                              
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [0]                                            
                                 >= [1] X1 + [1] X2 + [0]                                            
                                 =  plus(activate(X1),activate(X2))                                  
        
               activate(n__s(X)) =  [1] X + [0]                                                      
                                 >= [1] X + [0]                                                      
                                 =  s(activate(X))                                                   
        
           activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [2]                                            
                                 >= [1] X1 + [1] X2 + [2]                                            
                                 =  x(activate(X1),activate(X2))                                     
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [0]                                            
                                 >= [1] X1 + [1] X2 + [0]                                            
                                 =  n__plus(X1,X2)                                                   
        
                            s(X) =  [1] X + [0]                                                      
                                 >= [1] X + [0]                                                      
                                 =  n__s(X)                                                          
        
                        x(X1,X2) =  [1] X1 + [1] X2 + [2]                                            
                                 >= [1] X1 + [1] X2 + [2]                                            
                                 =  n__x(X1,X2)                                                      
        
******* Step 1.b:9.a:1.a:4.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        - Weak DPs:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
            U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
            U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******* Step 1.b:9.a:1.a:4.b:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        - Weak DPs:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
            U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
            U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          
        Consider the set of all dependency pairs
          1: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          2: U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
          3: U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
          4: U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
          5: U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
          6: isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
          7: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,2,4,5}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
******** Step 1.b:9.a:1.a:4.b:1.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        - Weak DPs:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
            U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
            U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_5) = {1},
          uargs(c_8) = {1},
          uargs(c_11) = {1},
          uargs(c_19) = {1,2},
          uargs(c_20) = {1},
          uargs(c_21) = {1,2}
        
        Following symbols are considered usable:
          {0,activate,plus,s,x,0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#
          ,x#}
        TcT has computed the following interpretation:
                  p(0) = [0]                           
                p(U11) = [0]                           
                p(U12) = [0]                           
                p(U21) = [5]                           
                p(U31) = [1] x1 + [0]                  
                p(U32) = [2]                           
                p(U41) = [0]                           
                p(U51) = [1]                           
                p(U52) = [4] x1 + [2] x3 + [0]         
                p(U61) = [1] x1 + [1]                  
                p(U71) = [1]                           
                p(U72) = [4] x1 + [4] x2 + [4] x3 + [1]
           p(activate) = [1] x1 + [0]                  
              p(isNat) = [4] x1 + [0]                  
               p(n__0) = [0]                           
            p(n__plus) = [1] x1 + [1] x2 + [2]         
               p(n__s) = [1] x1 + [0]                  
               p(n__x) = [1] x1 + [1] x2 + [3]         
               p(plus) = [1] x1 + [1] x2 + [2]         
                  p(s) = [1] x1 + [0]                  
                 p(tt) = [0]                           
                  p(x) = [1] x1 + [1] x2 + [3]         
                 p(0#) = [0]                           
               p(U11#) = [2] x2 + [0]                  
               p(U12#) = [0]                           
               p(U21#) = [2] x1 + [2]                  
               p(U31#) = [2] x2 + [2]                  
               p(U32#) = [2] x1 + [0]                  
               p(U41#) = [1] x2 + [0]                  
               p(U51#) = [6] x3 + [3]                  
               p(U52#) = [1] x1 + [0]                  
               p(U61#) = [1]                           
               p(U71#) = [1] x1 + [4] x2 + [6] x3 + [5]
               p(U72#) = [2]                           
          p(activate#) = [0]                           
             p(isNat#) = [2] x1 + [0]                  
              p(plus#) = [1] x2 + [2]                  
                 p(s#) = [1]                           
                 p(x#) = [4] x1 + [4]                  
                p(c_1) = [0]                           
                p(c_2) = [1] x1 + [0]                  
                p(c_3) = [1]                           
                p(c_4) = [1]                           
                p(c_5) = [1] x1 + [0]                  
                p(c_6) = [1]                           
                p(c_7) = [2]                           
                p(c_8) = [2] x1 + [0]                  
                p(c_9) = [1] x1 + [4] x2 + [0]         
               p(c_10) = [1]                           
               p(c_11) = [2] x1 + [4]                  
               p(c_12) = [4] x1 + [1] x2 + [1] x3 + [2]
               p(c_13) = [4]                           
               p(c_14) = [2]                           
               p(c_15) = [1]                           
               p(c_16) = [1]                           
               p(c_17) = [1] x1 + [1]                  
               p(c_18) = [1]                           
               p(c_19) = [1] x1 + [1] x2 + [1]         
               p(c_20) = [1] x1 + [0]                  
               p(c_21) = [1] x1 + [1] x2 + [2]         
               p(c_22) = [0]                           
               p(c_23) = [0]                           
               p(c_24) = [2]                           
        
        Following rules are strictly oriented:
        isNat#(n__plus(V1,V2)) = [2] V1 + [2] V2 + [4]                                            
                               > [2] V1 + [2] V2 + [1]                                            
                               = c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
        
        Following rules are (at-least) weakly oriented:
                   U11#(tt(),V2) =  [2] V2 + [0]                                                     
                                 >= [2] V2 + [0]                                                     
                                 =  c_2(isNat#(activate(V2)))                                        
        
                   U31#(tt(),V2) =  [2] V2 + [2]                                                     
                                 >= [2] V2 + [0]                                                     
                                 =  c_5(isNat#(activate(V2)))                                        
        
                  U51#(tt(),M,N) =  [6] N + [3]                                                      
                                 >= [4] N + [0]                                                      
                                 =  c_8(isNat#(activate(N)))                                         
        
                  U71#(tt(),M,N) =  [4] M + [6] N + [5]                                              
                                 >= [4] N + [4]                                                      
                                 =  c_11(isNat#(activate(N)))                                        
        
                isNat#(n__s(V1)) =  [2] V1 + [0]                                                     
                                 >= [2] V1 + [0]                                                     
                                 =  c_20(isNat#(activate(V1)))                                       
        
             isNat#(n__x(V1,V2)) =  [2] V1 + [2] V2 + [6]                                            
                                 >= [2] V1 + [2] V2 + [4]                                            
                                 =  c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
                             0() =  [0]                                                              
                                 >= [0]                                                              
                                 =  n__0()                                                           
        
                     activate(X) =  [1] X + [0]                                                      
                                 >= [1] X + [0]                                                      
                                 =  X                                                                
        
                activate(n__0()) =  [0]                                                              
                                 >= [0]                                                              
                                 =  0()                                                              
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [2]                                            
                                 >= [1] X1 + [1] X2 + [2]                                            
                                 =  plus(activate(X1),activate(X2))                                  
        
               activate(n__s(X)) =  [1] X + [0]                                                      
                                 >= [1] X + [0]                                                      
                                 =  s(activate(X))                                                   
        
           activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [3]                                            
                                 >= [1] X1 + [1] X2 + [3]                                            
                                 =  x(activate(X1),activate(X2))                                     
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [2]                                            
                                 >= [1] X1 + [1] X2 + [2]                                            
                                 =  n__plus(X1,X2)                                                   
        
                            s(X) =  [1] X + [0]                                                      
                                 >= [1] X + [0]                                                      
                                 =  n__s(X)                                                          
        
                        x(X1,X2) =  [1] X1 + [1] X2 + [3]                                            
                                 >= [1] X1 + [1] X2 + [3]                                            
                                 =  n__x(X1,X2)                                                      
        
******** Step 1.b:9.a:1.a:4.b:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
            U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
            U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******** Step 1.b:9.a:1.a:4.b:1.b:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
            U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
            U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
             -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7
             -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))):6
             -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5
          
          2:W:U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
             -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7
             -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))):6
             -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5
          
          3:W:U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
             -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7
             -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))):6
             -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5
          
          4:W:U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
             -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7
             -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))):6
             -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5
          
          5:W:isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7
             -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))):6
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5
             -->_1 U11#(tt(),V2) -> c_2(isNat#(activate(V2))):1
          
          6:W:isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
             -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7
             -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))):6
             -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5
          
          7:W:isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7
             -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1))):6
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5
             -->_1 U31#(tt(),V2) -> c_5(isNat#(activate(V2))):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          4: U71#(tt(),M,N) -> c_11(isNat#(activate(N)))
          3: U51#(tt(),M,N) -> c_8(isNat#(activate(N)))
          1: U11#(tt(),V2) -> c_2(isNat#(activate(V2)))
          5: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          7: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          6: isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)))
          2: U31#(tt(),V2) -> c_5(isNat#(activate(V2)))
******** Step 1.b:9.a:1.a:4.b:1.b:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/1,c_8/1
            ,c_9/2,c_10/1,c_11/1,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/2,c_20/1,c_21/2,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

**** Step 1.b:9.a:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_16(activate#(X))
            activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
        - Weak DPs:
            U11#(tt(),V2) -> activate#(V2)
            U11#(tt(),V2) -> isNat#(activate(V2))
            U31#(tt(),V2) -> activate#(V2)
            U31#(tt(),V2) -> isNat#(activate(V2))
            U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
            U51#(tt(),M,N) -> activate#(M)
            U51#(tt(),M,N) -> activate#(N)
            U51#(tt(),M,N) -> isNat#(activate(N))
            U52#(tt(),M,N) -> activate#(M)
            U52#(tt(),M,N) -> activate#(N)
            U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
            U71#(tt(),M,N) -> activate#(M)
            U71#(tt(),M,N) -> activate#(N)
            U71#(tt(),M,N) -> isNat#(activate(N))
            U72#(tt(),M,N) -> activate#(M)
            U72#(tt(),M,N) -> activate#(N)
            isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
            isNat#(n__s(V1)) -> activate#(V1)
            isNat#(n__s(V1)) -> isNat#(activate(V1))
            isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
            isNat#(n__x(V1,V2)) -> activate#(V1)
            isNat#(n__x(V1,V2)) -> activate#(V2)
            isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
            ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: activate#(n__s(X)) -> c_16(activate#(X))
          
        Consider the set of all dependency pairs
          1: activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
          2: activate#(n__s(X)) -> c_16(activate#(X))
          3: activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
          4: U11#(tt(),V2) -> activate#(V2)
          5: U11#(tt(),V2) -> isNat#(activate(V2))
          6: U31#(tt(),V2) -> activate#(V2)
          7: U31#(tt(),V2) -> isNat#(activate(V2))
          8: U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
          9: U51#(tt(),M,N) -> activate#(M)
          10: U51#(tt(),M,N) -> activate#(N)
          11: U51#(tt(),M,N) -> isNat#(activate(N))
          12: U52#(tt(),M,N) -> activate#(M)
          13: U52#(tt(),M,N) -> activate#(N)
          14: U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
          15: U71#(tt(),M,N) -> activate#(M)
          16: U71#(tt(),M,N) -> activate#(N)
          17: U71#(tt(),M,N) -> isNat#(activate(N))
          18: U72#(tt(),M,N) -> activate#(M)
          19: U72#(tt(),M,N) -> activate#(N)
          20: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
          21: isNat#(n__plus(V1,V2)) -> activate#(V1)
          22: isNat#(n__plus(V1,V2)) -> activate#(V2)
          23: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
          24: isNat#(n__s(V1)) -> activate#(V1)
          25: isNat#(n__s(V1)) -> isNat#(activate(V1))
          26: isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
          27: isNat#(n__x(V1,V2)) -> activate#(V1)
          28: isNat#(n__x(V1,V2)) -> activate#(V2)
          29: isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
        Processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {2}
        These cover all (indirect) predecessors of dependency pairs
          {2,8,9,10,11,12,13,14,15,16,17,18,19}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
***** Step 1.b:9.a:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_16(activate#(X))
            activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
        - Weak DPs:
            U11#(tt(),V2) -> activate#(V2)
            U11#(tt(),V2) -> isNat#(activate(V2))
            U31#(tt(),V2) -> activate#(V2)
            U31#(tt(),V2) -> isNat#(activate(V2))
            U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
            U51#(tt(),M,N) -> activate#(M)
            U51#(tt(),M,N) -> activate#(N)
            U51#(tt(),M,N) -> isNat#(activate(N))
            U52#(tt(),M,N) -> activate#(M)
            U52#(tt(),M,N) -> activate#(N)
            U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
            U71#(tt(),M,N) -> activate#(M)
            U71#(tt(),M,N) -> activate#(N)
            U71#(tt(),M,N) -> isNat#(activate(N))
            U72#(tt(),M,N) -> activate#(M)
            U72#(tt(),M,N) -> activate#(N)
            isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
            isNat#(n__s(V1)) -> activate#(V1)
            isNat#(n__s(V1)) -> isNat#(activate(V1))
            isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
            isNat#(n__x(V1,V2)) -> activate#(V1)
            isNat#(n__x(V1,V2)) -> activate#(V2)
            isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
            ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_15) = {1,2},
          uargs(c_16) = {1},
          uargs(c_17) = {1,2}
        
        Following symbols are considered usable:
          {0,activate,plus,s,x,0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#
          ,x#}
        TcT has computed the following interpretation:
                  p(0) = [3]                                            
                         [1]                                            
                p(U11) = [0 0] x1 + [0]                                 
                         [0 1]      [0]                                 
                p(U12) = [2 2] x1 + [0]                                 
                         [2 0]      [0]                                 
                p(U21) = [2 0] x1 + [0]                                 
                         [0 0]      [1]                                 
                p(U31) = [0 2] x1 + [0 0] x2 + [0]                      
                         [1 2]      [2 1]      [0]                      
                p(U32) = [0]                                            
                         [0]                                            
                p(U41) = [0 0] x2 + [2]                                 
                         [1 0]      [0]                                 
                p(U51) = [1 1] x1 + [2]                                 
                         [0 0]      [2]                                 
                p(U52) = [0 1] x1 + [2 0] x3 + [0]                      
                         [0 2]      [1 0]      [0]                      
                p(U61) = [0]                                            
                         [0]                                            
                p(U71) = [0 0] x2 + [1 1] x3 + [0]                      
                         [1 0]      [0 0]      [2]                      
                p(U72) = [1 0] x2 + [2]                                 
                         [0 0]      [0]                                 
           p(activate) = [2 0] x1 + [0]                                 
                         [0 1]      [0]                                 
              p(isNat) = [0 1] x1 + [3]                                 
                         [0 0]      [0]                                 
               p(n__0) = [3]                                            
                         [1]                                            
            p(n__plus) = [0 0] x1 + [0 0] x2 + [0]                      
                         [0 1]      [0 1]      [0]                      
               p(n__s) = [0 0] x1 + [0]                                 
                         [0 1]      [2]                                 
               p(n__x) = [0 0] x1 + [0 0] x2 + [0]                      
                         [0 1]      [0 1]      [0]                      
               p(plus) = [0 0] x1 + [0 0] x2 + [0]                      
                         [0 1]      [0 1]      [0]                      
                  p(s) = [0 0] x1 + [0]                                 
                         [0 1]      [2]                                 
                 p(tt) = [0]                                            
                         [0]                                            
                  p(x) = [0 0] x1 + [0 0] x2 + [0]                      
                         [0 1]      [0 1]      [0]                      
                 p(0#) = [0]                                            
                         [0]                                            
               p(U11#) = [0 1] x2 + [0]                                 
                         [0 0]      [0]                                 
               p(U12#) = [0 0] x1 + [2]                                 
                         [1 1]      [0]                                 
               p(U21#) = [0]                                            
                         [0]                                            
               p(U31#) = [0 1] x2 + [0]                                 
                         [0 0]      [0]                                 
               p(U32#) = [1 0] x1 + [0]                                 
                         [0 1]      [0]                                 
               p(U41#) = [1]                                            
                         [0]                                            
               p(U51#) = [2 3] x2 + [2 2] x3 + [2]                      
                         [2 0]      [3 0]      [3]                      
               p(U52#) = [0 2] x2 + [1 1] x3 + [0]                      
                         [0 0]      [0 0]      [1]                      
               p(U61#) = [0 0] x1 + [0]                                 
                         [0 1]      [0]                                 
               p(U71#) = [1 0] x1 + [0 2] x2 + [2 2] x3 + [2]           
                         [0 0]      [0 1]      [1 3]      [2]           
               p(U72#) = [0 1] x2 + [0 2] x3 + [1]                      
                         [0 0]      [0 3]      [2]                      
          p(activate#) = [0 1] x1 + [0]                                 
                         [0 0]      [0]                                 
             p(isNat#) = [0 1] x1 + [0]                                 
                         [0 0]      [0]                                 
              p(plus#) = [0 0] x1 + [0 1] x2 + [0]                      
                         [0 1]      [0 0]      [0]                      
                 p(s#) = [0]                                            
                         [0]                                            
                 p(x#) = [2 0] x1 + [0 0] x2 + [0]                      
                         [2 0]      [0 1]      [0]                      
                p(c_1) = [0]                                            
                         [0]                                            
                p(c_2) = [0]                                            
                         [0]                                            
                p(c_3) = [0]                                            
                         [0]                                            
                p(c_4) = [2]                                            
                         [0]                                            
                p(c_5) = [0 0] x2 + [0]                                 
                         [0 2]      [0]                                 
                p(c_6) = [0]                                            
                         [1]                                            
                p(c_7) = [0 1] x1 + [0]                                 
                         [0 0]      [0]                                 
                p(c_8) = [0 0] x2 + [2 1] x4 + [0 0] x5 + [2]           
                         [2 1]      [0 1]      [2 1]      [1]           
                p(c_9) = [0 0] x2 + [0]                                 
                         [0 1]      [2]                                 
               p(c_10) = [2]                                            
                         [0]                                            
               p(c_11) = [2 0] x2 + [0 1] x3 + [2 0] x5 + [0]           
                         [2 2]      [0 2]      [0 0]      [0]           
               p(c_12) = [2 0] x1 + [1]                                 
                         [2 1]      [0]                                 
               p(c_13) = [0]                                            
                         [0]                                            
               p(c_14) = [0 2] x1 + [2]                                 
                         [0 0]      [0]                                 
               p(c_15) = [1 0] x1 + [1 0] x2 + [0]                      
                         [0 0]      [0 0]      [0]                      
               p(c_16) = [1 0] x1 + [0]                                 
                         [0 0]      [0]                                 
               p(c_17) = [1 0] x1 + [1 0] x2 + [0]                      
                         [0 0]      [0 0]      [0]                      
               p(c_18) = [0]                                            
                         [1]                                            
               p(c_19) = [0 1] x1 + [2 0] x2 + [1 1] x3 + [0 2] x4 + [0]
                         [0 2]      [0 0]      [0 1]      [1 0]      [0]
               p(c_20) = [0 0] x2 + [0]                                 
                         [2 2]      [0]                                 
               p(c_21) = [1 2] x2 + [0 1] x3 + [0]                      
                         [1 0]      [0 1]      [0]                      
               p(c_22) = [0]                                            
                         [0]                                            
               p(c_23) = [0]                                            
                         [0]                                            
               p(c_24) = [0]                                            
                         [0]                                            
        
        Following rules are strictly oriented:
        activate#(n__s(X)) = [0 1] X + [2]     
                             [0 0]     [0]     
                           > [0 1] X + [0]     
                             [0 0]     [0]     
                           = c_16(activate#(X))
        
        
        Following rules are (at-least) weakly oriented:
                    U11#(tt(),V2) =  [0 1] V2 + [0]                                  
                                     [0 0]      [0]                                  
                                  >= [0 1] V2 + [0]                                  
                                     [0 0]      [0]                                  
                                  =  activate#(V2)                                   
        
                    U11#(tt(),V2) =  [0 1] V2 + [0]                                  
                                     [0 0]      [0]                                  
                                  >= [0 1] V2 + [0]                                  
                                     [0 0]      [0]                                  
                                  =  isNat#(activate(V2))                            
        
                    U31#(tt(),V2) =  [0 1] V2 + [0]                                  
                                     [0 0]      [0]                                  
                                  >= [0 1] V2 + [0]                                  
                                     [0 0]      [0]                                  
                                  =  activate#(V2)                                   
        
                    U31#(tt(),V2) =  [0 1] V2 + [0]                                  
                                     [0 0]      [0]                                  
                                  >= [0 1] V2 + [0]                                  
                                     [0 0]      [0]                                  
                                  =  isNat#(activate(V2))                            
        
                   U51#(tt(),M,N) =  [2 3] M + [2 2] N + [2]                         
                                     [2 0]     [3 0]     [3]                         
                                  >= [0 2] M + [2 1] N + [0]                         
                                     [0 0]     [0 0]     [1]                         
                                  =  U52#(isNat(activate(N)),activate(M),activate(N))
        
                   U51#(tt(),M,N) =  [2 3] M + [2 2] N + [2]                         
                                     [2 0]     [3 0]     [3]                         
                                  >= [0 1] M + [0]                                   
                                     [0 0]     [0]                                   
                                  =  activate#(M)                                    
        
                   U51#(tt(),M,N) =  [2 3] M + [2 2] N + [2]                         
                                     [2 0]     [3 0]     [3]                         
                                  >= [0 1] N + [0]                                   
                                     [0 0]     [0]                                   
                                  =  activate#(N)                                    
        
                   U51#(tt(),M,N) =  [2 3] M + [2 2] N + [2]                         
                                     [2 0]     [3 0]     [3]                         
                                  >= [0 1] N + [0]                                   
                                     [0 0]     [0]                                   
                                  =  isNat#(activate(N))                             
        
                   U52#(tt(),M,N) =  [0 2] M + [1 1] N + [0]                         
                                     [0 0]     [0 0]     [1]                         
                                  >= [0 1] M + [0]                                   
                                     [0 0]     [0]                                   
                                  =  activate#(M)                                    
        
                   U52#(tt(),M,N) =  [0 2] M + [1 1] N + [0]                         
                                     [0 0]     [0 0]     [1]                         
                                  >= [0 1] N + [0]                                   
                                     [0 0]     [0]                                   
                                  =  activate#(N)                                    
        
                   U71#(tt(),M,N) =  [0 2] M + [2 2] N + [2]                         
                                     [0 1]     [1 3]     [2]                         
                                  >= [0 1] M + [0 2] N + [1]                         
                                     [0 0]     [0 3]     [2]                         
                                  =  U72#(isNat(activate(N)),activate(M),activate(N))
        
                   U71#(tt(),M,N) =  [0 2] M + [2 2] N + [2]                         
                                     [0 1]     [1 3]     [2]                         
                                  >= [0 1] M + [0]                                   
                                     [0 0]     [0]                                   
                                  =  activate#(M)                                    
        
                   U71#(tt(),M,N) =  [0 2] M + [2 2] N + [2]                         
                                     [0 1]     [1 3]     [2]                         
                                  >= [0 1] N + [0]                                   
                                     [0 0]     [0]                                   
                                  =  activate#(N)                                    
        
                   U71#(tt(),M,N) =  [0 2] M + [2 2] N + [2]                         
                                     [0 1]     [1 3]     [2]                         
                                  >= [0 1] N + [0]                                   
                                     [0 0]     [0]                                   
                                  =  isNat#(activate(N))                             
        
                   U72#(tt(),M,N) =  [0 1] M + [0 2] N + [1]                         
                                     [0 0]     [0 3]     [2]                         
                                  >= [0 1] M + [0]                                   
                                     [0 0]     [0]                                   
                                  =  activate#(M)                                    
        
                   U72#(tt(),M,N) =  [0 1] M + [0 2] N + [1]                         
                                     [0 0]     [0 3]     [2]                         
                                  >= [0 1] N + [0]                                   
                                     [0 0]     [0]                                   
                                  =  activate#(N)                                    
        
        activate#(n__plus(X1,X2)) =  [0 1] X1 + [0 1] X2 + [0]                       
                                     [0 0]      [0 0]      [0]                       
                                  >= [0 1] X1 + [0 1] X2 + [0]                       
                                     [0 0]      [0 0]      [0]                       
                                  =  c_15(activate#(X1),activate#(X2))               
        
           activate#(n__x(X1,X2)) =  [0 1] X1 + [0 1] X2 + [0]                       
                                     [0 0]      [0 0]      [0]                       
                                  >= [0 1] X1 + [0 1] X2 + [0]                       
                                     [0 0]      [0 0]      [0]                       
                                  =  c_17(activate#(X1),activate#(X2))               
        
           isNat#(n__plus(V1,V2)) =  [0 1] V1 + [0 1] V2 + [0]                       
                                     [0 0]      [0 0]      [0]                       
                                  >= [0 1] V2 + [0]                                  
                                     [0 0]      [0]                                  
                                  =  U11#(isNat(activate(V1)),activate(V2))          
        
           isNat#(n__plus(V1,V2)) =  [0 1] V1 + [0 1] V2 + [0]                       
                                     [0 0]      [0 0]      [0]                       
                                  >= [0 1] V1 + [0]                                  
                                     [0 0]      [0]                                  
                                  =  activate#(V1)                                   
        
           isNat#(n__plus(V1,V2)) =  [0 1] V1 + [0 1] V2 + [0]                       
                                     [0 0]      [0 0]      [0]                       
                                  >= [0 1] V2 + [0]                                  
                                     [0 0]      [0]                                  
                                  =  activate#(V2)                                   
        
           isNat#(n__plus(V1,V2)) =  [0 1] V1 + [0 1] V2 + [0]                       
                                     [0 0]      [0 0]      [0]                       
                                  >= [0 1] V1 + [0]                                  
                                     [0 0]      [0]                                  
                                  =  isNat#(activate(V1))                            
        
                 isNat#(n__s(V1)) =  [0 1] V1 + [2]                                  
                                     [0 0]      [0]                                  
                                  >= [0 1] V1 + [0]                                  
                                     [0 0]      [0]                                  
                                  =  activate#(V1)                                   
        
                 isNat#(n__s(V1)) =  [0 1] V1 + [2]                                  
                                     [0 0]      [0]                                  
                                  >= [0 1] V1 + [0]                                  
                                     [0 0]      [0]                                  
                                  =  isNat#(activate(V1))                            
        
              isNat#(n__x(V1,V2)) =  [0 1] V1 + [0 1] V2 + [0]                       
                                     [0 0]      [0 0]      [0]                       
                                  >= [0 1] V2 + [0]                                  
                                     [0 0]      [0]                                  
                                  =  U31#(isNat(activate(V1)),activate(V2))          
        
              isNat#(n__x(V1,V2)) =  [0 1] V1 + [0 1] V2 + [0]                       
                                     [0 0]      [0 0]      [0]                       
                                  >= [0 1] V1 + [0]                                  
                                     [0 0]      [0]                                  
                                  =  activate#(V1)                                   
        
              isNat#(n__x(V1,V2)) =  [0 1] V1 + [0 1] V2 + [0]                       
                                     [0 0]      [0 0]      [0]                       
                                  >= [0 1] V2 + [0]                                  
                                     [0 0]      [0]                                  
                                  =  activate#(V2)                                   
        
              isNat#(n__x(V1,V2)) =  [0 1] V1 + [0 1] V2 + [0]                       
                                     [0 0]      [0 0]      [0]                       
                                  >= [0 1] V1 + [0]                                  
                                     [0 0]      [0]                                  
                                  =  isNat#(activate(V1))                            
        
                              0() =  [3]                                             
                                     [1]                                             
                                  >= [3]                                             
                                     [1]                                             
                                  =  n__0()                                          
        
                      activate(X) =  [2 0] X + [0]                                   
                                     [0 1]     [0]                                   
                                  >= [1 0] X + [0]                                   
                                     [0 1]     [0]                                   
                                  =  X                                               
        
                 activate(n__0()) =  [6]                                             
                                     [1]                                             
                                  >= [3]                                             
                                     [1]                                             
                                  =  0()                                             
        
         activate(n__plus(X1,X2)) =  [0 0] X1 + [0 0] X2 + [0]                       
                                     [0 1]      [0 1]      [0]                       
                                  >= [0 0] X1 + [0 0] X2 + [0]                       
                                     [0 1]      [0 1]      [0]                       
                                  =  plus(activate(X1),activate(X2))                 
        
                activate(n__s(X)) =  [0 0] X + [0]                                   
                                     [0 1]     [2]                                   
                                  >= [0 0] X + [0]                                   
                                     [0 1]     [2]                                   
                                  =  s(activate(X))                                  
        
            activate(n__x(X1,X2)) =  [0 0] X1 + [0 0] X2 + [0]                       
                                     [0 1]      [0 1]      [0]                       
                                  >= [0 0] X1 + [0 0] X2 + [0]                       
                                     [0 1]      [0 1]      [0]                       
                                  =  x(activate(X1),activate(X2))                    
        
                      plus(X1,X2) =  [0 0] X1 + [0 0] X2 + [0]                       
                                     [0 1]      [0 1]      [0]                       
                                  >= [0 0] X1 + [0 0] X2 + [0]                       
                                     [0 1]      [0 1]      [0]                       
                                  =  n__plus(X1,X2)                                  
        
                             s(X) =  [0 0] X + [0]                                   
                                     [0 1]     [2]                                   
                                  >= [0 0] X + [0]                                   
                                     [0 1]     [2]                                   
                                  =  n__s(X)                                         
        
                         x(X1,X2) =  [0 0] X1 + [0 0] X2 + [0]                       
                                     [0 1]      [0 1]      [0]                       
                                  >= [0 0] X1 + [0 0] X2 + [0]                       
                                     [0 1]      [0 1]      [0]                       
                                  =  n__x(X1,X2)                                     
        
***** Step 1.b:9.a:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
            activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
        - Weak DPs:
            U11#(tt(),V2) -> activate#(V2)
            U11#(tt(),V2) -> isNat#(activate(V2))
            U31#(tt(),V2) -> activate#(V2)
            U31#(tt(),V2) -> isNat#(activate(V2))
            U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
            U51#(tt(),M,N) -> activate#(M)
            U51#(tt(),M,N) -> activate#(N)
            U51#(tt(),M,N) -> isNat#(activate(N))
            U52#(tt(),M,N) -> activate#(M)
            U52#(tt(),M,N) -> activate#(N)
            U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
            U71#(tt(),M,N) -> activate#(M)
            U71#(tt(),M,N) -> activate#(N)
            U71#(tt(),M,N) -> isNat#(activate(N))
            U72#(tt(),M,N) -> activate#(M)
            U72#(tt(),M,N) -> activate#(N)
            activate#(n__s(X)) -> c_16(activate#(X))
            isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
            isNat#(n__s(V1)) -> activate#(V1)
            isNat#(n__s(V1)) -> isNat#(activate(V1))
            isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
            isNat#(n__x(V1,V2)) -> activate#(V1)
            isNat#(n__x(V1,V2)) -> activate#(V2)
            isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
            ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:9.a:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
            activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
        - Weak DPs:
            U11#(tt(),V2) -> activate#(V2)
            U11#(tt(),V2) -> isNat#(activate(V2))
            U31#(tt(),V2) -> activate#(V2)
            U31#(tt(),V2) -> isNat#(activate(V2))
            U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
            U51#(tt(),M,N) -> activate#(M)
            U51#(tt(),M,N) -> activate#(N)
            U51#(tt(),M,N) -> isNat#(activate(N))
            U52#(tt(),M,N) -> activate#(M)
            U52#(tt(),M,N) -> activate#(N)
            U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
            U71#(tt(),M,N) -> activate#(M)
            U71#(tt(),M,N) -> activate#(N)
            U71#(tt(),M,N) -> isNat#(activate(N))
            U72#(tt(),M,N) -> activate#(M)
            U72#(tt(),M,N) -> activate#(N)
            activate#(n__s(X)) -> c_16(activate#(X))
            isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
            isNat#(n__s(V1)) -> activate#(V1)
            isNat#(n__s(V1)) -> isNat#(activate(V1))
            isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
            isNat#(n__x(V1,V2)) -> activate#(V1)
            isNat#(n__x(V1,V2)) -> activate#(V2)
            isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
            ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
          
        Consider the set of all dependency pairs
          1: activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
          2: activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
          3: U11#(tt(),V2) -> activate#(V2)
          4: U11#(tt(),V2) -> isNat#(activate(V2))
          5: U31#(tt(),V2) -> activate#(V2)
          6: U31#(tt(),V2) -> isNat#(activate(V2))
          7: U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
          8: U51#(tt(),M,N) -> activate#(M)
          9: U51#(tt(),M,N) -> activate#(N)
          10: U51#(tt(),M,N) -> isNat#(activate(N))
          11: U52#(tt(),M,N) -> activate#(M)
          12: U52#(tt(),M,N) -> activate#(N)
          13: U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
          14: U71#(tt(),M,N) -> activate#(M)
          15: U71#(tt(),M,N) -> activate#(N)
          16: U71#(tt(),M,N) -> isNat#(activate(N))
          17: U72#(tt(),M,N) -> activate#(M)
          18: U72#(tt(),M,N) -> activate#(N)
          19: activate#(n__s(X)) -> c_16(activate#(X))
          20: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
          21: isNat#(n__plus(V1,V2)) -> activate#(V1)
          22: isNat#(n__plus(V1,V2)) -> activate#(V2)
          23: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
          24: isNat#(n__s(V1)) -> activate#(V1)
          25: isNat#(n__s(V1)) -> isNat#(activate(V1))
          26: isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
          27: isNat#(n__x(V1,V2)) -> activate#(V1)
          28: isNat#(n__x(V1,V2)) -> activate#(V2)
          29: isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,7,8,9,10,11,12,13,14,15,16,17,18}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
****** Step 1.b:9.a:1.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
            activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
        - Weak DPs:
            U11#(tt(),V2) -> activate#(V2)
            U11#(tt(),V2) -> isNat#(activate(V2))
            U31#(tt(),V2) -> activate#(V2)
            U31#(tt(),V2) -> isNat#(activate(V2))
            U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
            U51#(tt(),M,N) -> activate#(M)
            U51#(tt(),M,N) -> activate#(N)
            U51#(tt(),M,N) -> isNat#(activate(N))
            U52#(tt(),M,N) -> activate#(M)
            U52#(tt(),M,N) -> activate#(N)
            U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
            U71#(tt(),M,N) -> activate#(M)
            U71#(tt(),M,N) -> activate#(N)
            U71#(tt(),M,N) -> isNat#(activate(N))
            U72#(tt(),M,N) -> activate#(M)
            U72#(tt(),M,N) -> activate#(N)
            activate#(n__s(X)) -> c_16(activate#(X))
            isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
            isNat#(n__s(V1)) -> activate#(V1)
            isNat#(n__s(V1)) -> isNat#(activate(V1))
            isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
            isNat#(n__x(V1,V2)) -> activate#(V1)
            isNat#(n__x(V1,V2)) -> activate#(V2)
            isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
            ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_15) = {1,2},
          uargs(c_16) = {1},
          uargs(c_17) = {1,2}
        
        Following symbols are considered usable:
          {0,activate,plus,s,x,0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#,activate#,isNat#,plus#,s#
          ,x#}
        TcT has computed the following interpretation:
                  p(0) = [0]                           
                p(U11) = [4] x1 + [0]                  
                p(U12) = [4] x1 + [1]                  
                p(U21) = [0]                           
                p(U31) = [2] x1 + [1]                  
                p(U32) = [6]                           
                p(U41) = [4] x1 + [2] x2 + [4]         
                p(U51) = [2] x2 + [4]                  
                p(U52) = [2] x3 + [1]                  
                p(U61) = [2]                           
                p(U71) = [1] x1 + [1]                  
                p(U72) = [2] x3 + [1]                  
           p(activate) = [1] x1 + [0]                  
              p(isNat) = [2]                           
               p(n__0) = [0]                           
            p(n__plus) = [1] x1 + [1] x2 + [4]         
               p(n__s) = [1] x1 + [2]                  
               p(n__x) = [1] x1 + [1] x2 + [0]         
               p(plus) = [1] x1 + [1] x2 + [4]         
                  p(s) = [1] x1 + [2]                  
                 p(tt) = [0]                           
                  p(x) = [1] x1 + [1] x2 + [0]         
                 p(0#) = [0]                           
               p(U11#) = [1] x2 + [0]                  
               p(U12#) = [1]                           
               p(U21#) = [1] x1 + [1]                  
               p(U31#) = [1] x2 + [0]                  
               p(U32#) = [1] x1 + [0]                  
               p(U41#) = [1] x1 + [1] x2 + [0]         
               p(U51#) = [1] x2 + [7] x3 + [4]         
               p(U52#) = [1] x2 + [6] x3 + [1]         
               p(U61#) = [4] x1 + [0]                  
               p(U71#) = [1] x2 + [4] x3 + [4]         
               p(U72#) = [1] x2 + [1] x3 + [0]         
          p(activate#) = [1] x1 + [0]                  
             p(isNat#) = [1] x1 + [0]                  
              p(plus#) = [1] x1 + [1]                  
                 p(s#) = [4]                           
                 p(x#) = [4] x1 + [1]                  
                p(c_1) = [0]                           
                p(c_2) = [1] x2 + [0]                  
                p(c_3) = [1]                           
                p(c_4) = [1]                           
                p(c_5) = [2] x1 + [1] x2 + [1]         
                p(c_6) = [4]                           
                p(c_7) = [1] x1 + [0]                  
                p(c_8) = [1] x3 + [1] x4 + [2]         
                p(c_9) = [4]                           
               p(c_10) = [0]                           
               p(c_11) = [1] x1 + [1] x4 + [1] x5 + [0]
               p(c_12) = [1] x1 + [2] x3 + [1]         
               p(c_13) = [1]                           
               p(c_14) = [4] x1 + [0]                  
               p(c_15) = [1] x1 + [1] x2 + [0]         
               p(c_16) = [1] x1 + [0]                  
               p(c_17) = [1] x1 + [1] x2 + [0]         
               p(c_18) = [1]                           
               p(c_19) = [1] x2 + [1] x4 + [2]         
               p(c_20) = [2] x2 + [1]                  
               p(c_21) = [1] x2 + [1] x3 + [2] x4 + [0]
               p(c_22) = [2]                           
               p(c_23) = [1]                           
               p(c_24) = [0]                           
        
        Following rules are strictly oriented:
        activate#(n__plus(X1,X2)) = [1] X1 + [1] X2 + [4]            
                                  > [1] X1 + [1] X2 + [0]            
                                  = c_15(activate#(X1),activate#(X2))
        
        
        Following rules are (at-least) weakly oriented:
                   U11#(tt(),V2) =  [1] V2 + [0]                                    
                                 >= [1] V2 + [0]                                    
                                 =  activate#(V2)                                   
        
                   U11#(tt(),V2) =  [1] V2 + [0]                                    
                                 >= [1] V2 + [0]                                    
                                 =  isNat#(activate(V2))                            
        
                   U31#(tt(),V2) =  [1] V2 + [0]                                    
                                 >= [1] V2 + [0]                                    
                                 =  activate#(V2)                                   
        
                   U31#(tt(),V2) =  [1] V2 + [0]                                    
                                 >= [1] V2 + [0]                                    
                                 =  isNat#(activate(V2))                            
        
                  U51#(tt(),M,N) =  [1] M + [7] N + [4]                             
                                 >= [1] M + [6] N + [1]                             
                                 =  U52#(isNat(activate(N)),activate(M),activate(N))
        
                  U51#(tt(),M,N) =  [1] M + [7] N + [4]                             
                                 >= [1] M + [0]                                     
                                 =  activate#(M)                                    
        
                  U51#(tt(),M,N) =  [1] M + [7] N + [4]                             
                                 >= [1] N + [0]                                     
                                 =  activate#(N)                                    
        
                  U51#(tt(),M,N) =  [1] M + [7] N + [4]                             
                                 >= [1] N + [0]                                     
                                 =  isNat#(activate(N))                             
        
                  U52#(tt(),M,N) =  [1] M + [6] N + [1]                             
                                 >= [1] M + [0]                                     
                                 =  activate#(M)                                    
        
                  U52#(tt(),M,N) =  [1] M + [6] N + [1]                             
                                 >= [1] N + [0]                                     
                                 =  activate#(N)                                    
        
                  U71#(tt(),M,N) =  [1] M + [4] N + [4]                             
                                 >= [1] M + [1] N + [0]                             
                                 =  U72#(isNat(activate(N)),activate(M),activate(N))
        
                  U71#(tt(),M,N) =  [1] M + [4] N + [4]                             
                                 >= [1] M + [0]                                     
                                 =  activate#(M)                                    
        
                  U71#(tt(),M,N) =  [1] M + [4] N + [4]                             
                                 >= [1] N + [0]                                     
                                 =  activate#(N)                                    
        
                  U71#(tt(),M,N) =  [1] M + [4] N + [4]                             
                                 >= [1] N + [0]                                     
                                 =  isNat#(activate(N))                             
        
                  U72#(tt(),M,N) =  [1] M + [1] N + [0]                             
                                 >= [1] M + [0]                                     
                                 =  activate#(M)                                    
        
                  U72#(tt(),M,N) =  [1] M + [1] N + [0]                             
                                 >= [1] N + [0]                                     
                                 =  activate#(N)                                    
        
              activate#(n__s(X)) =  [1] X + [2]                                     
                                 >= [1] X + [0]                                     
                                 =  c_16(activate#(X))                              
        
          activate#(n__x(X1,X2)) =  [1] X1 + [1] X2 + [0]                           
                                 >= [1] X1 + [1] X2 + [0]                           
                                 =  c_17(activate#(X1),activate#(X2))               
        
          isNat#(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [4]                           
                                 >= [1] V2 + [0]                                    
                                 =  U11#(isNat(activate(V1)),activate(V2))          
        
          isNat#(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [4]                           
                                 >= [1] V1 + [0]                                    
                                 =  activate#(V1)                                   
        
          isNat#(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [4]                           
                                 >= [1] V2 + [0]                                    
                                 =  activate#(V2)                                   
        
          isNat#(n__plus(V1,V2)) =  [1] V1 + [1] V2 + [4]                           
                                 >= [1] V1 + [0]                                    
                                 =  isNat#(activate(V1))                            
        
                isNat#(n__s(V1)) =  [1] V1 + [2]                                    
                                 >= [1] V1 + [0]                                    
                                 =  activate#(V1)                                   
        
                isNat#(n__s(V1)) =  [1] V1 + [2]                                    
                                 >= [1] V1 + [0]                                    
                                 =  isNat#(activate(V1))                            
        
             isNat#(n__x(V1,V2)) =  [1] V1 + [1] V2 + [0]                           
                                 >= [1] V2 + [0]                                    
                                 =  U31#(isNat(activate(V1)),activate(V2))          
        
             isNat#(n__x(V1,V2)) =  [1] V1 + [1] V2 + [0]                           
                                 >= [1] V1 + [0]                                    
                                 =  activate#(V1)                                   
        
             isNat#(n__x(V1,V2)) =  [1] V1 + [1] V2 + [0]                           
                                 >= [1] V2 + [0]                                    
                                 =  activate#(V2)                                   
        
             isNat#(n__x(V1,V2)) =  [1] V1 + [1] V2 + [0]                           
                                 >= [1] V1 + [0]                                    
                                 =  isNat#(activate(V1))                            
        
                             0() =  [0]                                             
                                 >= [0]                                             
                                 =  n__0()                                          
        
                     activate(X) =  [1] X + [0]                                     
                                 >= [1] X + [0]                                     
                                 =  X                                               
        
                activate(n__0()) =  [0]                                             
                                 >= [0]                                             
                                 =  0()                                             
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [4]                           
                                 >= [1] X1 + [1] X2 + [4]                           
                                 =  plus(activate(X1),activate(X2))                 
        
               activate(n__s(X)) =  [1] X + [2]                                     
                                 >= [1] X + [2]                                     
                                 =  s(activate(X))                                  
        
           activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [0]                           
                                 >= [1] X1 + [1] X2 + [0]                           
                                 =  x(activate(X1),activate(X2))                    
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [4]                           
                                 >= [1] X1 + [1] X2 + [4]                           
                                 =  n__plus(X1,X2)                                  
        
                            s(X) =  [1] X + [2]                                     
                                 >= [1] X + [2]                                     
                                 =  n__s(X)                                         
        
                        x(X1,X2) =  [1] X1 + [1] X2 + [0]                           
                                 >= [1] X1 + [1] X2 + [0]                           
                                 =  n__x(X1,X2)                                     
        
****** Step 1.b:9.a:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
        - Weak DPs:
            U11#(tt(),V2) -> activate#(V2)
            U11#(tt(),V2) -> isNat#(activate(V2))
            U31#(tt(),V2) -> activate#(V2)
            U31#(tt(),V2) -> isNat#(activate(V2))
            U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
            U51#(tt(),M,N) -> activate#(M)
            U51#(tt(),M,N) -> activate#(N)
            U51#(tt(),M,N) -> isNat#(activate(N))
            U52#(tt(),M,N) -> activate#(M)
            U52#(tt(),M,N) -> activate#(N)
            U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
            U71#(tt(),M,N) -> activate#(M)
            U71#(tt(),M,N) -> activate#(N)
            U71#(tt(),M,N) -> isNat#(activate(N))
            U72#(tt(),M,N) -> activate#(M)
            U72#(tt(),M,N) -> activate#(N)
            activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_16(activate#(X))
            isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
            isNat#(n__s(V1)) -> activate#(V1)
            isNat#(n__s(V1)) -> isNat#(activate(V1))
            isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
            isNat#(n__x(V1,V2)) -> activate#(V1)
            isNat#(n__x(V1,V2)) -> activate#(V2)
            isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
            ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

****** Step 1.b:9.a:1.b:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
        - Weak DPs:
            U11#(tt(),V2) -> activate#(V2)
            U11#(tt(),V2) -> isNat#(activate(V2))
            U31#(tt(),V2) -> activate#(V2)
            U31#(tt(),V2) -> isNat#(activate(V2))
            U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
            U51#(tt(),M,N) -> activate#(M)
            U51#(tt(),M,N) -> activate#(N)
            U51#(tt(),M,N) -> isNat#(activate(N))
            U52#(tt(),M,N) -> activate#(M)
            U52#(tt(),M,N) -> activate#(N)
            U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
            U71#(tt(),M,N) -> activate#(M)
            U71#(tt(),M,N) -> activate#(N)
            U71#(tt(),M,N) -> isNat#(activate(N))
            U72#(tt(),M,N) -> activate#(M)
            U72#(tt(),M,N) -> activate#(N)
            activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_16(activate#(X))
            isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
            isNat#(n__s(V1)) -> activate#(V1)
            isNat#(n__s(V1)) -> isNat#(activate(V1))
            isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
            isNat#(n__x(V1,V2)) -> activate#(V1)
            isNat#(n__x(V1,V2)) -> activate#(V2)
            isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
            ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
          
        Consider the set of all dependency pairs
          1: activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
          2: U11#(tt(),V2) -> activate#(V2)
          3: U11#(tt(),V2) -> isNat#(activate(V2))
          4: U31#(tt(),V2) -> activate#(V2)
          5: U31#(tt(),V2) -> isNat#(activate(V2))
          6: U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
          7: U51#(tt(),M,N) -> activate#(M)
          8: U51#(tt(),M,N) -> activate#(N)
          9: U51#(tt(),M,N) -> isNat#(activate(N))
          10: U52#(tt(),M,N) -> activate#(M)
          11: U52#(tt(),M,N) -> activate#(N)
          12: U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
          13: U71#(tt(),M,N) -> activate#(M)
          14: U71#(tt(),M,N) -> activate#(N)
          15: U71#(tt(),M,N) -> isNat#(activate(N))
          16: U72#(tt(),M,N) -> activate#(M)
          17: U72#(tt(),M,N) -> activate#(N)
          18: activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
          19: activate#(n__s(X)) -> c_16(activate#(X))
          20: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
          21: isNat#(n__plus(V1,V2)) -> activate#(V1)
          22: isNat#(n__plus(V1,V2)) -> activate#(V2)
          23: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
          24: isNat#(n__s(V1)) -> activate#(V1)
          25: isNat#(n__s(V1)) -> isNat#(activate(V1))
          26: isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
          27: isNat#(n__x(V1,V2)) -> activate#(V1)
          28: isNat#(n__x(V1,V2)) -> activate#(V2)
          29: isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,6,7,8,9,10,11,12,13,14,15,16,17}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
******* Step 1.b:9.a:1.b:1.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
        - Weak DPs:
            U11#(tt(),V2) -> activate#(V2)
            U11#(tt(),V2) -> isNat#(activate(V2))
            U31#(tt(),V2) -> activate#(V2)
            U31#(tt(),V2) -> isNat#(activate(V2))
            U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
            U51#(tt(),M,N) -> activate#(M)
            U51#(tt(),M,N) -> activate#(N)
            U51#(tt(),M,N) -> isNat#(activate(N))
            U52#(tt(),M,N) -> activate#(M)
            U52#(tt(),M,N) -> activate#(N)
            U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
            U71#(tt(),M,N) -> activate#(M)
            U71#(tt(),M,N) -> activate#(N)
            U71#(tt(),M,N) -> isNat#(activate(N))
            U72#(tt(),M,N) -> activate#(M)
            U72#(tt(),M,N) -> activate#(N)
            activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_16(activate#(X))
            isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
            isNat#(n__s(V1)) -> activate#(V1)
            isNat#(n__s(V1)) -> isNat#(activate(V1))
            isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
            isNat#(n__x(V1,V2)) -> activate#(V1)
            isNat#(n__x(V1,V2)) -> activate#(V2)
            isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
            ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_15) = {1,2},
          uargs(c_16) = {1},
          uargs(c_17) = {1,2}
        
        Following symbols are considered usable:
          {0,U11,U12,U21,U31,U32,activate,isNat,plus,s,x,0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
          ,activate#,isNat#,plus#,s#,x#}
        TcT has computed the following interpretation:
                  p(0) = [0]                                    
                p(U11) = [3]                                    
                p(U12) = [1] x1 + [0]                           
                p(U21) = [3]                                    
                p(U31) = [1] x1 + [0]                           
                p(U32) = [1]                                    
                p(U41) = [2] x1 + [2]                           
                p(U51) = [0]                                    
                p(U52) = [2] x1 + [1]                           
                p(U61) = [1] x1 + [2]                           
                p(U71) = [1] x1 + [0]                           
                p(U72) = [1] x1 + [1] x2 + [1] x3 + [2]         
           p(activate) = [1] x1 + [0]                           
              p(isNat) = [3]                                    
               p(n__0) = [0]                                    
            p(n__plus) = [1] x1 + [1] x2 + [2]                  
               p(n__s) = [1] x1 + [0]                           
               p(n__x) = [1] x1 + [1] x2 + [3]                  
               p(plus) = [1] x1 + [1] x2 + [2]                  
                  p(s) = [1] x1 + [0]                           
                 p(tt) = [1]                                    
                  p(x) = [1] x1 + [1] x2 + [3]                  
                 p(0#) = [1]                                    
               p(U11#) = [3] x2 + [1]                           
               p(U12#) = [4] x1 + [1]                           
               p(U21#) = [1]                                    
               p(U31#) = [1] x1 + [3] x2 + [4]                  
               p(U32#) = [1] x1 + [1]                           
               p(U41#) = [4] x1 + [4] x2 + [1]                  
               p(U51#) = [6] x1 + [4] x2 + [3] x3 + [6]         
               p(U52#) = [4] x1 + [4] x2 + [3] x3 + [0]         
               p(U61#) = [4] x1 + [0]                           
               p(U71#) = [2] x1 + [3] x2 + [4] x3 + [1]         
               p(U72#) = [2] x2 + [4] x3 + [2]                  
          p(activate#) = [2] x1 + [0]                           
             p(isNat#) = [3] x1 + [0]                           
              p(plus#) = [1] x1 + [2] x2 + [0]                  
                 p(s#) = [1]                                    
                 p(x#) = [2] x2 + [4]                           
                p(c_1) = [0]                                    
                p(c_2) = [4] x1 + [0]                           
                p(c_3) = [0]                                    
                p(c_4) = [2]                                    
                p(c_5) = [1]                                    
                p(c_6) = [1]                                    
                p(c_7) = [1]                                    
                p(c_8) = [2] x1 + [1] x2 + [1] x4 + [1] x5 + [1]
                p(c_9) = [4] x1 + [1]                           
               p(c_10) = [4] x1 + [0]                           
               p(c_11) = [2] x4 + [1] x5 + [0]                  
               p(c_12) = [2] x3 + [2]                           
               p(c_13) = [4]                                    
               p(c_14) = [2]                                    
               p(c_15) = [1] x1 + [1] x2 + [0]                  
               p(c_16) = [1] x1 + [0]                           
               p(c_17) = [1] x1 + [1] x2 + [2]                  
               p(c_18) = [4]                                    
               p(c_19) = [2] x4 + [0]                           
               p(c_20) = [1] x1 + [0]                           
               p(c_21) = [1] x2 + [4]                           
               p(c_22) = [0]                                    
               p(c_23) = [1]                                    
               p(c_24) = [1]                                    
        
        Following rules are strictly oriented:
        activate#(n__x(X1,X2)) = [2] X1 + [2] X2 + [6]            
                               > [2] X1 + [2] X2 + [2]            
                               = c_17(activate#(X1),activate#(X2))
        
        
        Following rules are (at-least) weakly oriented:
                    U11#(tt(),V2) =  [3] V2 + [1]                                    
                                  >= [2] V2 + [0]                                    
                                  =  activate#(V2)                                   
        
                    U11#(tt(),V2) =  [3] V2 + [1]                                    
                                  >= [3] V2 + [0]                                    
                                  =  isNat#(activate(V2))                            
        
                    U31#(tt(),V2) =  [3] V2 + [5]                                    
                                  >= [2] V2 + [0]                                    
                                  =  activate#(V2)                                   
        
                    U31#(tt(),V2) =  [3] V2 + [5]                                    
                                  >= [3] V2 + [0]                                    
                                  =  isNat#(activate(V2))                            
        
                   U51#(tt(),M,N) =  [4] M + [3] N + [12]                            
                                  >= [4] M + [3] N + [12]                            
                                  =  U52#(isNat(activate(N)),activate(M),activate(N))
        
                   U51#(tt(),M,N) =  [4] M + [3] N + [12]                            
                                  >= [2] M + [0]                                     
                                  =  activate#(M)                                    
        
                   U51#(tt(),M,N) =  [4] M + [3] N + [12]                            
                                  >= [2] N + [0]                                     
                                  =  activate#(N)                                    
        
                   U51#(tt(),M,N) =  [4] M + [3] N + [12]                            
                                  >= [3] N + [0]                                     
                                  =  isNat#(activate(N))                             
        
                   U52#(tt(),M,N) =  [4] M + [3] N + [4]                             
                                  >= [2] M + [0]                                     
                                  =  activate#(M)                                    
        
                   U52#(tt(),M,N) =  [4] M + [3] N + [4]                             
                                  >= [2] N + [0]                                     
                                  =  activate#(N)                                    
        
                   U71#(tt(),M,N) =  [3] M + [4] N + [3]                             
                                  >= [2] M + [4] N + [2]                             
                                  =  U72#(isNat(activate(N)),activate(M),activate(N))
        
                   U71#(tt(),M,N) =  [3] M + [4] N + [3]                             
                                  >= [2] M + [0]                                     
                                  =  activate#(M)                                    
        
                   U71#(tt(),M,N) =  [3] M + [4] N + [3]                             
                                  >= [2] N + [0]                                     
                                  =  activate#(N)                                    
        
                   U71#(tt(),M,N) =  [3] M + [4] N + [3]                             
                                  >= [3] N + [0]                                     
                                  =  isNat#(activate(N))                             
        
                   U72#(tt(),M,N) =  [2] M + [4] N + [2]                             
                                  >= [2] M + [0]                                     
                                  =  activate#(M)                                    
        
                   U72#(tt(),M,N) =  [2] M + [4] N + [2]                             
                                  >= [2] N + [0]                                     
                                  =  activate#(N)                                    
        
        activate#(n__plus(X1,X2)) =  [2] X1 + [2] X2 + [4]                           
                                  >= [2] X1 + [2] X2 + [0]                           
                                  =  c_15(activate#(X1),activate#(X2))               
        
               activate#(n__s(X)) =  [2] X + [0]                                     
                                  >= [2] X + [0]                                     
                                  =  c_16(activate#(X))                              
        
           isNat#(n__plus(V1,V2)) =  [3] V1 + [3] V2 + [6]                           
                                  >= [3] V2 + [1]                                    
                                  =  U11#(isNat(activate(V1)),activate(V2))          
        
           isNat#(n__plus(V1,V2)) =  [3] V1 + [3] V2 + [6]                           
                                  >= [2] V1 + [0]                                    
                                  =  activate#(V1)                                   
        
           isNat#(n__plus(V1,V2)) =  [3] V1 + [3] V2 + [6]                           
                                  >= [2] V2 + [0]                                    
                                  =  activate#(V2)                                   
        
           isNat#(n__plus(V1,V2)) =  [3] V1 + [3] V2 + [6]                           
                                  >= [3] V1 + [0]                                    
                                  =  isNat#(activate(V1))                            
        
                 isNat#(n__s(V1)) =  [3] V1 + [0]                                    
                                  >= [2] V1 + [0]                                    
                                  =  activate#(V1)                                   
        
                 isNat#(n__s(V1)) =  [3] V1 + [0]                                    
                                  >= [3] V1 + [0]                                    
                                  =  isNat#(activate(V1))                            
        
              isNat#(n__x(V1,V2)) =  [3] V1 + [3] V2 + [9]                           
                                  >= [3] V2 + [7]                                    
                                  =  U31#(isNat(activate(V1)),activate(V2))          
        
              isNat#(n__x(V1,V2)) =  [3] V1 + [3] V2 + [9]                           
                                  >= [2] V1 + [0]                                    
                                  =  activate#(V1)                                   
        
              isNat#(n__x(V1,V2)) =  [3] V1 + [3] V2 + [9]                           
                                  >= [2] V2 + [0]                                    
                                  =  activate#(V2)                                   
        
              isNat#(n__x(V1,V2)) =  [3] V1 + [3] V2 + [9]                           
                                  >= [3] V1 + [0]                                    
                                  =  isNat#(activate(V1))                            
        
                              0() =  [0]                                             
                                  >= [0]                                             
                                  =  n__0()                                          
        
                     U11(tt(),V2) =  [3]                                             
                                  >= [3]                                             
                                  =  U12(isNat(activate(V2)))                        
        
                        U12(tt()) =  [1]                                             
                                  >= [1]                                             
                                  =  tt()                                            
        
                        U21(tt()) =  [3]                                             
                                  >= [1]                                             
                                  =  tt()                                            
        
                     U31(tt(),V2) =  [1]                                             
                                  >= [1]                                             
                                  =  U32(isNat(activate(V2)))                        
        
                        U32(tt()) =  [1]                                             
                                  >= [1]                                             
                                  =  tt()                                            
        
                      activate(X) =  [1] X + [0]                                     
                                  >= [1] X + [0]                                     
                                  =  X                                               
        
                 activate(n__0()) =  [0]                                             
                                  >= [0]                                             
                                  =  0()                                             
        
         activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [2]                           
                                  >= [1] X1 + [1] X2 + [2]                           
                                  =  plus(activate(X1),activate(X2))                 
        
                activate(n__s(X)) =  [1] X + [0]                                     
                                  >= [1] X + [0]                                     
                                  =  s(activate(X))                                  
        
            activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [3]                           
                                  >= [1] X1 + [1] X2 + [3]                           
                                  =  x(activate(X1),activate(X2))                    
        
                    isNat(n__0()) =  [3]                                             
                                  >= [1]                                             
                                  =  tt()                                            
        
            isNat(n__plus(V1,V2)) =  [3]                                             
                                  >= [3]                                             
                                  =  U11(isNat(activate(V1)),activate(V2))           
        
                  isNat(n__s(V1)) =  [3]                                             
                                  >= [3]                                             
                                  =  U21(isNat(activate(V1)))                        
        
               isNat(n__x(V1,V2)) =  [3]                                             
                                  >= [3]                                             
                                  =  U31(isNat(activate(V1)),activate(V2))           
        
                      plus(X1,X2) =  [1] X1 + [1] X2 + [2]                           
                                  >= [1] X1 + [1] X2 + [2]                           
                                  =  n__plus(X1,X2)                                  
        
                             s(X) =  [1] X + [0]                                     
                                  >= [1] X + [0]                                     
                                  =  n__s(X)                                         
        
                         x(X1,X2) =  [1] X1 + [1] X2 + [3]                           
                                  >= [1] X1 + [1] X2 + [3]                           
                                  =  n__x(X1,X2)                                     
        
******* Step 1.b:9.a:1.b:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            U11#(tt(),V2) -> activate#(V2)
            U11#(tt(),V2) -> isNat#(activate(V2))
            U31#(tt(),V2) -> activate#(V2)
            U31#(tt(),V2) -> isNat#(activate(V2))
            U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
            U51#(tt(),M,N) -> activate#(M)
            U51#(tt(),M,N) -> activate#(N)
            U51#(tt(),M,N) -> isNat#(activate(N))
            U52#(tt(),M,N) -> activate#(M)
            U52#(tt(),M,N) -> activate#(N)
            U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
            U71#(tt(),M,N) -> activate#(M)
            U71#(tt(),M,N) -> activate#(N)
            U71#(tt(),M,N) -> isNat#(activate(N))
            U72#(tt(),M,N) -> activate#(M)
            U72#(tt(),M,N) -> activate#(N)
            activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_16(activate#(X))
            activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
            isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
            isNat#(n__s(V1)) -> activate#(V1)
            isNat#(n__s(V1)) -> isNat#(activate(V1))
            isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
            isNat#(n__x(V1,V2)) -> activate#(V1)
            isNat#(n__x(V1,V2)) -> activate#(V2)
            isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
            ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******* Step 1.b:9.a:1.b:1.b:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            U11#(tt(),V2) -> activate#(V2)
            U11#(tt(),V2) -> isNat#(activate(V2))
            U31#(tt(),V2) -> activate#(V2)
            U31#(tt(),V2) -> isNat#(activate(V2))
            U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
            U51#(tt(),M,N) -> activate#(M)
            U51#(tt(),M,N) -> activate#(N)
            U51#(tt(),M,N) -> isNat#(activate(N))
            U52#(tt(),M,N) -> activate#(M)
            U52#(tt(),M,N) -> activate#(N)
            U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
            U71#(tt(),M,N) -> activate#(M)
            U71#(tt(),M,N) -> activate#(N)
            U71#(tt(),M,N) -> isNat#(activate(N))
            U72#(tt(),M,N) -> activate#(M)
            U72#(tt(),M,N) -> activate#(N)
            activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_16(activate#(X))
            activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
            isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
            isNat#(n__plus(V1,V2)) -> activate#(V1)
            isNat#(n__plus(V1,V2)) -> activate#(V2)
            isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
            isNat#(n__s(V1)) -> activate#(V1)
            isNat#(n__s(V1)) -> isNat#(activate(V1))
            isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
            isNat#(n__x(V1,V2)) -> activate#(V1)
            isNat#(n__x(V1,V2)) -> activate#(V2)
            isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
            ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:U11#(tt(),V2) -> activate#(V2)
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
          
          2:W:U11#(tt(),V2) -> isNat#(activate(V2))
             -->_1 isNat#(n__x(V1,V2)) -> isNat#(activate(V1)):29
             -->_1 isNat#(n__x(V1,V2)) -> activate#(V2):28
             -->_1 isNat#(n__x(V1,V2)) -> activate#(V1):27
             -->_1 isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)):26
             -->_1 isNat#(n__s(V1)) -> isNat#(activate(V1)):25
             -->_1 isNat#(n__s(V1)) -> activate#(V1):24
             -->_1 isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)):23
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):22
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):21
             -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)):20
          
          3:W:U31#(tt(),V2) -> activate#(V2)
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
          
          4:W:U31#(tt(),V2) -> isNat#(activate(V2))
             -->_1 isNat#(n__x(V1,V2)) -> isNat#(activate(V1)):29
             -->_1 isNat#(n__x(V1,V2)) -> activate#(V2):28
             -->_1 isNat#(n__x(V1,V2)) -> activate#(V1):27
             -->_1 isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)):26
             -->_1 isNat#(n__s(V1)) -> isNat#(activate(V1)):25
             -->_1 isNat#(n__s(V1)) -> activate#(V1):24
             -->_1 isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)):23
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):22
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):21
             -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)):20
          
          5:W:U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
             -->_1 U52#(tt(),M,N) -> activate#(N):10
             -->_1 U52#(tt(),M,N) -> activate#(M):9
          
          6:W:U51#(tt(),M,N) -> activate#(M)
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
          
          7:W:U51#(tt(),M,N) -> activate#(N)
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
          
          8:W:U51#(tt(),M,N) -> isNat#(activate(N))
             -->_1 isNat#(n__x(V1,V2)) -> isNat#(activate(V1)):29
             -->_1 isNat#(n__x(V1,V2)) -> activate#(V2):28
             -->_1 isNat#(n__x(V1,V2)) -> activate#(V1):27
             -->_1 isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)):26
             -->_1 isNat#(n__s(V1)) -> isNat#(activate(V1)):25
             -->_1 isNat#(n__s(V1)) -> activate#(V1):24
             -->_1 isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)):23
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):22
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):21
             -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)):20
          
          9:W:U52#(tt(),M,N) -> activate#(M)
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
          
          10:W:U52#(tt(),M,N) -> activate#(N)
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
          
          11:W:U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
             -->_1 U72#(tt(),M,N) -> activate#(N):16
             -->_1 U72#(tt(),M,N) -> activate#(M):15
          
          12:W:U71#(tt(),M,N) -> activate#(M)
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
          
          13:W:U71#(tt(),M,N) -> activate#(N)
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
          
          14:W:U71#(tt(),M,N) -> isNat#(activate(N))
             -->_1 isNat#(n__x(V1,V2)) -> isNat#(activate(V1)):29
             -->_1 isNat#(n__x(V1,V2)) -> activate#(V2):28
             -->_1 isNat#(n__x(V1,V2)) -> activate#(V1):27
             -->_1 isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)):26
             -->_1 isNat#(n__s(V1)) -> isNat#(activate(V1)):25
             -->_1 isNat#(n__s(V1)) -> activate#(V1):24
             -->_1 isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)):23
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):22
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):21
             -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)):20
          
          15:W:U72#(tt(),M,N) -> activate#(M)
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
          
          16:W:U72#(tt(),M,N) -> activate#(N)
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
          
          17:W:activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
             -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
             -->_2 activate#(n__s(X)) -> c_16(activate#(X)):18
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
             -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
          
          18:W:activate#(n__s(X)) -> c_16(activate#(X))
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
          
          19:W:activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
             -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
             -->_2 activate#(n__s(X)) -> c_16(activate#(X)):18
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
             -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
          
          20:W:isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
             -->_1 U11#(tt(),V2) -> isNat#(activate(V2)):2
             -->_1 U11#(tt(),V2) -> activate#(V2):1
          
          21:W:isNat#(n__plus(V1,V2)) -> activate#(V1)
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
          
          22:W:isNat#(n__plus(V1,V2)) -> activate#(V2)
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
          
          23:W:isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
             -->_1 isNat#(n__x(V1,V2)) -> isNat#(activate(V1)):29
             -->_1 isNat#(n__x(V1,V2)) -> activate#(V2):28
             -->_1 isNat#(n__x(V1,V2)) -> activate#(V1):27
             -->_1 isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)):26
             -->_1 isNat#(n__s(V1)) -> isNat#(activate(V1)):25
             -->_1 isNat#(n__s(V1)) -> activate#(V1):24
             -->_1 isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)):23
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):22
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):21
             -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)):20
          
          24:W:isNat#(n__s(V1)) -> activate#(V1)
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
          
          25:W:isNat#(n__s(V1)) -> isNat#(activate(V1))
             -->_1 isNat#(n__x(V1,V2)) -> isNat#(activate(V1)):29
             -->_1 isNat#(n__x(V1,V2)) -> activate#(V2):28
             -->_1 isNat#(n__x(V1,V2)) -> activate#(V1):27
             -->_1 isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)):26
             -->_1 isNat#(n__s(V1)) -> isNat#(activate(V1)):25
             -->_1 isNat#(n__s(V1)) -> activate#(V1):24
             -->_1 isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)):23
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):22
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):21
             -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)):20
          
          26:W:isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
             -->_1 U31#(tt(),V2) -> isNat#(activate(V2)):4
             -->_1 U31#(tt(),V2) -> activate#(V2):3
          
          27:W:isNat#(n__x(V1,V2)) -> activate#(V1)
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
          
          28:W:isNat#(n__x(V1,V2)) -> activate#(V2)
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):19
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):18
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):17
          
          29:W:isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
             -->_1 isNat#(n__x(V1,V2)) -> isNat#(activate(V1)):29
             -->_1 isNat#(n__x(V1,V2)) -> activate#(V2):28
             -->_1 isNat#(n__x(V1,V2)) -> activate#(V1):27
             -->_1 isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2)):26
             -->_1 isNat#(n__s(V1)) -> isNat#(activate(V1)):25
             -->_1 isNat#(n__s(V1)) -> activate#(V1):24
             -->_1 isNat#(n__plus(V1,V2)) -> isNat#(activate(V1)):23
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V2):22
             -->_1 isNat#(n__plus(V1,V2)) -> activate#(V1):21
             -->_1 isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2)):20
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          14: U71#(tt(),M,N) -> isNat#(activate(N))
          13: U71#(tt(),M,N) -> activate#(N)
          12: U71#(tt(),M,N) -> activate#(M)
          11: U71#(tt(),M,N) -> U72#(isNat(activate(N)),activate(M),activate(N))
          15: U72#(tt(),M,N) -> activate#(M)
          16: U72#(tt(),M,N) -> activate#(N)
          8: U51#(tt(),M,N) -> isNat#(activate(N))
          7: U51#(tt(),M,N) -> activate#(N)
          6: U51#(tt(),M,N) -> activate#(M)
          5: U51#(tt(),M,N) -> U52#(isNat(activate(N)),activate(M),activate(N))
          9: U52#(tt(),M,N) -> activate#(M)
          10: U52#(tt(),M,N) -> activate#(N)
          2: U11#(tt(),V2) -> isNat#(activate(V2))
          20: isNat#(n__plus(V1,V2)) -> U11#(isNat(activate(V1)),activate(V2))
          29: isNat#(n__x(V1,V2)) -> isNat#(activate(V1))
          25: isNat#(n__s(V1)) -> isNat#(activate(V1))
          23: isNat#(n__plus(V1,V2)) -> isNat#(activate(V1))
          4: U31#(tt(),V2) -> isNat#(activate(V2))
          26: isNat#(n__x(V1,V2)) -> U31#(isNat(activate(V1)),activate(V2))
          3: U31#(tt(),V2) -> activate#(V2)
          21: isNat#(n__plus(V1,V2)) -> activate#(V1)
          22: isNat#(n__plus(V1,V2)) -> activate#(V2)
          24: isNat#(n__s(V1)) -> activate#(V1)
          27: isNat#(n__x(V1,V2)) -> activate#(V1)
          28: isNat#(n__x(V1,V2)) -> activate#(V2)
          1: U11#(tt(),V2) -> activate#(V2)
          19: activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
          18: activate#(n__s(X)) -> c_16(activate#(X))
          17: activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
******* Step 1.b:9.a:1.b:1.b:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
            ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 1.b:9.b:1: PredecessorEstimation WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                 ,isNat#(activate(N))
                                 ,activate#(N)
                                 ,activate#(M)
                                 ,activate#(N))
            U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
            U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
        - Weak DPs:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
            activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_16(activate#(X))
            activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                       ,isNat#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V2))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
            ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {2,4}
        by application of
          Pre({2,4}) = {1,3}.
        Here rules are labelled as follows:
          1: U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
          2: U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
          3: U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                   ,isNat#(activate(N))
                                   ,activate#(N)
                                   ,activate#(M)
                                   ,activate#(N))
          4: U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
          5: U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
          6: U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
          7: activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
          8: activate#(n__s(X)) -> c_16(activate#(X))
          9: activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
          10: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                            ,isNat#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2))
          11: isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
          12: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                         ,isNat#(activate(V1))
                                         ,activate#(V1)
                                         ,activate#(V2))
*** Step 1.b:9.b:2: PredecessorEstimation WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                 ,isNat#(activate(N))
                                 ,activate#(N)
                                 ,activate#(M)
                                 ,activate#(N))
            U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
        - Weak DPs:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
            U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
            U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
            activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_16(activate#(X))
            activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                       ,isNat#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V2))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
            ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,2}
        by application of
          Pre({1,2}) = {}.
        Here rules are labelled as follows:
          1: U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
          2: U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                   ,isNat#(activate(N))
                                   ,activate#(N)
                                   ,activate#(M)
                                   ,activate#(N))
          3: U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
          4: U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
          5: U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
          6: U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
          7: activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
          8: activate#(n__s(X)) -> c_16(activate#(X))
          9: activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
          10: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                            ,isNat#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2))
          11: isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
          12: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                         ,isNat#(activate(V1))
                                         ,activate#(V1)
                                         ,activate#(V2))
*** Step 1.b:9.b:3: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
            U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
            U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                 ,isNat#(activate(N))
                                 ,activate#(N)
                                 ,activate#(M)
                                 ,activate#(N))
            U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
            U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
            activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
            activate#(n__s(X)) -> c_16(activate#(X))
            activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
            isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
            isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                       ,isNat#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V2))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
            ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
             -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):12
             -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):11
             -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):10
             -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_2 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
          
          2:W:U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
             -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):12
             -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):11
             -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):10
             -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_2 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
          
          3:W:U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                   ,isNat#(activate(N))
                                   ,activate#(N)
                                   ,activate#(M)
                                   ,activate#(N))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):12
             -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):11
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):10
             -->_5 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_5 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_4 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_3 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_5 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_1 U52#(tt(),M,N) -> c_9(activate#(N),activate#(M)):4
          
          4:W:U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
             -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_2 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
          
          5:W:U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                    ,isNat#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):12
             -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):11
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):10
             -->_5 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_5 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_4 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_3 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_5 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_1 U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N)):6
          
          6:W:U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
             -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_3 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_2 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
          
          7:W:activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
             -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_2 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
          
          8:W:activate#(n__s(X)) -> c_16(activate#(X))
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
          
          9:W:activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
             -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_1 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_2 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_1 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_1 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
          
          10:W:isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                             ,isNat#(activate(V1))
                                             ,activate#(V1)
                                             ,activate#(V2))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):12
             -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):11
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):10
             -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_4 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_3 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_1 U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2)):1
          
          11:W:isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
             -->_1 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):12
             -->_1 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):11
             -->_1 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):10
             -->_2 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_2 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_2 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
          
          12:W:isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2))
             -->_2 isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                              ,isNat#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2)):12
             -->_2 isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1)):11
             -->_2 isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                                 ,isNat#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2)):10
             -->_4 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_3 activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2)):9
             -->_4 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_3 activate#(n__s(X)) -> c_16(activate#(X)):8
             -->_4 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_3 activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2)):7
             -->_1 U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          5: U71#(tt(),M,N) -> c_11(U72#(isNat(activate(N)),activate(M),activate(N))
                                   ,isNat#(activate(N))
                                   ,activate#(N)
                                   ,activate#(M)
                                   ,activate#(N))
          6: U72#(tt(),M,N) -> c_12(activate#(N),activate#(M),activate#(N))
          3: U51#(tt(),M,N) -> c_8(U52#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
          4: U52#(tt(),M,N) -> c_9(activate#(N),activate#(M))
          1: U11#(tt(),V2) -> c_2(isNat#(activate(V2)),activate#(V2))
          10: isNat#(n__plus(V1,V2)) -> c_19(U11#(isNat(activate(V1)),activate(V2))
                                            ,isNat#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2))
          12: isNat#(n__x(V1,V2)) -> c_21(U31#(isNat(activate(V1)),activate(V2))
                                         ,isNat#(activate(V1))
                                         ,activate#(V1)
                                         ,activate#(V2))
          11: isNat#(n__s(V1)) -> c_20(isNat#(activate(V1)),activate#(V1))
          2: U31#(tt(),V2) -> c_5(isNat#(activate(V2)),activate#(V2))
          9: activate#(n__x(X1,X2)) -> c_17(activate#(X1),activate#(X2))
          8: activate#(n__s(X)) -> c_16(activate#(X))
          7: activate#(n__plus(X1,X2)) -> c_15(activate#(X1),activate#(X2))
*** Step 1.b:9.b:4: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V2) -> U12(isNat(activate(V2)))
            U12(tt()) -> tt()
            U21(tt()) -> tt()
            U31(tt(),V2) -> U32(isNat(activate(V2)))
            U32(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            activate(n__x(X1,X2)) -> x(activate(X1),activate(X2))
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNat(activate(V1)),activate(V2))
            isNat(n__s(V1)) -> U21(isNat(activate(V1)))
            isNat(n__x(V1,V2)) -> U31(isNat(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U11/2,U12/1,U21/1,U31/2,U32/1,U41/2,U51/3,U52/3,U61/1,U71/3,U72/3,activate/1,isNat/1,plus/2,s/1,x/2
            ,0#/0,U11#/2,U12#/1,U21#/1,U31#/2,U32#/1,U41#/2,U51#/3,U52#/3,U61#/1,U71#/3,U72#/3,activate#/1,isNat#/1
            ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2,c_6/0,c_7/1,c_8/5
            ,c_9/2,c_10/1,c_11/5,c_12/3,c_13/0,c_14/1,c_15/2,c_16/1,c_17/2,c_18/0,c_19/4,c_20/2,c_21/4,c_22/0,c_23/0
            ,c_24/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U11#,U12#,U21#,U31#,U32#,U41#,U51#,U52#,U61#,U71#,U72#
            ,activate#,isNat#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^2))