(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^2).
The TRS R consists of the following rules:
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, V2) → U32(isNat(activate(V2)))
U32(tt) → tt
U41(tt, N) → activate(N)
U51(tt, M, N) → U52(isNat(activate(N)), activate(M), activate(N))
U52(tt, M, N) → s(plus(activate(N), activate(M)))
U61(tt) → 0
U71(tt, M, N) → U72(isNat(activate(N)), activate(M), activate(N))
U72(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
isNat(n__x(V1, V2)) → U31(isNat(activate(V1)), activate(V2))
plus(N, 0) → U41(isNat(N), N)
plus(N, s(M)) → U51(isNat(M), M, N)
x(N, 0) → U61(isNat(N))
x(N, s(M)) → U71(isNat(M), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(n__x(X1, X2)) → x(activate(X1), activate(X2))
activate(X) → X
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
U21(tt) → tt
U31(tt, z0) → U32(isNat(activate(z0)))
U32(tt) → tt
U41(tt, z0) → activate(z0)
U51(tt, z0, z1) → U52(isNat(activate(z1)), activate(z0), activate(z1))
U52(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
U61(tt) → 0
U71(tt, z0, z1) → U72(isNat(activate(z1)), activate(z0), activate(z1))
U72(tt, z0, z1) → plus(x(activate(z1), activate(z0)), activate(z1))
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
plus(z0, 0) → U41(isNat(z0), z0)
plus(z0, s(z1)) → U51(isNat(z1), z1, z0)
plus(z0, z1) → n__plus(z0, z1)
x(z0, 0) → U61(isNat(z0))
x(z0, s(z1)) → U71(isNat(z1), z1, z0)
x(z0, z1) → n__x(z0, z1)
0 → n__0
s(z0) → n__s(z0)
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(n__x(z0, z1)) → x(activate(z0), activate(z1))
activate(z0) → z0
Tuples:
U11'(tt, z0) → c(U12'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
U12'(tt) → c1
U21'(tt) → c2
U31'(tt, z0) → c3(U32'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
U32'(tt) → c4
U41'(tt, z0) → c5(ACTIVATE(z0))
U51'(tt, z0, z1) → c6(U52'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U52'(tt, z0, z1) → c7(S(plus(activate(z1), activate(z0))), PLUS(activate(z1), activate(z0)), ACTIVATE(z1), ACTIVATE(z0))
U61'(tt) → c8(0')
U71'(tt, z0, z1) → c9(U72'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U72'(tt, z0, z1) → c10(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__0) → c11
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__s(z0)) → c13(U21'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
PLUS(z0, 0) → c15(U41'(isNat(z0), z0), ISNAT(z0))
PLUS(z0, s(z1)) → c16(U51'(isNat(z1), z1, z0), ISNAT(z1))
PLUS(z0, z1) → c17
X(z0, 0) → c18(U61'(isNat(z0)), ISNAT(z0))
X(z0, s(z1)) → c19(U71'(isNat(z1), z1, z0), ISNAT(z1))
X(z0, z1) → c20
0' → c21
S(z0) → c22
ACTIVATE(n__0) → c23(0')
ACTIVATE(n__plus(z0, z1)) → c24(PLUS(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(S(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(X(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(z0) → c27
S tuples:
U11'(tt, z0) → c(U12'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
U12'(tt) → c1
U21'(tt) → c2
U31'(tt, z0) → c3(U32'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
U32'(tt) → c4
U41'(tt, z0) → c5(ACTIVATE(z0))
U51'(tt, z0, z1) → c6(U52'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U52'(tt, z0, z1) → c7(S(plus(activate(z1), activate(z0))), PLUS(activate(z1), activate(z0)), ACTIVATE(z1), ACTIVATE(z0))
U61'(tt) → c8(0')
U71'(tt, z0, z1) → c9(U72'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U72'(tt, z0, z1) → c10(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__0) → c11
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__s(z0)) → c13(U21'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
PLUS(z0, 0) → c15(U41'(isNat(z0), z0), ISNAT(z0))
PLUS(z0, s(z1)) → c16(U51'(isNat(z1), z1, z0), ISNAT(z1))
PLUS(z0, z1) → c17
X(z0, 0) → c18(U61'(isNat(z0)), ISNAT(z0))
X(z0, s(z1)) → c19(U71'(isNat(z1), z1, z0), ISNAT(z1))
X(z0, z1) → c20
0' → c21
S(z0) → c22
ACTIVATE(n__0) → c23(0')
ACTIVATE(n__plus(z0, z1)) → c24(PLUS(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(S(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(X(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(z0) → c27
K tuples:none
Defined Rule Symbols:
U11, U12, U21, U31, U32, U41, U51, U52, U61, U71, U72, isNat, plus, x, 0, s, activate
Defined Pair Symbols:
U11', U12', U21', U31', U32', U41', U51', U52', U61', U71', U72', ISNAT, PLUS, X, 0', S, ACTIVATE
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c27
(3) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 5 leading nodes:
PLUS(z0, 0) → c15(U41'(isNat(z0), z0), ISNAT(z0))
PLUS(z0, s(z1)) → c16(U51'(isNat(z1), z1, z0), ISNAT(z1))
X(z0, 0) → c18(U61'(isNat(z0)), ISNAT(z0))
X(z0, s(z1)) → c19(U71'(isNat(z1), z1, z0), ISNAT(z1))
U41'(tt, z0) → c5(ACTIVATE(z0))
Removed 11 trailing nodes:
ACTIVATE(n__0) → c23(0')
U61'(tt) → c8(0')
S(z0) → c22
0' → c21
PLUS(z0, z1) → c17
ISNAT(n__0) → c11
U32'(tt) → c4
ACTIVATE(z0) → c27
X(z0, z1) → c20
U21'(tt) → c2
U12'(tt) → c1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
U21(tt) → tt
U31(tt, z0) → U32(isNat(activate(z0)))
U32(tt) → tt
U41(tt, z0) → activate(z0)
U51(tt, z0, z1) → U52(isNat(activate(z1)), activate(z0), activate(z1))
U52(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
U61(tt) → 0
U71(tt, z0, z1) → U72(isNat(activate(z1)), activate(z0), activate(z1))
U72(tt, z0, z1) → plus(x(activate(z1), activate(z0)), activate(z1))
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
plus(z0, 0) → U41(isNat(z0), z0)
plus(z0, s(z1)) → U51(isNat(z1), z1, z0)
plus(z0, z1) → n__plus(z0, z1)
x(z0, 0) → U61(isNat(z0))
x(z0, s(z1)) → U71(isNat(z1), z1, z0)
x(z0, z1) → n__x(z0, z1)
0 → n__0
s(z0) → n__s(z0)
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(n__x(z0, z1)) → x(activate(z0), activate(z1))
activate(z0) → z0
Tuples:
U11'(tt, z0) → c(U12'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(U32'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
U51'(tt, z0, z1) → c6(U52'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U52'(tt, z0, z1) → c7(S(plus(activate(z1), activate(z0))), PLUS(activate(z1), activate(z0)), ACTIVATE(z1), ACTIVATE(z0))
U71'(tt, z0, z1) → c9(U72'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U72'(tt, z0, z1) → c10(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__s(z0)) → c13(U21'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__plus(z0, z1)) → c24(PLUS(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(S(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(X(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
S tuples:
U11'(tt, z0) → c(U12'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(U32'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
U51'(tt, z0, z1) → c6(U52'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U52'(tt, z0, z1) → c7(S(plus(activate(z1), activate(z0))), PLUS(activate(z1), activate(z0)), ACTIVATE(z1), ACTIVATE(z0))
U71'(tt, z0, z1) → c9(U72'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U72'(tt, z0, z1) → c10(PLUS(x(activate(z1), activate(z0)), activate(z1)), X(activate(z1), activate(z0)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__s(z0)) → c13(U21'(isNat(activate(z0))), ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__plus(z0, z1)) → c24(PLUS(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(S(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(X(activate(z0), activate(z1)), ACTIVATE(z0), ACTIVATE(z1))
K tuples:none
Defined Rule Symbols:
U11, U12, U21, U31, U32, U41, U51, U52, U61, U71, U72, isNat, plus, x, 0, s, activate
Defined Pair Symbols:
U11', U31', U51', U52', U71', U72', ISNAT, ACTIVATE
Compound Symbols:
c, c3, c6, c7, c9, c10, c12, c13, c14, c24, c25, c26
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 10 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
U21(tt) → tt
U31(tt, z0) → U32(isNat(activate(z0)))
U32(tt) → tt
U41(tt, z0) → activate(z0)
U51(tt, z0, z1) → U52(isNat(activate(z1)), activate(z0), activate(z1))
U52(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
U61(tt) → 0
U71(tt, z0, z1) → U72(isNat(activate(z1)), activate(z0), activate(z1))
U72(tt, z0, z1) → plus(x(activate(z1), activate(z0)), activate(z1))
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
plus(z0, 0) → U41(isNat(z0), z0)
plus(z0, s(z1)) → U51(isNat(z1), z1, z0)
plus(z0, z1) → n__plus(z0, z1)
x(z0, 0) → U61(isNat(z0))
x(z0, s(z1)) → U71(isNat(z1), z1, z0)
x(z0, z1) → n__x(z0, z1)
0 → n__0
s(z0) → n__s(z0)
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(n__x(z0, z1)) → x(activate(z0), activate(z1))
activate(z0) → z0
Tuples:
U51'(tt, z0, z1) → c6(U52'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U71'(tt, z0, z1) → c9(U72'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
U52'(tt, z0, z1) → c7(ACTIVATE(z1), ACTIVATE(z0))
U72'(tt, z0, z1) → c10(ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
S tuples:
U51'(tt, z0, z1) → c6(U52'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
U71'(tt, z0, z1) → c9(U72'(isNat(activate(z1)), activate(z0), activate(z1)), ISNAT(activate(z1)), ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
U52'(tt, z0, z1) → c7(ACTIVATE(z1), ACTIVATE(z0))
U72'(tt, z0, z1) → c10(ACTIVATE(z1), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
K tuples:none
Defined Rule Symbols:
U11, U12, U21, U31, U32, U41, U51, U52, U61, U71, U72, isNat, plus, x, 0, s, activate
Defined Pair Symbols:
U51', U71', ISNAT, U11', U31', U52', U72', ACTIVATE
Compound Symbols:
c6, c9, c12, c14, c, c3, c7, c10, c13, c24, c25, c26
(7) CdtGraphSplitRhsProof (BOTH BOUNDS(ID, ID) transformation)
Split RHS of tuples not part of any SCC
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
U21(tt) → tt
U31(tt, z0) → U32(isNat(activate(z0)))
U32(tt) → tt
U41(tt, z0) → activate(z0)
U51(tt, z0, z1) → U52(isNat(activate(z1)), activate(z0), activate(z1))
U52(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
U61(tt) → 0
U71(tt, z0, z1) → U72(isNat(activate(z1)), activate(z0), activate(z1))
U72(tt, z0, z1) → plus(x(activate(z1), activate(z0)), activate(z1))
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
plus(z0, 0) → U41(isNat(z0), z0)
plus(z0, s(z1)) → U51(isNat(z1), z1, z0)
plus(z0, z1) → n__plus(z0, z1)
x(z0, 0) → U61(isNat(z0))
x(z0, s(z1)) → U71(isNat(z1), z1, z0)
x(z0, z1) → n__x(z0, z1)
0 → n__0
s(z0) → n__s(z0)
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(n__x(z0, z1)) → x(activate(z0), activate(z1))
activate(z0) → z0
Tuples:
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U51'(tt, z0, z1) → c1(ACTIVATE(z1))
U51'(tt, z0, z1) → c1(ACTIVATE(z0))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(ACTIVATE(z1))
U71'(tt, z0, z1) → c1(ACTIVATE(z0))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
S tuples:
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U51'(tt, z0, z1) → c1(ACTIVATE(z1))
U51'(tt, z0, z1) → c1(ACTIVATE(z0))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(ACTIVATE(z1))
U71'(tt, z0, z1) → c1(ACTIVATE(z0))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
K tuples:none
Defined Rule Symbols:
U11, U12, U21, U31, U32, U41, U51, U52, U61, U71, U72, isNat, plus, x, 0, s, activate
Defined Pair Symbols:
ISNAT, U11', U31', ACTIVATE, U51', U71', U52', U72'
Compound Symbols:
c12, c14, c, c3, c13, c24, c25, c26, c1
(9) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 4 leading nodes:
U51'(tt, z0, z1) → c1(ACTIVATE(z1))
U51'(tt, z0, z1) → c1(ACTIVATE(z0))
U71'(tt, z0, z1) → c1(ACTIVATE(z1))
U71'(tt, z0, z1) → c1(ACTIVATE(z0))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
U21(tt) → tt
U31(tt, z0) → U32(isNat(activate(z0)))
U32(tt) → tt
U41(tt, z0) → activate(z0)
U51(tt, z0, z1) → U52(isNat(activate(z1)), activate(z0), activate(z1))
U52(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
U61(tt) → 0
U71(tt, z0, z1) → U72(isNat(activate(z1)), activate(z0), activate(z1))
U72(tt, z0, z1) → plus(x(activate(z1), activate(z0)), activate(z1))
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
plus(z0, 0) → U41(isNat(z0), z0)
plus(z0, s(z1)) → U51(isNat(z1), z1, z0)
plus(z0, z1) → n__plus(z0, z1)
x(z0, 0) → U61(isNat(z0))
x(z0, s(z1)) → U71(isNat(z1), z1, z0)
x(z0, z1) → n__x(z0, z1)
0 → n__0
s(z0) → n__s(z0)
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(n__x(z0, z1)) → x(activate(z0), activate(z1))
activate(z0) → z0
Tuples:
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
S tuples:
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
K tuples:none
Defined Rule Symbols:
U11, U12, U21, U31, U32, U41, U51, U52, U61, U71, U72, isNat, plus, x, 0, s, activate
Defined Pair Symbols:
ISNAT, U11', U31', ACTIVATE, U51', U71', U52', U72'
Compound Symbols:
c12, c14, c, c3, c13, c24, c25, c26, c1
(11) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
U11(tt, z0) → U12(isNat(activate(z0)))
U12(tt) → tt
U21(tt) → tt
U31(tt, z0) → U32(isNat(activate(z0)))
U32(tt) → tt
U41(tt, z0) → activate(z0)
U51(tt, z0, z1) → U52(isNat(activate(z1)), activate(z0), activate(z1))
U52(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
U61(tt) → 0
U71(tt, z0, z1) → U72(isNat(activate(z1)), activate(z0), activate(z1))
U72(tt, z0, z1) → plus(x(activate(z1), activate(z0)), activate(z1))
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
plus(z0, 0) → U41(isNat(z0), z0)
plus(z0, s(z1)) → U51(isNat(z1), z1, z0)
plus(z0, z1) → n__plus(z0, z1)
x(z0, 0) → U61(isNat(z0))
x(z0, s(z1)) → U71(isNat(z1), z1, z0)
x(z0, z1) → n__x(z0, z1)
0 → n__0
s(z0) → n__s(z0)
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(n__x(z0, z1)) → x(activate(z0), activate(z1))
activate(z0) → z0
Tuples:
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
S tuples:
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
K tuples:
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
Defined Rule Symbols:
U11, U12, U21, U31, U32, U41, U51, U52, U61, U71, U72, isNat, plus, x, 0, s, activate
Defined Pair Symbols:
ISNAT, U11', U31', ACTIVATE, U51', U71', U52', U72'
Compound Symbols:
c12, c14, c, c3, c13, c24, c25, c26, c1
(13) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
U41(tt, z0) → activate(z0)
U51(tt, z0, z1) → U52(isNat(activate(z1)), activate(z0), activate(z1))
U52(tt, z0, z1) → s(plus(activate(z1), activate(z0)))
U61(tt) → 0
U71(tt, z0, z1) → U72(isNat(activate(z1)), activate(z0), activate(z1))
U72(tt, z0, z1) → plus(x(activate(z1), activate(z0)), activate(z1))
plus(z0, 0) → U41(isNat(z0), z0)
plus(z0, s(z1)) → U51(isNat(z1), z1, z0)
x(z0, 0) → U61(isNat(z0))
x(z0, s(z1)) → U71(isNat(z1), z1, z0)
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(n__x(z0, z1)) → x(activate(z0), activate(z1))
activate(z0) → z0
0 → n__0
plus(z0, z1) → n__plus(z0, z1)
s(z0) → n__s(z0)
x(z0, z1) → n__x(z0, z1)
U11(tt, z0) → U12(isNat(activate(z0)))
U21(tt) → tt
U31(tt, z0) → U32(isNat(activate(z0)))
U32(tt) → tt
U12(tt) → tt
Tuples:
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
S tuples:
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
K tuples:
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
Defined Rule Symbols:
isNat, activate, 0, plus, s, x, U11, U21, U31, U32, U12
Defined Pair Symbols:
ISNAT, U11', U31', ACTIVATE, U51', U71', U52', U72'
Compound Symbols:
c12, c14, c, c3, c13, c24, c25, c26, c1
(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
We considered the (Usable) Rules:
activate(n__x(z0, z1)) → x(activate(z0), activate(z1))
plus(z0, z1) → n__plus(z0, z1)
activate(n__0) → 0
0 → n__0
activate(z0) → z0
s(z0) → n__s(z0)
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
x(z0, z1) → n__x(z0, z1)
activate(n__s(z0)) → s(activate(z0))
And the Tuples:
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(ACTIVATE(x1)) = 0
POL(ISNAT(x1)) = x1
POL(U11(x1, x2)) = 0
POL(U11'(x1, x2)) = x2
POL(U12(x1)) = 0
POL(U21(x1)) = 0
POL(U31(x1, x2)) = 0
POL(U31'(x1, x2)) = x2
POL(U32(x1)) = 0
POL(U51'(x1, x2, x3)) = x2 + x3
POL(U52'(x1, x2, x3)) = x2
POL(U71'(x1, x2, x3)) = x2 + x3
POL(U72'(x1, x2, x3)) = x2
POL(activate(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c12(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c24(x1, x2)) = x1 + x2
POL(c25(x1)) = x1
POL(c26(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(n__0) = 0
POL(n__plus(x1, x2)) = x1 + x2
POL(n__s(x1)) = [1] + x1
POL(n__x(x1, x2)) = x1 + x2
POL(plus(x1, x2)) = x1 + x2
POL(s(x1)) = [1] + x1
POL(tt) = 0
POL(x(x1, x2)) = x1 + x2
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(n__x(z0, z1)) → x(activate(z0), activate(z1))
activate(z0) → z0
0 → n__0
plus(z0, z1) → n__plus(z0, z1)
s(z0) → n__s(z0)
x(z0, z1) → n__x(z0, z1)
U11(tt, z0) → U12(isNat(activate(z0)))
U21(tt) → tt
U31(tt, z0) → U32(isNat(activate(z0)))
U32(tt) → tt
U12(tt) → tt
Tuples:
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
S tuples:
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
K tuples:
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
Defined Rule Symbols:
isNat, activate, 0, plus, s, x, U11, U21, U31, U32, U12
Defined Pair Symbols:
ISNAT, U11', U31', ACTIVATE, U51', U71', U52', U72'
Compound Symbols:
c12, c14, c, c3, c13, c24, c25, c26, c1
(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
We considered the (Usable) Rules:
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
U21(tt) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
U11(tt, z0) → U12(isNat(activate(z0)))
0 → n__0
activate(z0) → z0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
x(z0, z1) → n__x(z0, z1)
isNat(n__0) → tt
isNat(n__s(z0)) → U21(isNat(activate(z0)))
activate(n__s(z0)) → s(activate(z0))
U12(tt) → tt
activate(n__x(z0, z1)) → x(activate(z0), activate(z1))
plus(z0, z1) → n__plus(z0, z1)
U32(tt) → tt
activate(n__0) → 0
s(z0) → n__s(z0)
U31(tt, z0) → U32(isNat(activate(z0)))
And the Tuples:
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(ACTIVATE(x1)) = 0
POL(ISNAT(x1)) = x1
POL(U11(x1, x2)) = x1
POL(U11'(x1, x2)) = x1 + x2
POL(U12(x1)) = x1
POL(U21(x1)) = [1]
POL(U31(x1, x2)) = x1
POL(U31'(x1, x2)) = x2
POL(U32(x1)) = x1
POL(U51'(x1, x2, x3)) = [1] + x1 + x3
POL(U52'(x1, x2, x3)) = [1]
POL(U71'(x1, x2, x3)) = [1] + x2 + x3
POL(U72'(x1, x2, x3)) = x3
POL(activate(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c12(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c24(x1, x2)) = x1 + x2
POL(c25(x1)) = x1
POL(c26(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(isNat(x1)) = [1]
POL(n__0) = 0
POL(n__plus(x1, x2)) = [1] + x1 + x2
POL(n__s(x1)) = [1] + x1
POL(n__x(x1, x2)) = x1 + x2
POL(plus(x1, x2)) = [1] + x1 + x2
POL(s(x1)) = [1] + x1
POL(tt) = [1]
POL(x(x1, x2)) = x1 + x2
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(n__x(z0, z1)) → x(activate(z0), activate(z1))
activate(z0) → z0
0 → n__0
plus(z0, z1) → n__plus(z0, z1)
s(z0) → n__s(z0)
x(z0, z1) → n__x(z0, z1)
U11(tt, z0) → U12(isNat(activate(z0)))
U21(tt) → tt
U31(tt, z0) → U32(isNat(activate(z0)))
U32(tt) → tt
U12(tt) → tt
Tuples:
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
S tuples:
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
K tuples:
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
Defined Rule Symbols:
isNat, activate, 0, plus, s, x, U11, U21, U31, U32, U12
Defined Pair Symbols:
ISNAT, U11', U31', ACTIVATE, U51', U71', U52', U72'
Compound Symbols:
c12, c14, c, c3, c13, c24, c25, c26, c1
(19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
We considered the (Usable) Rules:
activate(n__x(z0, z1)) → x(activate(z0), activate(z1))
plus(z0, z1) → n__plus(z0, z1)
activate(n__0) → 0
0 → n__0
activate(z0) → z0
s(z0) → n__s(z0)
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
x(z0, z1) → n__x(z0, z1)
activate(n__s(z0)) → s(activate(z0))
And the Tuples:
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(ACTIVATE(x1)) = 0
POL(ISNAT(x1)) = x1
POL(U11(x1, x2)) = 0
POL(U11'(x1, x2)) = x2
POL(U12(x1)) = 0
POL(U21(x1)) = 0
POL(U31(x1, x2)) = 0
POL(U31'(x1, x2)) = x2
POL(U32(x1)) = 0
POL(U51'(x1, x2, x3)) = x3
POL(U52'(x1, x2, x3)) = 0
POL(U71'(x1, x2, x3)) = [1] + x2 + x3
POL(U72'(x1, x2, x3)) = x2 + x3
POL(activate(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c12(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c24(x1, x2)) = x1 + x2
POL(c25(x1)) = x1
POL(c26(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(n__0) = 0
POL(n__plus(x1, x2)) = [1] + x1 + x2
POL(n__s(x1)) = x1
POL(n__x(x1, x2)) = x1 + x2
POL(plus(x1, x2)) = [1] + x1 + x2
POL(s(x1)) = x1
POL(tt) = 0
POL(x(x1, x2)) = x1 + x2
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(n__x(z0, z1)) → x(activate(z0), activate(z1))
activate(z0) → z0
0 → n__0
plus(z0, z1) → n__plus(z0, z1)
s(z0) → n__s(z0)
x(z0, z1) → n__x(z0, z1)
U11(tt, z0) → U12(isNat(activate(z0)))
U21(tt) → tt
U31(tt, z0) → U32(isNat(activate(z0)))
U32(tt) → tt
U12(tt) → tt
Tuples:
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
S tuples:
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
K tuples:
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
Defined Rule Symbols:
isNat, activate, 0, plus, s, x, U11, U21, U31, U32, U12
Defined Pair Symbols:
ISNAT, U11', U31', ACTIVATE, U51', U71', U52', U72'
Compound Symbols:
c12, c14, c, c3, c13, c24, c25, c26, c1
(21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
We considered the (Usable) Rules:
activate(n__x(z0, z1)) → x(activate(z0), activate(z1))
plus(z0, z1) → n__plus(z0, z1)
activate(n__0) → 0
0 → n__0
activate(z0) → z0
s(z0) → n__s(z0)
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
x(z0, z1) → n__x(z0, z1)
activate(n__s(z0)) → s(activate(z0))
And the Tuples:
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(ACTIVATE(x1)) = 0
POL(ISNAT(x1)) = x1
POL(U11(x1, x2)) = 0
POL(U11'(x1, x2)) = x2
POL(U12(x1)) = 0
POL(U21(x1)) = 0
POL(U31(x1, x2)) = 0
POL(U31'(x1, x2)) = x2
POL(U32(x1)) = 0
POL(U51'(x1, x2, x3)) = [1] + x2 + x3
POL(U52'(x1, x2, x3)) = x2 + x3
POL(U71'(x1, x2, x3)) = [1] + x2 + x3
POL(U72'(x1, x2, x3)) = [1]
POL(activate(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c12(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c24(x1, x2)) = x1 + x2
POL(c25(x1)) = x1
POL(c26(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(n__0) = 0
POL(n__plus(x1, x2)) = [1] + x1 + x2
POL(n__s(x1)) = [1] + x1
POL(n__x(x1, x2)) = [1] + x1 + x2
POL(plus(x1, x2)) = [1] + x1 + x2
POL(s(x1)) = [1] + x1
POL(tt) = 0
POL(x(x1, x2)) = [1] + x1 + x2
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(n__x(z0, z1)) → x(activate(z0), activate(z1))
activate(z0) → z0
0 → n__0
plus(z0, z1) → n__plus(z0, z1)
s(z0) → n__s(z0)
x(z0, z1) → n__x(z0, z1)
U11(tt, z0) → U12(isNat(activate(z0)))
U21(tt) → tt
U31(tt, z0) → U32(isNat(activate(z0)))
U32(tt) → tt
U12(tt) → tt
Tuples:
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
S tuples:
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
K tuples:
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
Defined Rule Symbols:
isNat, activate, 0, plus, s, x, U11, U21, U31, U32, U12
Defined Pair Symbols:
ISNAT, U11', U31', ACTIVATE, U51', U71', U52', U72'
Compound Symbols:
c12, c14, c, c3, c13, c24, c25, c26, c1
(23) CdtKnowledgeProof (BOTH BOUNDS(ID, ID) transformation)
The following tuples could be moved from S to K by knowledge propagation:
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(n__x(z0, z1)) → x(activate(z0), activate(z1))
activate(z0) → z0
0 → n__0
plus(z0, z1) → n__plus(z0, z1)
s(z0) → n__s(z0)
x(z0, z1) → n__x(z0, z1)
U11(tt, z0) → U12(isNat(activate(z0)))
U21(tt) → tt
U31(tt, z0) → U32(isNat(activate(z0)))
U32(tt) → tt
U12(tt) → tt
Tuples:
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
S tuples:
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
K tuples:
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
Defined Rule Symbols:
isNat, activate, 0, plus, s, x, U11, U21, U31, U32, U12
Defined Pair Symbols:
ISNAT, U11', U31', ACTIVATE, U51', U71', U52', U72'
Compound Symbols:
c12, c14, c, c3, c13, c24, c25, c26, c1
(25) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
We considered the (Usable) Rules:
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
U21(tt) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
U11(tt, z0) → U12(isNat(activate(z0)))
0 → n__0
activate(z0) → z0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
x(z0, z1) → n__x(z0, z1)
isNat(n__0) → tt
isNat(n__s(z0)) → U21(isNat(activate(z0)))
activate(n__s(z0)) → s(activate(z0))
U12(tt) → tt
activate(n__x(z0, z1)) → x(activate(z0), activate(z1))
plus(z0, z1) → n__plus(z0, z1)
U32(tt) → tt
activate(n__0) → 0
s(z0) → n__s(z0)
U31(tt, z0) → U32(isNat(activate(z0)))
And the Tuples:
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [1]
POL(ACTIVATE(x1)) = x1
POL(ISNAT(x1)) = [2]x12
POL(U11(x1, x2)) = [2] + x1 + x2
POL(U11'(x1, x2)) = [2]x22 + x1·x2
POL(U12(x1)) = x1
POL(U21(x1)) = x1
POL(U31(x1, x2)) = x2
POL(U31'(x1, x2)) = [2]x22 + [2]x1·x2
POL(U32(x1)) = x1
POL(U51'(x1, x2, x3)) = [2] + [2]x1 + x3 + [2]x32 + x2·x3 + [2]x1·x3 + x12 + [2]x1·x2 + x22
POL(U52'(x1, x2, x3)) = x1 + [2]x2 + [2]x3 + x32 + x12
POL(U71'(x1, x2, x3)) = [1] + x1 + [2]x2 + x3 + [2]x32 + [2]x2·x3 + x1·x3 + [2]x12 + [2]x1·x2 + [2]x22
POL(U72'(x1, x2, x3)) = x2 + x3
POL(activate(x1)) = x1
POL(c(x1, x2)) = x1 + x2
POL(c1(x1)) = x1
POL(c12(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c13(x1, x2)) = x1 + x2
POL(c14(x1, x2, x3, x4)) = x1 + x2 + x3 + x4
POL(c24(x1, x2)) = x1 + x2
POL(c25(x1)) = x1
POL(c26(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(n__0) = [1]
POL(n__plus(x1, x2)) = [2] + x1 + x2
POL(n__s(x1)) = [1] + x1
POL(n__x(x1, x2)) = [2] + x1 + x2
POL(plus(x1, x2)) = [2] + x1 + x2
POL(s(x1)) = [1] + x1
POL(tt) = [1]
POL(x(x1, x2)) = [2] + x1 + x2
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
isNat(n__0) → tt
isNat(n__plus(z0, z1)) → U11(isNat(activate(z0)), activate(z1))
isNat(n__s(z0)) → U21(isNat(activate(z0)))
isNat(n__x(z0, z1)) → U31(isNat(activate(z0)), activate(z1))
activate(n__0) → 0
activate(n__plus(z0, z1)) → plus(activate(z0), activate(z1))
activate(n__s(z0)) → s(activate(z0))
activate(n__x(z0, z1)) → x(activate(z0), activate(z1))
activate(z0) → z0
0 → n__0
plus(z0, z1) → n__plus(z0, z1)
s(z0) → n__s(z0)
x(z0, z1) → n__x(z0, z1)
U11(tt, z0) → U12(isNat(activate(z0)))
U21(tt) → tt
U31(tt, z0) → U32(isNat(activate(z0)))
U32(tt) → tt
U12(tt) → tt
Tuples:
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
S tuples:none
K tuples:
U51'(tt, z0, z1) → c1(U52'(isNat(activate(z1)), activate(z0), activate(z1)))
U51'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U71'(tt, z0, z1) → c1(U72'(isNat(activate(z1)), activate(z0), activate(z1)))
U71'(tt, z0, z1) → c1(ISNAT(activate(z1)))
U52'(tt, z0, z1) → c1(ACTIVATE(z1))
U52'(tt, z0, z1) → c1(ACTIVATE(z0))
U72'(tt, z0, z1) → c1(ACTIVATE(z1))
U72'(tt, z0, z1) → c1(ACTIVATE(z0))
ISNAT(n__s(z0)) → c13(ISNAT(activate(z0)), ACTIVATE(z0))
U11'(tt, z0) → c(ISNAT(activate(z0)), ACTIVATE(z0))
ISNAT(n__plus(z0, z1)) → c12(U11'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
ISNAT(n__x(z0, z1)) → c14(U31'(isNat(activate(z0)), activate(z1)), ISNAT(activate(z0)), ACTIVATE(z0), ACTIVATE(z1))
U31'(tt, z0) → c3(ISNAT(activate(z0)), ACTIVATE(z0))
ACTIVATE(n__plus(z0, z1)) → c24(ACTIVATE(z0), ACTIVATE(z1))
ACTIVATE(n__s(z0)) → c25(ACTIVATE(z0))
ACTIVATE(n__x(z0, z1)) → c26(ACTIVATE(z0), ACTIVATE(z1))
Defined Rule Symbols:
isNat, activate, 0, plus, s, x, U11, U21, U31, U32, U12
Defined Pair Symbols:
ISNAT, U11', U31', ACTIVATE, U51', U71', U52', U72'
Compound Symbols:
c12, c14, c, c3, c13, c24, c25, c26, c1
(27) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(28) BOUNDS(1, 1)