* Step 1: Sum WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U101(tt(),M,N) -> U102(isNatKind(activate(M)),activate(M),activate(N))
            U102(tt(),M,N) -> U103(isNat(activate(N)),activate(M),activate(N))
            U103(tt(),M,N) -> U104(isNatKind(activate(N)),activate(M),activate(N))
            U104(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            U71(tt(),N) -> U72(isNatKind(activate(N)),activate(N))
            U72(tt(),N) -> activate(N)
            U81(tt(),M,N) -> U82(isNatKind(activate(M)),activate(M),activate(N))
            U82(tt(),M,N) -> U83(isNat(activate(N)),activate(M),activate(N))
            U83(tt(),M,N) -> U84(isNatKind(activate(N)),activate(M),activate(N))
            U84(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U91(tt(),N) -> U92(isNatKind(activate(N)))
            U92(tt()) -> 0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(N,0()) -> U71(isNat(N),N)
            plus(N,s(M)) -> U81(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(N,0()) -> U91(isNat(N),N)
            x(N,s(M)) -> U101(isNat(M),M,N)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U101,U102,U103,U104,U11,U12,U13,U14,U15,U16,U21,U22,U23
            ,U31,U32,U33,U34,U35,U36,U41,U42,U51,U61,U62,U71,U72,U81,U82,U83,U84,U91,U92,activate,isNat,isNatKind,plus,s
            ,x} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: InnermostRuleRemoval WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U101(tt(),M,N) -> U102(isNatKind(activate(M)),activate(M),activate(N))
            U102(tt(),M,N) -> U103(isNat(activate(N)),activate(M),activate(N))
            U103(tt(),M,N) -> U104(isNatKind(activate(N)),activate(M),activate(N))
            U104(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            U71(tt(),N) -> U72(isNatKind(activate(N)),activate(N))
            U72(tt(),N) -> activate(N)
            U81(tt(),M,N) -> U82(isNatKind(activate(M)),activate(M),activate(N))
            U82(tt(),M,N) -> U83(isNat(activate(N)),activate(M),activate(N))
            U83(tt(),M,N) -> U84(isNatKind(activate(N)),activate(M),activate(N))
            U84(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U91(tt(),N) -> U92(isNatKind(activate(N)))
            U92(tt()) -> 0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(N,0()) -> U71(isNat(N),N)
            plus(N,s(M)) -> U81(isNat(M),M,N)
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(N,0()) -> U91(isNat(N),N)
            x(N,s(M)) -> U101(isNat(M),M,N)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U101,U102,U103,U104,U11,U12,U13,U14,U15,U16,U21,U22,U23
            ,U31,U32,U33,U34,U35,U36,U41,U42,U51,U61,U62,U71,U72,U81,U82,U83,U84,U91,U92,activate,isNat,isNatKind,plus,s
            ,x} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          plus(N,0()) -> U71(isNat(N),N)
          plus(N,s(M)) -> U81(isNat(M),M,N)
          x(N,0()) -> U91(isNat(N),N)
          x(N,s(M)) -> U101(isNat(M),M,N)
        All above mentioned rules can be savely removed.
* Step 3: DependencyPairs WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            U101(tt(),M,N) -> U102(isNatKind(activate(M)),activate(M),activate(N))
            U102(tt(),M,N) -> U103(isNat(activate(N)),activate(M),activate(N))
            U103(tt(),M,N) -> U104(isNatKind(activate(N)),activate(M),activate(N))
            U104(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            U71(tt(),N) -> U72(isNatKind(activate(N)),activate(N))
            U72(tt(),N) -> activate(N)
            U81(tt(),M,N) -> U82(isNatKind(activate(M)),activate(M),activate(N))
            U82(tt(),M,N) -> U83(isNat(activate(N)),activate(M),activate(N))
            U83(tt(),M,N) -> U84(isNatKind(activate(N)),activate(M),activate(N))
            U84(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U91(tt(),N) -> U92(isNatKind(activate(N)))
            U92(tt()) -> 0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,U101,U102,U103,U104,U11,U12,U13,U14,U15,U16,U21,U22,U23
            ,U31,U32,U33,U34,U35,U36,U41,U42,U51,U61,U62,U71,U72,U81,U82,U83,U84,U91,U92,activate,isNat,isNatKind,plus,s
            ,x} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          0#() -> c_1()
          U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N))
                                ,isNatKind#(activate(M))
                                ,activate#(M)
                                ,activate#(M)
                                ,activate#(N))
          U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N))
                                ,isNat#(activate(N))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          U104#(tt(),M,N) -> c_5(plus#(x(activate(N),activate(M)),activate(N))
                                ,x#(activate(N),activate(M))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                 ,isNatKind#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V1)
                                 ,activate#(V2))
          U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                 ,isNatKind#(activate(V2))
                                 ,activate#(V2)
                                 ,activate#(V1)
                                 ,activate#(V2))
          U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                 ,isNatKind#(activate(V2))
                                 ,activate#(V2)
                                 ,activate#(V1)
                                 ,activate#(V2))
          U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2))
                                 ,isNat#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V2))
          U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          U16#(tt()) -> c_11()
          U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1))
                               ,isNatKind#(activate(V1))
                               ,activate#(V1)
                               ,activate#(V1))
          U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
          U23#(tt()) -> c_14()
          U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                  ,isNatKind#(activate(V1))
                                  ,activate#(V1)
                                  ,activate#(V1)
                                  ,activate#(V2))
          U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                  ,isNatKind#(activate(V2))
                                  ,activate#(V2)
                                  ,activate#(V1)
                                  ,activate#(V2))
          U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                  ,isNatKind#(activate(V2))
                                  ,activate#(V2)
                                  ,activate#(V1)
                                  ,activate#(V2))
          U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2))
                                  ,isNat#(activate(V1))
                                  ,activate#(V1)
                                  ,activate#(V2))
          U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          U36#(tt()) -> c_20()
          U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
          U42#(tt()) -> c_22()
          U51#(tt()) -> c_23()
          U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
          U62#(tt()) -> c_25()
          U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N))
                              ,isNatKind#(activate(N))
                              ,activate#(N)
                              ,activate#(N))
          U72#(tt(),N) -> c_27(activate#(N))
          U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N))
                                ,isNatKind#(activate(M))
                                ,activate#(M)
                                ,activate#(M)
                                ,activate#(N))
          U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N))
                                ,isNat#(activate(N))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          U84#(tt(),M,N) -> c_31(s#(plus(activate(N),activate(M)))
                                ,plus#(activate(N),activate(M))
                                ,activate#(N)
                                ,activate#(M))
          U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
          U92#(tt()) -> c_33(0#())
          activate#(X) -> c_34()
          activate#(n__0()) -> c_35(0#())
          activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2))
          activate#(n__s(X)) -> c_37(s#(X))
          activate#(n__x(X1,X2)) -> c_38(x#(X1,X2))
          isNat#(n__0()) -> c_39()
          isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                        ,isNatKind#(activate(V1))
                                        ,activate#(V1)
                                        ,activate#(V1)
                                        ,activate#(V2))
          isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                  ,isNatKind#(activate(V1))
                                  ,activate#(V1)
                                  ,activate#(V1))
          isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V1)
                                     ,activate#(V2))
          isNatKind#(n__0()) -> c_43()
          isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2))
          isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
          isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                         ,isNatKind#(activate(V1))
                                         ,activate#(V1)
                                         ,activate#(V2))
          plus#(X1,X2) -> c_47()
          s#(X) -> c_48()
          x#(X1,X2) -> c_49()
        Weak DPs
          
        
        and mark the set of starting terms.
* Step 4: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            0#() -> c_1()
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U104#(tt(),M,N) -> c_5(plus#(x(activate(N),activate(M)),activate(N))
                                  ,x#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U16#(tt()) -> c_11()
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1))
                                 ,isNatKind#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V1))
            U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            U23#(tt()) -> c_14()
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1)
                                    ,activate#(V2))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2))
                                    ,isNat#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V2))
            U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U36#(tt()) -> c_20()
            U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
            U42#(tt()) -> c_22()
            U51#(tt()) -> c_23()
            U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
            U62#(tt()) -> c_25()
            U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(N))
            U72#(tt(),N) -> c_27(activate#(N))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U84#(tt(),M,N) -> c_31(s#(plus(activate(N),activate(M)))
                                  ,plus#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M))
            U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
            U92#(tt()) -> c_33(0#())
            activate#(X) -> c_34()
            activate#(n__0()) -> c_35(0#())
            activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2))
            activate#(n__s(X)) -> c_37(s#(X))
            activate#(n__x(X1,X2)) -> c_38(x#(X1,X2))
            isNat#(n__0()) -> c_39()
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1)
                                       ,activate#(V2))
            isNatKind#(n__0()) -> c_43()
            isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
            isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V2))
            plus#(X1,X2) -> c_47()
            s#(X) -> c_48()
            x#(X1,X2) -> c_49()
        - Weak TRS:
            0() -> n__0()
            U101(tt(),M,N) -> U102(isNatKind(activate(M)),activate(M),activate(N))
            U102(tt(),M,N) -> U103(isNat(activate(N)),activate(M),activate(N))
            U103(tt(),M,N) -> U104(isNatKind(activate(N)),activate(M),activate(N))
            U104(tt(),M,N) -> plus(x(activate(N),activate(M)),activate(N))
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            U71(tt(),N) -> U72(isNatKind(activate(N)),activate(N))
            U72(tt(),N) -> activate(N)
            U81(tt(),M,N) -> U82(isNatKind(activate(M)),activate(M),activate(N))
            U82(tt(),M,N) -> U83(isNat(activate(N)),activate(M),activate(N))
            U83(tt(),M,N) -> U84(isNatKind(activate(N)),activate(M),activate(N))
            U84(tt(),M,N) -> s(plus(activate(N),activate(M)))
            U91(tt(),N) -> U92(isNatKind(activate(N)))
            U92(tt()) -> 0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/5,c_6/5,c_7/5,c_8/5,c_9/4,c_10/3
            ,c_11/0,c_12/4,c_13/3,c_14/0,c_15/5,c_16/5,c_17/5,c_18/4,c_19/3,c_20/0,c_21/3,c_22/0,c_23/0,c_24/3,c_25/0
            ,c_26/4,c_27/1,c_28/5,c_29/5,c_30/5,c_31/4,c_32/3,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/5
            ,c_41/4,c_42/5,c_43/0,c_44/4,c_45/3,c_46/4,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          0() -> n__0()
          U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
          U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
          U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
          U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
          U15(tt(),V2) -> U16(isNat(activate(V2)))
          U16(tt()) -> tt()
          U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
          U22(tt(),V1) -> U23(isNat(activate(V1)))
          U23(tt()) -> tt()
          U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
          U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
          U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
          U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
          U35(tt(),V2) -> U36(isNat(activate(V2)))
          U36(tt()) -> tt()
          U41(tt(),V2) -> U42(isNatKind(activate(V2)))
          U42(tt()) -> tt()
          U51(tt()) -> tt()
          U61(tt(),V2) -> U62(isNatKind(activate(V2)))
          U62(tt()) -> tt()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__plus(X1,X2)) -> plus(X1,X2)
          activate(n__s(X)) -> s(X)
          activate(n__x(X1,X2)) -> x(X1,X2)
          isNat(n__0()) -> tt()
          isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
          isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
          isNatKind(n__0()) -> tt()
          isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
          isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
          isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
          plus(X1,X2) -> n__plus(X1,X2)
          s(X) -> n__s(X)
          x(X1,X2) -> n__x(X1,X2)
          0#() -> c_1()
          U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N))
                                ,isNatKind#(activate(M))
                                ,activate#(M)
                                ,activate#(M)
                                ,activate#(N))
          U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N))
                                ,isNat#(activate(N))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          U104#(tt(),M,N) -> c_5(plus#(x(activate(N),activate(M)),activate(N))
                                ,x#(activate(N),activate(M))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                 ,isNatKind#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V1)
                                 ,activate#(V2))
          U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                 ,isNatKind#(activate(V2))
                                 ,activate#(V2)
                                 ,activate#(V1)
                                 ,activate#(V2))
          U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                 ,isNatKind#(activate(V2))
                                 ,activate#(V2)
                                 ,activate#(V1)
                                 ,activate#(V2))
          U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2))
                                 ,isNat#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V2))
          U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          U16#(tt()) -> c_11()
          U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1))
                               ,isNatKind#(activate(V1))
                               ,activate#(V1)
                               ,activate#(V1))
          U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
          U23#(tt()) -> c_14()
          U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                  ,isNatKind#(activate(V1))
                                  ,activate#(V1)
                                  ,activate#(V1)
                                  ,activate#(V2))
          U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                  ,isNatKind#(activate(V2))
                                  ,activate#(V2)
                                  ,activate#(V1)
                                  ,activate#(V2))
          U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                  ,isNatKind#(activate(V2))
                                  ,activate#(V2)
                                  ,activate#(V1)
                                  ,activate#(V2))
          U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2))
                                  ,isNat#(activate(V1))
                                  ,activate#(V1)
                                  ,activate#(V2))
          U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          U36#(tt()) -> c_20()
          U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
          U42#(tt()) -> c_22()
          U51#(tt()) -> c_23()
          U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
          U62#(tt()) -> c_25()
          U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N))
                              ,isNatKind#(activate(N))
                              ,activate#(N)
                              ,activate#(N))
          U72#(tt(),N) -> c_27(activate#(N))
          U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N))
                                ,isNatKind#(activate(M))
                                ,activate#(M)
                                ,activate#(M)
                                ,activate#(N))
          U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N))
                                ,isNat#(activate(N))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(M)
                                ,activate#(N))
          U84#(tt(),M,N) -> c_31(s#(plus(activate(N),activate(M)))
                                ,plus#(activate(N),activate(M))
                                ,activate#(N)
                                ,activate#(M))
          U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
          U92#(tt()) -> c_33(0#())
          activate#(X) -> c_34()
          activate#(n__0()) -> c_35(0#())
          activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2))
          activate#(n__s(X)) -> c_37(s#(X))
          activate#(n__x(X1,X2)) -> c_38(x#(X1,X2))
          isNat#(n__0()) -> c_39()
          isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                        ,isNatKind#(activate(V1))
                                        ,activate#(V1)
                                        ,activate#(V1)
                                        ,activate#(V2))
          isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                  ,isNatKind#(activate(V1))
                                  ,activate#(V1)
                                  ,activate#(V1))
          isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V1)
                                     ,activate#(V2))
          isNatKind#(n__0()) -> c_43()
          isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V2))
          isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
          isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                         ,isNatKind#(activate(V1))
                                         ,activate#(V1)
                                         ,activate#(V2))
          plus#(X1,X2) -> c_47()
          s#(X) -> c_48()
          x#(X1,X2) -> c_49()
* Step 5: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            0#() -> c_1()
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U104#(tt(),M,N) -> c_5(plus#(x(activate(N),activate(M)),activate(N))
                                  ,x#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U16#(tt()) -> c_11()
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1))
                                 ,isNatKind#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V1))
            U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            U23#(tt()) -> c_14()
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1)
                                    ,activate#(V2))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2))
                                    ,isNat#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V2))
            U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U36#(tt()) -> c_20()
            U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
            U42#(tt()) -> c_22()
            U51#(tt()) -> c_23()
            U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
            U62#(tt()) -> c_25()
            U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(N))
            U72#(tt(),N) -> c_27(activate#(N))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U84#(tt(),M,N) -> c_31(s#(plus(activate(N),activate(M)))
                                  ,plus#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M))
            U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
            U92#(tt()) -> c_33(0#())
            activate#(X) -> c_34()
            activate#(n__0()) -> c_35(0#())
            activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2))
            activate#(n__s(X)) -> c_37(s#(X))
            activate#(n__x(X1,X2)) -> c_38(x#(X1,X2))
            isNat#(n__0()) -> c_39()
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1)
                                       ,activate#(V2))
            isNatKind#(n__0()) -> c_43()
            isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
            isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V2))
            plus#(X1,X2) -> c_47()
            s#(X) -> c_48()
            x#(X1,X2) -> c_49()
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/5,c_6/5,c_7/5,c_8/5,c_9/4,c_10/3
            ,c_11/0,c_12/4,c_13/3,c_14/0,c_15/5,c_16/5,c_17/5,c_18/4,c_19/3,c_20/0,c_21/3,c_22/0,c_23/0,c_24/3,c_25/0
            ,c_26/4,c_27/1,c_28/5,c_29/5,c_30/5,c_31/4,c_32/3,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/5
            ,c_41/4,c_42/5,c_43/0,c_44/4,c_45/3,c_46/4,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,11,14,20,22,23,25,34,39,43,47,48,49}
        by application of
          Pre({1,11,14,20,22,23,25,34,39,43,47,48,49}) = {2,3,4,5,6,7,8,9,10,12,13,15,16,17,18,19,21,24,26,27,28,29
          ,30,31,32,33,35,36,37,38,40,41,42,44,45,46}.
        Here rules are labelled as follows:
          1: 0#() -> c_1()
          2: U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N))
                                   ,isNatKind#(activate(M))
                                   ,activate#(M)
                                   ,activate#(M)
                                   ,activate#(N))
          3: U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N))
                                   ,isNat#(activate(N))
                                   ,activate#(N)
                                   ,activate#(M)
                                   ,activate#(N))
          4: U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N))
                                   ,isNatKind#(activate(N))
                                   ,activate#(N)
                                   ,activate#(M)
                                   ,activate#(N))
          5: U104#(tt(),M,N) -> c_5(plus#(x(activate(N),activate(M)),activate(N))
                                   ,x#(activate(N),activate(M))
                                   ,activate#(N)
                                   ,activate#(M)
                                   ,activate#(N))
          6: U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1)
                                    ,activate#(V2))
          7: U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
          8: U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
          9: U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2))
                                    ,isNat#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V2))
          10: U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          11: U16#(tt()) -> c_11()
          12: U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1))
          13: U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
          14: U23#(tt()) -> c_14()
          15: U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                      ,isNatKind#(activate(V1))
                                      ,activate#(V1)
                                      ,activate#(V1)
                                      ,activate#(V2))
          16: U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                      ,isNatKind#(activate(V2))
                                      ,activate#(V2)
                                      ,activate#(V1)
                                      ,activate#(V2))
          17: U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                      ,isNatKind#(activate(V2))
                                      ,activate#(V2)
                                      ,activate#(V1)
                                      ,activate#(V2))
          18: U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2))
                                      ,isNat#(activate(V1))
                                      ,activate#(V1)
                                      ,activate#(V2))
          19: U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          20: U36#(tt()) -> c_20()
          21: U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
          22: U42#(tt()) -> c_22()
          23: U51#(tt()) -> c_23()
          24: U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
          25: U62#(tt()) -> c_25()
          26: U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(N))
          27: U72#(tt(),N) -> c_27(activate#(N))
          28: U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N))
                                    ,isNatKind#(activate(M))
                                    ,activate#(M)
                                    ,activate#(M)
                                    ,activate#(N))
          29: U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N))
                                    ,isNat#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          30: U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N))
                                    ,isNatKind#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          31: U84#(tt(),M,N) -> c_31(s#(plus(activate(N),activate(M)))
                                    ,plus#(activate(N),activate(M))
                                    ,activate#(N)
                                    ,activate#(M))
          32: U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
          33: U92#(tt()) -> c_33(0#())
          34: activate#(X) -> c_34()
          35: activate#(n__0()) -> c_35(0#())
          36: activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2))
          37: activate#(n__s(X)) -> c_37(s#(X))
          38: activate#(n__x(X1,X2)) -> c_38(x#(X1,X2))
          39: isNat#(n__0()) -> c_39()
          40: isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V1)
                                            ,activate#(V2))
          41: isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                      ,isNatKind#(activate(V1))
                                      ,activate#(V1)
                                      ,activate#(V1))
          42: isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                         ,isNatKind#(activate(V1))
                                         ,activate#(V1)
                                         ,activate#(V1)
                                         ,activate#(V2))
          43: isNatKind#(n__0()) -> c_43()
          44: isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                ,isNatKind#(activate(V1))
                                                ,activate#(V1)
                                                ,activate#(V2))
          45: isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
          46: isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                             ,isNatKind#(activate(V1))
                                             ,activate#(V1)
                                             ,activate#(V2))
          47: plus#(X1,X2) -> c_47()
          48: s#(X) -> c_48()
          49: x#(X1,X2) -> c_49()
* Step 6: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U104#(tt(),M,N) -> c_5(plus#(x(activate(N),activate(M)),activate(N))
                                  ,x#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1))
                                 ,isNatKind#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V1))
            U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1)
                                    ,activate#(V2))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2))
                                    ,isNat#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V2))
            U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
            U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
            U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(N))
            U72#(tt(),N) -> c_27(activate#(N))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U84#(tt(),M,N) -> c_31(s#(plus(activate(N),activate(M)))
                                  ,plus#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M))
            U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
            U92#(tt()) -> c_33(0#())
            activate#(n__0()) -> c_35(0#())
            activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2))
            activate#(n__s(X)) -> c_37(s#(X))
            activate#(n__x(X1,X2)) -> c_38(x#(X1,X2))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1)
                                       ,activate#(V2))
            isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
            isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V2))
        - Weak DPs:
            0#() -> c_1()
            U16#(tt()) -> c_11()
            U23#(tt()) -> c_14()
            U36#(tt()) -> c_20()
            U42#(tt()) -> c_22()
            U51#(tt()) -> c_23()
            U62#(tt()) -> c_25()
            activate#(X) -> c_34()
            isNat#(n__0()) -> c_39()
            isNatKind#(n__0()) -> c_43()
            plus#(X1,X2) -> c_47()
            s#(X) -> c_48()
            x#(X1,X2) -> c_49()
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/5,c_6/5,c_7/5,c_8/5,c_9/4,c_10/3
            ,c_11/0,c_12/4,c_13/3,c_14/0,c_15/5,c_16/5,c_17/5,c_18/4,c_19/3,c_20/0,c_21/3,c_22/0,c_23/0,c_24/3,c_25/0
            ,c_26/4,c_27/1,c_28/5,c_29/5,c_30/5,c_31/4,c_32/3,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/5
            ,c_41/4,c_42/5,c_43/0,c_44/4,c_45/3,c_46/4,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {26,27,28,29,30}
        by application of
          Pre({26,27,28,29,30}) = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,31,32,33,34,35
          ,36}.
        Here rules are labelled as follows:
          1: U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N))
                                   ,isNatKind#(activate(M))
                                   ,activate#(M)
                                   ,activate#(M)
                                   ,activate#(N))
          2: U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N))
                                   ,isNat#(activate(N))
                                   ,activate#(N)
                                   ,activate#(M)
                                   ,activate#(N))
          3: U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N))
                                   ,isNatKind#(activate(N))
                                   ,activate#(N)
                                   ,activate#(M)
                                   ,activate#(N))
          4: U104#(tt(),M,N) -> c_5(plus#(x(activate(N),activate(M)),activate(N))
                                   ,x#(activate(N),activate(M))
                                   ,activate#(N)
                                   ,activate#(M)
                                   ,activate#(N))
          5: U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1)
                                    ,activate#(V2))
          6: U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
          7: U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
          8: U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2))
                                    ,isNat#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V2))
          9: U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          10: U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1))
          11: U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
          12: U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                      ,isNatKind#(activate(V1))
                                      ,activate#(V1)
                                      ,activate#(V1)
                                      ,activate#(V2))
          13: U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                      ,isNatKind#(activate(V2))
                                      ,activate#(V2)
                                      ,activate#(V1)
                                      ,activate#(V2))
          14: U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                      ,isNatKind#(activate(V2))
                                      ,activate#(V2)
                                      ,activate#(V1)
                                      ,activate#(V2))
          15: U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2))
                                      ,isNat#(activate(V1))
                                      ,activate#(V1)
                                      ,activate#(V2))
          16: U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          17: U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
          18: U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
          19: U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(N))
          20: U72#(tt(),N) -> c_27(activate#(N))
          21: U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N))
                                    ,isNatKind#(activate(M))
                                    ,activate#(M)
                                    ,activate#(M)
                                    ,activate#(N))
          22: U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N))
                                    ,isNat#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          23: U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N))
                                    ,isNatKind#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          24: U84#(tt(),M,N) -> c_31(s#(plus(activate(N),activate(M)))
                                    ,plus#(activate(N),activate(M))
                                    ,activate#(N)
                                    ,activate#(M))
          25: U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
          26: U92#(tt()) -> c_33(0#())
          27: activate#(n__0()) -> c_35(0#())
          28: activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2))
          29: activate#(n__s(X)) -> c_37(s#(X))
          30: activate#(n__x(X1,X2)) -> c_38(x#(X1,X2))
          31: isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V1)
                                            ,activate#(V2))
          32: isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                      ,isNatKind#(activate(V1))
                                      ,activate#(V1)
                                      ,activate#(V1))
          33: isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                         ,isNatKind#(activate(V1))
                                         ,activate#(V1)
                                         ,activate#(V1)
                                         ,activate#(V2))
          34: isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                ,isNatKind#(activate(V1))
                                                ,activate#(V1)
                                                ,activate#(V2))
          35: isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
          36: isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                             ,isNatKind#(activate(V1))
                                             ,activate#(V1)
                                             ,activate#(V2))
          37: 0#() -> c_1()
          38: U16#(tt()) -> c_11()
          39: U23#(tt()) -> c_14()
          40: U36#(tt()) -> c_20()
          41: U42#(tt()) -> c_22()
          42: U51#(tt()) -> c_23()
          43: U62#(tt()) -> c_25()
          44: activate#(X) -> c_34()
          45: isNat#(n__0()) -> c_39()
          46: isNatKind#(n__0()) -> c_43()
          47: plus#(X1,X2) -> c_47()
          48: s#(X) -> c_48()
          49: x#(X1,X2) -> c_49()
* Step 7: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U104#(tt(),M,N) -> c_5(plus#(x(activate(N),activate(M)),activate(N))
                                  ,x#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1))
                                 ,isNatKind#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V1))
            U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1)
                                    ,activate#(V2))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2))
                                    ,isNat#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V2))
            U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
            U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
            U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(N))
            U72#(tt(),N) -> c_27(activate#(N))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U84#(tt(),M,N) -> c_31(s#(plus(activate(N),activate(M)))
                                  ,plus#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M))
            U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1)
                                       ,activate#(V2))
            isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
            isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V2))
        - Weak DPs:
            0#() -> c_1()
            U16#(tt()) -> c_11()
            U23#(tt()) -> c_14()
            U36#(tt()) -> c_20()
            U42#(tt()) -> c_22()
            U51#(tt()) -> c_23()
            U62#(tt()) -> c_25()
            U92#(tt()) -> c_33(0#())
            activate#(X) -> c_34()
            activate#(n__0()) -> c_35(0#())
            activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2))
            activate#(n__s(X)) -> c_37(s#(X))
            activate#(n__x(X1,X2)) -> c_38(x#(X1,X2))
            isNat#(n__0()) -> c_39()
            isNatKind#(n__0()) -> c_43()
            plus#(X1,X2) -> c_47()
            s#(X) -> c_48()
            x#(X1,X2) -> c_49()
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/5,c_6/5,c_7/5,c_8/5,c_9/4,c_10/3
            ,c_11/0,c_12/4,c_13/3,c_14/0,c_15/5,c_16/5,c_17/5,c_18/4,c_19/3,c_20/0,c_21/3,c_22/0,c_23/0,c_24/3,c_25/0
            ,c_26/4,c_27/1,c_28/5,c_29/5,c_30/5,c_31/4,c_32/3,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/5
            ,c_41/4,c_42/5,c_43/0,c_44/4,c_45/3,c_46/4,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {4,20,24}
        by application of
          Pre({4,20,24}) = {3,19,23}.
        Here rules are labelled as follows:
          1: U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N))
                                   ,isNatKind#(activate(M))
                                   ,activate#(M)
                                   ,activate#(M)
                                   ,activate#(N))
          2: U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N))
                                   ,isNat#(activate(N))
                                   ,activate#(N)
                                   ,activate#(M)
                                   ,activate#(N))
          3: U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N))
                                   ,isNatKind#(activate(N))
                                   ,activate#(N)
                                   ,activate#(M)
                                   ,activate#(N))
          4: U104#(tt(),M,N) -> c_5(plus#(x(activate(N),activate(M)),activate(N))
                                   ,x#(activate(N),activate(M))
                                   ,activate#(N)
                                   ,activate#(M)
                                   ,activate#(N))
          5: U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1)
                                    ,activate#(V2))
          6: U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
          7: U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
          8: U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2))
                                    ,isNat#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V2))
          9: U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          10: U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1))
          11: U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
          12: U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                      ,isNatKind#(activate(V1))
                                      ,activate#(V1)
                                      ,activate#(V1)
                                      ,activate#(V2))
          13: U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                      ,isNatKind#(activate(V2))
                                      ,activate#(V2)
                                      ,activate#(V1)
                                      ,activate#(V2))
          14: U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                      ,isNatKind#(activate(V2))
                                      ,activate#(V2)
                                      ,activate#(V1)
                                      ,activate#(V2))
          15: U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2))
                                      ,isNat#(activate(V1))
                                      ,activate#(V1)
                                      ,activate#(V2))
          16: U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
          17: U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
          18: U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
          19: U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(N))
          20: U72#(tt(),N) -> c_27(activate#(N))
          21: U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N))
                                    ,isNatKind#(activate(M))
                                    ,activate#(M)
                                    ,activate#(M)
                                    ,activate#(N))
          22: U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N))
                                    ,isNat#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          23: U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N))
                                    ,isNatKind#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          24: U84#(tt(),M,N) -> c_31(s#(plus(activate(N),activate(M)))
                                    ,plus#(activate(N),activate(M))
                                    ,activate#(N)
                                    ,activate#(M))
          25: U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
          26: isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1))
                                            ,activate#(V1)
                                            ,activate#(V1)
                                            ,activate#(V2))
          27: isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                      ,isNatKind#(activate(V1))
                                      ,activate#(V1)
                                      ,activate#(V1))
          28: isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                         ,isNatKind#(activate(V1))
                                         ,activate#(V1)
                                         ,activate#(V1)
                                         ,activate#(V2))
          29: isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                ,isNatKind#(activate(V1))
                                                ,activate#(V1)
                                                ,activate#(V2))
          30: isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
          31: isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                             ,isNatKind#(activate(V1))
                                             ,activate#(V1)
                                             ,activate#(V2))
          32: 0#() -> c_1()
          33: U16#(tt()) -> c_11()
          34: U23#(tt()) -> c_14()
          35: U36#(tt()) -> c_20()
          36: U42#(tt()) -> c_22()
          37: U51#(tt()) -> c_23()
          38: U62#(tt()) -> c_25()
          39: U92#(tt()) -> c_33(0#())
          40: activate#(X) -> c_34()
          41: activate#(n__0()) -> c_35(0#())
          42: activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2))
          43: activate#(n__s(X)) -> c_37(s#(X))
          44: activate#(n__x(X1,X2)) -> c_38(x#(X1,X2))
          45: isNat#(n__0()) -> c_39()
          46: isNatKind#(n__0()) -> c_43()
          47: plus#(X1,X2) -> c_47()
          48: s#(X) -> c_48()
          49: x#(X1,X2) -> c_49()
* Step 8: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1))
                                 ,isNatKind#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V1))
            U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1)
                                    ,activate#(V2))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2))
                                    ,isNat#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V2))
            U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
            U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
            U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(N))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1)
                                       ,activate#(V2))
            isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
            isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V2))
        - Weak DPs:
            0#() -> c_1()
            U104#(tt(),M,N) -> c_5(plus#(x(activate(N),activate(M)),activate(N))
                                  ,x#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U16#(tt()) -> c_11()
            U23#(tt()) -> c_14()
            U36#(tt()) -> c_20()
            U42#(tt()) -> c_22()
            U51#(tt()) -> c_23()
            U62#(tt()) -> c_25()
            U72#(tt(),N) -> c_27(activate#(N))
            U84#(tt(),M,N) -> c_31(s#(plus(activate(N),activate(M)))
                                  ,plus#(activate(N),activate(M))
                                  ,activate#(N)
                                  ,activate#(M))
            U92#(tt()) -> c_33(0#())
            activate#(X) -> c_34()
            activate#(n__0()) -> c_35(0#())
            activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2))
            activate#(n__s(X)) -> c_37(s#(X))
            activate#(n__x(X1,X2)) -> c_38(x#(X1,X2))
            isNat#(n__0()) -> c_39()
            isNatKind#(n__0()) -> c_43()
            plus#(X1,X2) -> c_47()
            s#(X) -> c_48()
            x#(X1,X2) -> c_49()
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/5,c_6/5,c_7/5,c_8/5,c_9/4,c_10/3
            ,c_11/0,c_12/4,c_13/3,c_14/0,c_15/5,c_16/5,c_17/5,c_18/4,c_19/3,c_20/0,c_21/3,c_22/0,c_23/0,c_24/3,c_25/0
            ,c_26/4,c_27/1,c_28/5,c_29/5,c_30/5,c_31/4,c_32/3,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/5
            ,c_41/4,c_42/5,c_43/0,c_44/4,c_45/3,c_46/4,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N))
                                    ,isNatKind#(activate(M))
                                    ,activate#(M)
                                    ,activate#(M)
                                    ,activate#(N))
             -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_5 activate#(n__0()) -> c_35(0#()):41
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N))
                                         ,isNat#(activate(N))
                                         ,activate#(N)
                                         ,activate#(M)
                                         ,activate#(N)):2
             -->_2 isNatKind#(n__0()) -> c_43():46
             -->_5 activate#(X) -> c_34():40
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
          
          2:S:U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N))
                                    ,isNat#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
             -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_5 activate#(n__0()) -> c_35(0#()):41
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V1)
                                              ,activate#(V2)):25
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):24
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):23
             -->_1 U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N))
                                         ,isNatKind#(activate(N))
                                         ,activate#(N)
                                         ,activate#(M)
                                         ,activate#(N)):3
             -->_2 isNat#(n__0()) -> c_39():45
             -->_5 activate#(X) -> c_34():40
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
          
          3:S:U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N))
                                    ,isNatKind#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
             -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_5 activate#(n__0()) -> c_35(0#()):41
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_1 U104#(tt(),M,N) -> c_5(plus#(x(activate(N),activate(M)),activate(N))
                                         ,x#(activate(N),activate(M))
                                         ,activate#(N)
                                         ,activate#(M)
                                         ,activate#(N)):30
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_2 isNatKind#(n__0()) -> c_43():46
             -->_5 activate#(X) -> c_34():40
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
          
          4:S:U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_5 activate#(n__0()) -> c_35(0#()):41
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2)):5
             -->_2 isNatKind#(n__0()) -> c_43():46
             -->_5 activate#(X) -> c_34():40
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
          
          5:S:U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2))
                                     ,activate#(V2)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_5 activate#(n__0()) -> c_35(0#()):41
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2)):6
             -->_2 isNatKind#(n__0()) -> c_43():46
             -->_5 activate#(X) -> c_34():40
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
          
          6:S:U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2))
                                     ,activate#(V2)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_5 activate#(n__0()) -> c_35(0#()):41
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2)):7
             -->_2 isNatKind#(n__0()) -> c_43():46
             -->_5 activate#(X) -> c_34():40
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
          
          7:S:U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2))
                                     ,isNat#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V1)
                                              ,activate#(V2)):25
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):24
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):23
             -->_1 U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):8
             -->_2 isNat#(n__0()) -> c_39():45
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
          
          8:S:U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V1)
                                              ,activate#(V2)):25
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):24
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):23
             -->_2 isNat#(n__0()) -> c_39():45
             -->_3 activate#(X) -> c_34():40
             -->_1 U16#(tt()) -> c_11():31
          
          9:S:U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1))
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):10
             -->_2 isNatKind#(n__0()) -> c_43():46
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
          
          10:S:U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V1)
                                              ,activate#(V2)):25
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):24
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):23
             -->_2 isNat#(n__0()) -> c_39():45
             -->_3 activate#(X) -> c_34():40
             -->_1 U23#(tt()) -> c_14():32
          
          11:S:U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1)
                                       ,activate#(V2))
             -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_5 activate#(n__0()) -> c_35(0#()):41
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                           ,isNatKind#(activate(V2))
                                           ,activate#(V2)
                                           ,activate#(V1)
                                           ,activate#(V2)):12
             -->_2 isNatKind#(n__0()) -> c_43():46
             -->_5 activate#(X) -> c_34():40
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
          
          12:S:U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V2))
                                       ,activate#(V2)
                                       ,activate#(V1)
                                       ,activate#(V2))
             -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_5 activate#(n__0()) -> c_35(0#()):41
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                           ,isNatKind#(activate(V2))
                                           ,activate#(V2)
                                           ,activate#(V1)
                                           ,activate#(V2)):13
             -->_2 isNatKind#(n__0()) -> c_43():46
             -->_5 activate#(X) -> c_34():40
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
          
          13:S:U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V2))
                                       ,activate#(V2)
                                       ,activate#(V1)
                                       ,activate#(V2))
             -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_5 activate#(n__0()) -> c_35(0#()):41
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2))
                                           ,isNat#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V2)):14
             -->_2 isNatKind#(n__0()) -> c_43():46
             -->_5 activate#(X) -> c_34():40
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
          
          14:S:U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2))
                                       ,isNat#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V2))
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V1)
                                              ,activate#(V2)):25
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):24
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):23
             -->_1 U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):15
             -->_2 isNat#(n__0()) -> c_39():45
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
          
          15:S:U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V1)
                                              ,activate#(V2)):25
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):24
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):23
             -->_2 isNat#(n__0()) -> c_39():45
             -->_3 activate#(X) -> c_34():40
             -->_1 U36#(tt()) -> c_20():33
          
          16:S:U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_2 isNatKind#(n__0()) -> c_43():46
             -->_3 activate#(X) -> c_34():40
             -->_1 U42#(tt()) -> c_22():34
          
          17:S:U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_2 isNatKind#(n__0()) -> c_43():46
             -->_3 activate#(X) -> c_34():40
             -->_1 U62#(tt()) -> c_25():36
          
          18:S:U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N))
                                   ,isNatKind#(activate(N))
                                   ,activate#(N)
                                   ,activate#(N))
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_1 U72#(tt(),N) -> c_27(activate#(N)):37
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_2 isNatKind#(n__0()) -> c_43():46
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
          
          19:S:U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N))
                                     ,isNatKind#(activate(M))
                                     ,activate#(M)
                                     ,activate#(M)
                                     ,activate#(N))
             -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_5 activate#(n__0()) -> c_35(0#()):41
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N))
                                         ,isNat#(activate(N))
                                         ,activate#(N)
                                         ,activate#(M)
                                         ,activate#(N)):20
             -->_2 isNatKind#(n__0()) -> c_43():46
             -->_5 activate#(X) -> c_34():40
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
          
          20:S:U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N))
                                     ,isNat#(activate(N))
                                     ,activate#(N)
                                     ,activate#(M)
                                     ,activate#(N))
             -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_5 activate#(n__0()) -> c_35(0#()):41
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V1)
                                              ,activate#(V2)):25
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):24
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):23
             -->_1 U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N))
                                         ,isNatKind#(activate(N))
                                         ,activate#(N)
                                         ,activate#(M)
                                         ,activate#(N)):21
             -->_2 isNat#(n__0()) -> c_39():45
             -->_5 activate#(X) -> c_34():40
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
          
          21:S:U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N))
                                     ,isNatKind#(activate(N))
                                     ,activate#(N)
                                     ,activate#(M)
                                     ,activate#(N))
             -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_5 activate#(n__0()) -> c_35(0#()):41
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_1 U84#(tt(),M,N) -> c_31(s#(plus(activate(N),activate(M)))
                                         ,plus#(activate(N),activate(M))
                                         ,activate#(N)
                                         ,activate#(M)):38
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_2 isNatKind#(n__0()) -> c_43():46
             -->_5 activate#(X) -> c_34():40
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
          
          22:S:U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_1 U92#(tt()) -> c_33(0#()):39
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_2 isNatKind#(n__0()) -> c_43():46
             -->_3 activate#(X) -> c_34():40
          
          23:S:isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                             ,isNatKind#(activate(V1))
                                             ,activate#(V1)
                                             ,activate#(V1)
                                             ,activate#(V2))
             -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_5 activate#(n__0()) -> c_35(0#()):41
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_2 isNatKind#(n__0()) -> c_43():46
             -->_5 activate#(X) -> c_34():40
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
             -->_1 U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2)):4
          
          24:S:isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1))
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_2 isNatKind#(n__0()) -> c_43():46
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
             -->_1 U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1))
                                        ,isNatKind#(activate(V1))
                                        ,activate#(V1)
                                        ,activate#(V1)):9
          
          25:S:isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
             -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_5 activate#(n__0()) -> c_35(0#()):41
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_2 isNatKind#(n__0()) -> c_43():46
             -->_5 activate#(X) -> c_34():40
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
             -->_1 U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)
                                           ,activate#(V2)):11
          
          26:S:isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2))
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__0()) -> c_43():46
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2)):16
          
          27:S:isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__0()) -> c_43():46
             -->_3 activate#(X) -> c_34():40
             -->_1 U51#(tt()) -> c_23():35
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
          
          28:S:isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 isNatKind#(n__0()) -> c_43():46
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2)):17
          
          29:W:0#() -> c_1()
             
          
          30:W:U104#(tt(),M,N) -> c_5(plus#(x(activate(N),activate(M)),activate(N))
                                     ,x#(activate(N),activate(M))
                                     ,activate#(N)
                                     ,activate#(M)
                                     ,activate#(N))
             -->_5 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_5 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_5 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_5 activate#(n__0()) -> c_35(0#()):41
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_2 x#(X1,X2) -> c_49():49
             -->_1 plus#(X1,X2) -> c_47():47
             -->_5 activate#(X) -> c_34():40
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
          
          31:W:U16#(tt()) -> c_11()
             
          
          32:W:U23#(tt()) -> c_14()
             
          
          33:W:U36#(tt()) -> c_20()
             
          
          34:W:U42#(tt()) -> c_22()
             
          
          35:W:U51#(tt()) -> c_23()
             
          
          36:W:U62#(tt()) -> c_25()
             
          
          37:W:U72#(tt(),N) -> c_27(activate#(N))
             -->_1 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_1 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_1 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_1 activate#(n__0()) -> c_35(0#()):41
             -->_1 activate#(X) -> c_34():40
          
          38:W:U84#(tt(),M,N) -> c_31(s#(plus(activate(N),activate(M)))
                                     ,plus#(activate(N),activate(M))
                                     ,activate#(N)
                                     ,activate#(M))
             -->_4 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_3 activate#(n__x(X1,X2)) -> c_38(x#(X1,X2)):44
             -->_4 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_3 activate#(n__s(X)) -> c_37(s#(X)):43
             -->_4 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_3 activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2)):42
             -->_4 activate#(n__0()) -> c_35(0#()):41
             -->_3 activate#(n__0()) -> c_35(0#()):41
             -->_1 s#(X) -> c_48():48
             -->_2 plus#(X1,X2) -> c_47():47
             -->_4 activate#(X) -> c_34():40
             -->_3 activate#(X) -> c_34():40
          
          39:W:U92#(tt()) -> c_33(0#())
             -->_1 0#() -> c_1():29
          
          40:W:activate#(X) -> c_34()
             
          
          41:W:activate#(n__0()) -> c_35(0#())
             -->_1 0#() -> c_1():29
          
          42:W:activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2))
             -->_1 plus#(X1,X2) -> c_47():47
          
          43:W:activate#(n__s(X)) -> c_37(s#(X))
             -->_1 s#(X) -> c_48():48
          
          44:W:activate#(n__x(X1,X2)) -> c_38(x#(X1,X2))
             -->_1 x#(X1,X2) -> c_49():49
          
          45:W:isNat#(n__0()) -> c_39()
             
          
          46:W:isNatKind#(n__0()) -> c_43()
             
          
          47:W:plus#(X1,X2) -> c_47()
             
          
          48:W:s#(X) -> c_48()
             
          
          49:W:x#(X1,X2) -> c_49()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          39: U92#(tt()) -> c_33(0#())
          38: U84#(tt(),M,N) -> c_31(s#(plus(activate(N),activate(M)))
                                    ,plus#(activate(N),activate(M))
                                    ,activate#(N)
                                    ,activate#(M))
          37: U72#(tt(),N) -> c_27(activate#(N))
          30: U104#(tt(),M,N) -> c_5(plus#(x(activate(N),activate(M)),activate(N))
                                    ,x#(activate(N),activate(M))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
          33: U36#(tt()) -> c_20()
          32: U23#(tt()) -> c_14()
          31: U16#(tt()) -> c_11()
          45: isNat#(n__0()) -> c_39()
          36: U62#(tt()) -> c_25()
          34: U42#(tt()) -> c_22()
          35: U51#(tt()) -> c_23()
          40: activate#(X) -> c_34()
          46: isNatKind#(n__0()) -> c_43()
          41: activate#(n__0()) -> c_35(0#())
          29: 0#() -> c_1()
          42: activate#(n__plus(X1,X2)) -> c_36(plus#(X1,X2))
          47: plus#(X1,X2) -> c_47()
          43: activate#(n__s(X)) -> c_37(s#(X))
          48: s#(X) -> c_48()
          44: activate#(n__x(X1,X2)) -> c_38(x#(X1,X2))
          49: x#(X1,X2) -> c_49()
* Step 9: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                   ,isNatKind#(activate(V2))
                                   ,activate#(V2)
                                   ,activate#(V1)
                                   ,activate#(V2))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2))
                                   ,isNat#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V2))
            U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1))
                                 ,isNatKind#(activate(V1))
                                 ,activate#(V1)
                                 ,activate#(V1))
            U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1)
                                    ,activate#(V2))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                    ,isNatKind#(activate(V2))
                                    ,activate#(V2)
                                    ,activate#(V1)
                                    ,activate#(V2))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2))
                                    ,isNat#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V2))
            U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
            U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
            U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
            U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N))
                                ,isNatKind#(activate(N))
                                ,activate#(N)
                                ,activate#(N))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N))
                                  ,isNatKind#(activate(M))
                                  ,activate#(M)
                                  ,activate#(M)
                                  ,activate#(N))
            U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N))
                                  ,isNat#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N))
                                  ,isNatKind#(activate(N))
                                  ,activate#(N)
                                  ,activate#(M)
                                  ,activate#(N))
            U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                    ,isNatKind#(activate(V1))
                                    ,activate#(V1)
                                    ,activate#(V1))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1)
                                       ,activate#(V2))
            isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
            isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
            isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V2))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/5,c_3/5,c_4/5,c_5/5,c_6/5,c_7/5,c_8/5,c_9/4,c_10/3
            ,c_11/0,c_12/4,c_13/3,c_14/0,c_15/5,c_16/5,c_17/5,c_18/4,c_19/3,c_20/0,c_21/3,c_22/0,c_23/0,c_24/3,c_25/0
            ,c_26/4,c_27/1,c_28/5,c_29/5,c_30/5,c_31/4,c_32/3,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/5
            ,c_41/4,c_42/5,c_43/0,c_44/4,c_45/3,c_46/4,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N))
                                    ,isNatKind#(activate(M))
                                    ,activate#(M)
                                    ,activate#(M)
                                    ,activate#(N))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N))
                                         ,isNat#(activate(N))
                                         ,activate#(N)
                                         ,activate#(M)
                                         ,activate#(N)):2
          
          2:S:U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N))
                                    ,isNat#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V1)
                                              ,activate#(V2)):25
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):24
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):23
             -->_1 U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N))
                                         ,isNatKind#(activate(N))
                                         ,activate#(N)
                                         ,activate#(M)
                                         ,activate#(N)):3
          
          3:S:U103#(tt(),M,N) -> c_4(U104#(isNatKind(activate(N)),activate(M),activate(N))
                                    ,isNatKind#(activate(N))
                                    ,activate#(N)
                                    ,activate#(M)
                                    ,activate#(N))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
          
          4:S:U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2)):5
          
          5:S:U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2))
                                     ,activate#(V2)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))
                                          ,activate#(V2)
                                          ,activate#(V1)
                                          ,activate#(V2)):6
          
          6:S:U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2))
                                     ,activate#(V2)
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2))
                                          ,isNat#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V2)):7
          
          7:S:U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2))
                                     ,isNat#(activate(V1))
                                     ,activate#(V1)
                                     ,activate#(V2))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V1)
                                              ,activate#(V2)):25
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):24
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):23
             -->_1 U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):8
          
          8:S:U15#(tt(),V2) -> c_10(U16#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V1)
                                              ,activate#(V2)):25
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):24
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):23
          
          9:S:U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1))
                                   ,isNatKind#(activate(V1))
                                   ,activate#(V1)
                                   ,activate#(V1))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1)):10
          
          10:S:U22#(tt(),V1) -> c_13(U23#(isNat(activate(V1))),isNat#(activate(V1)),activate#(V1))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V1)
                                              ,activate#(V2)):25
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):24
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):23
          
          11:S:U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1)
                                       ,activate#(V2))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                           ,isNatKind#(activate(V2))
                                           ,activate#(V2)
                                           ,activate#(V1)
                                           ,activate#(V2)):12
          
          12:S:U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V2))
                                       ,activate#(V2)
                                       ,activate#(V1)
                                       ,activate#(V2))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                           ,isNatKind#(activate(V2))
                                           ,activate#(V2)
                                           ,activate#(V1)
                                           ,activate#(V2)):13
          
          13:S:U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V2))
                                       ,activate#(V2)
                                       ,activate#(V1)
                                       ,activate#(V2))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2))
                                           ,isNat#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V2)):14
          
          14:S:U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2))
                                       ,isNat#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V2))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V1)
                                              ,activate#(V2)):25
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):24
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):23
             -->_1 U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2)):15
          
          15:S:U35#(tt(),V2) -> c_19(U36#(isNat(activate(V2))),isNat#(activate(V2)),activate#(V2))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V1)
                                              ,activate#(V2)):25
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):24
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):23
          
          16:S:U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
          
          17:S:U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
          
          18:S:U71#(tt(),N) -> c_26(U72#(isNatKind(activate(N)),activate(N))
                                   ,isNatKind#(activate(N))
                                   ,activate#(N)
                                   ,activate#(N))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
          
          19:S:U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N))
                                     ,isNatKind#(activate(M))
                                     ,activate#(M)
                                     ,activate#(M)
                                     ,activate#(N))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N))
                                         ,isNat#(activate(N))
                                         ,activate#(N)
                                         ,activate#(M)
                                         ,activate#(N)):20
          
          20:S:U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N))
                                     ,isNat#(activate(N))
                                     ,activate#(N)
                                     ,activate#(M)
                                     ,activate#(N))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V1)
                                              ,activate#(V2)):25
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)):24
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V1)
                                                 ,activate#(V2)):23
             -->_1 U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N))
                                         ,isNatKind#(activate(N))
                                         ,activate#(N)
                                         ,activate#(M)
                                         ,activate#(N)):21
          
          21:S:U83#(tt(),M,N) -> c_30(U84#(isNatKind(activate(N)),activate(M),activate(N))
                                     ,isNatKind#(activate(N))
                                     ,activate#(N)
                                     ,activate#(M)
                                     ,activate#(N))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
          
          22:S:U91#(tt(),N) -> c_32(U92#(isNatKind(activate(N))),isNatKind#(activate(N)),activate#(N))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
          
          23:S:isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                             ,isNatKind#(activate(V1))
                                             ,activate#(V1)
                                             ,activate#(V1)
                                             ,activate#(V2))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2)):4
          
          24:S:isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))
                                       ,isNatKind#(activate(V1))
                                       ,activate#(V1)
                                       ,activate#(V1))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1))
                                        ,isNatKind#(activate(V1))
                                        ,activate#(V1)
                                        ,activate#(V1)):9
          
          25:S:isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))
                                          ,activate#(V1)
                                          ,activate#(V1)
                                          ,activate#(V2))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                           ,isNatKind#(activate(V1))
                                           ,activate#(V1)
                                           ,activate#(V1)
                                           ,activate#(V2)):11
          
          26:S:isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                 ,isNatKind#(activate(V1))
                                                 ,activate#(V1)
                                                 ,activate#(V2))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U41#(tt(),V2) -> c_21(U42#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2)):16
          
          27:S:isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
          
          28:S:isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                              ,isNatKind#(activate(V1))
                                              ,activate#(V1)
                                              ,activate#(V2))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))
                                                  ,activate#(V1)
                                                  ,activate#(V2)):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(U51#(isNatKind(activate(V1))),isNatKind#(activate(V1)),activate#(V1)):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))
                                                     ,activate#(V1)
                                                     ,activate#(V2)):26
             -->_1 U61#(tt(),V2) -> c_24(U62#(isNatKind(activate(V2))),isNatKind#(activate(V2)),activate#(V2)):17
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
          U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
          U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
          U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
          U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
          U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
          U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
          U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
          U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
          isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                        ,isNatKind#(activate(V1)))
          isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V1)))
          isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
          isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
* Step 10: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
            U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
            U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
            U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V1)))
            isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
            isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1
            ,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2
            ,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
              U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
              U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
              isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
              isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
              isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          - Weak DPs:
              U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
              U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
              U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
              U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
              U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
              U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
              U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
              U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
              U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
              U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
              U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
              isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1)))
              isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
              isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                         ,isNatKind#(activate(V1)))
          - Weak TRS:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
              U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
              U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
              U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
              U35(tt(),V2) -> U36(isNat(activate(V2)))
              U36(tt()) -> tt()
              U41(tt(),V2) -> U42(isNatKind(activate(V2)))
              U42(tt()) -> tt()
              U51(tt()) -> tt()
              U61(tt(),V2) -> U62(isNatKind(activate(V2)))
              U62(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(X1,X2)
              activate(n__s(X)) -> s(X)
              activate(n__x(X1,X2)) -> x(X1,X2)
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
              isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
              x(X1,X2) -> n__x(X1,X2)
          - Signature:
              {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
              ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1
              ,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3
              ,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1
              ,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1
              ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2
              ,c_9/2,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0
              ,c_24/1,c_25/0,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1
              ,c_39/0,c_40/2,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#
              ,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#
              ,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
        
        Problem (S)
          - Strict DPs:
              U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
              U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
              U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
              U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
              U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
              U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
              U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
              U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
              U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
              U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
              U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
              U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
              U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
              isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1)))
              isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
              isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                         ,isNatKind#(activate(V1)))
          - Weak DPs:
              U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
              U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
              U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
              isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
              isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
              isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          - Weak TRS:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
              U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
              U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
              U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
              U35(tt(),V2) -> U36(isNat(activate(V2)))
              U36(tt()) -> tt()
              U41(tt(),V2) -> U42(isNatKind(activate(V2)))
              U42(tt()) -> tt()
              U51(tt()) -> tt()
              U61(tt(),V2) -> U62(isNatKind(activate(V2)))
              U62(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(X1,X2)
              activate(n__s(X)) -> s(X)
              activate(n__x(X1,X2)) -> x(X1,X2)
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
              isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
              x(X1,X2) -> n__x(X1,X2)
          - Signature:
              {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
              ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1
              ,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3
              ,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1
              ,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1
              ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2
              ,c_9/2,c_10/1,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0
              ,c_24/1,c_25/0,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1
              ,c_39/0,c_40/2,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#
              ,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#
              ,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
** Step 10.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
            U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
            isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
            isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        - Weak DPs:
            U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
            U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1
            ,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2
            ,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          26: isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                ,isNatKind#(activate(V1)))
          27: isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
          28: isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          
        Consider the set of all dependency pairs
          1: U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          2: U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          3: U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
          4: U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          5: U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          6: U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          7: U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          8: U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
          9: U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          10: U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
          11: U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                      ,isNatKind#(activate(V1)))
          12: U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                      ,isNatKind#(activate(V2)))
          13: U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                      ,isNatKind#(activate(V2)))
          14: U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          15: U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
          16: U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
          17: U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
          18: U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
          19: U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          20: U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          21: U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
          22: U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
          23: isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1)))
          24: isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          25: isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                         ,isNatKind#(activate(V1)))
          26: isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          27: isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
          28: isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^2))
        SPACE(?,?)on application of the dependency pairs
          {26,27,28}
        These cover all (indirect) predecessors of dependency pairs
          {1,2,3,16,17,18,19,20,21,22,26,27,28}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
*** Step 10.a:1.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
            U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
            isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
            isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        - Weak DPs:
            U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
            U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1
            ,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2
            ,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_2) = {1,2},
          uargs(c_3) = {1,2},
          uargs(c_4) = {1},
          uargs(c_6) = {1,2},
          uargs(c_7) = {1,2},
          uargs(c_8) = {1,2},
          uargs(c_9) = {1,2},
          uargs(c_10) = {1},
          uargs(c_12) = {1,2},
          uargs(c_13) = {1},
          uargs(c_15) = {1,2},
          uargs(c_16) = {1,2},
          uargs(c_17) = {1,2},
          uargs(c_18) = {1,2},
          uargs(c_19) = {1},
          uargs(c_21) = {1},
          uargs(c_24) = {1},
          uargs(c_26) = {1},
          uargs(c_28) = {1,2},
          uargs(c_29) = {1,2},
          uargs(c_30) = {1},
          uargs(c_32) = {1},
          uargs(c_40) = {1,2},
          uargs(c_41) = {1,2},
          uargs(c_42) = {1,2},
          uargs(c_44) = {1,2},
          uargs(c_45) = {1},
          uargs(c_46) = {1,2}
        
        Following symbols are considered usable:
          {0,U41,U42,U51,U61,U62,activate,isNatKind,plus,s,x,0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#
          ,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#
          ,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#}
        TcT has computed the following interpretation:
                   p(0) = 1                                        
                p(U101) = 0                                        
                p(U102) = 0                                        
                p(U103) = 0                                        
                p(U104) = 0                                        
                 p(U11) = x1                                       
                 p(U12) = 1 + x3                                   
                 p(U13) = 0                                        
                 p(U14) = x2 + x3                                  
                 p(U15) = 1                                        
                 p(U16) = x1                                       
                 p(U21) = 0                                        
                 p(U22) = 0                                        
                 p(U23) = x1 + x1^2                                
                 p(U31) = x1*x2 + x2                               
                 p(U32) = x3                                       
                 p(U33) = x1*x2 + x2*x3 + x3                       
                 p(U34) = x1^2 + x3 + x3^2                         
                 p(U35) = x1*x2 + x2                               
                 p(U36) = x1^2                                     
                 p(U41) = x2                                       
                 p(U42) = x1                                       
                 p(U51) = 1                                        
                 p(U61) = x1                                       
                 p(U62) = 1                                        
                 p(U71) = 0                                        
                 p(U72) = 0                                        
                 p(U81) = 0                                        
                 p(U82) = 0                                        
                 p(U83) = 0                                        
                 p(U84) = 0                                        
                 p(U91) = 0                                        
                 p(U92) = 0                                        
            p(activate) = x1                                       
               p(isNat) = 0                                        
           p(isNatKind) = x1                                       
                p(n__0) = 1                                        
             p(n__plus) = 1 + x1 + x2                              
                p(n__s) = 1 + x1                                   
                p(n__x) = 1 + x1 + x2                              
                p(plus) = 1 + x1 + x2                              
                   p(s) = 1 + x1                                   
                  p(tt) = 1                                        
                   p(x) = 1 + x1 + x2                              
                  p(0#) = 0                                        
               p(U101#) = 1 + x1 + x1*x2 + x2 + x2*x3 + x3 + x3^2  
               p(U102#) = 1 + x2 + x3 + x3^2                       
               p(U103#) = 1 + x3                                   
               p(U104#) = 0                                        
                p(U11#) = 1 + x1*x3 + x2 + x2*x3 + x2^2 + x3^2     
                p(U12#) = 1 + x1*x3 + x2^2 + x3 + x3^2             
                p(U13#) = 1 + x2^2 + x3 + x3^2                     
                p(U14#) = 1 + x2^2 + x3^2                          
                p(U15#) = x2^2                                     
                p(U16#) = 0                                        
                p(U21#) = 1 + x2 + x2^2                            
                p(U22#) = 1 + x2^2                                 
                p(U23#) = 0                                        
                p(U31#) = 1 + x1*x3 + x2 + x2*x3 + x2^2 + x3 + x3^2
                p(U32#) = x1*x3 + x2^2 + x3 + x3^2                 
                p(U33#) = x2^2 + x3 + x3^2                         
                p(U34#) = x2^2 + x3^2                              
                p(U35#) = x2^2                                     
                p(U36#) = 0                                        
                p(U41#) = x2                                       
                p(U42#) = 0                                        
                p(U51#) = 0                                        
                p(U61#) = x2                                       
                p(U62#) = 0                                        
                p(U71#) = x2                                       
                p(U72#) = 0                                        
                p(U81#) = 1 + x1*x2 + x2 + x2*x3 + x2^2 + x3 + x3^2
                p(U82#) = x1 + x1^2 + x2*x3 + x3 + x3^2            
                p(U83#) = x3                                       
                p(U84#) = 0                                        
                p(U91#) = x1*x2                                    
                p(U92#) = 0                                        
           p(activate#) = 0                                        
              p(isNat#) = x1^2                                     
          p(isNatKind#) = x1                                       
               p(plus#) = 0                                        
                  p(s#) = 0                                        
                  p(x#) = 0                                        
                 p(c_1) = 0                                        
                 p(c_2) = 1 + x1 + x2                              
                 p(c_3) = x1 + x2                                  
                 p(c_4) = 1 + x1                                   
                 p(c_5) = 0                                        
                 p(c_6) = x1 + x2                                  
                 p(c_7) = x1 + x2                                  
                 p(c_8) = x1 + x2                                  
                 p(c_9) = 1 + x1 + x2                              
                p(c_10) = x1                                       
                p(c_11) = 0                                        
                p(c_12) = x1 + x2                                  
                p(c_13) = 1 + x1                                   
                p(c_14) = 0                                        
                p(c_15) = 1 + x1 + x2                              
                p(c_16) = x1 + x2                                  
                p(c_17) = x1 + x2                                  
                p(c_18) = x1 + x2                                  
                p(c_19) = x1                                       
                p(c_20) = 0                                        
                p(c_21) = x1                                       
                p(c_22) = 0                                        
                p(c_23) = 0                                        
                p(c_24) = x1                                       
                p(c_25) = 0                                        
                p(c_26) = x1                                       
                p(c_27) = 0                                        
                p(c_28) = 1 + x1 + x2                              
                p(c_29) = x1 + x2                                  
                p(c_30) = x1                                       
                p(c_31) = 0                                        
                p(c_32) = x1                                       
                p(c_33) = 0                                        
                p(c_34) = 0                                        
                p(c_35) = 0                                        
                p(c_36) = 0                                        
                p(c_37) = 0                                        
                p(c_38) = 0                                        
                p(c_39) = 0                                        
                p(c_40) = x1 + x2                                  
                p(c_41) = x1 + x2                                  
                p(c_42) = x1 + x2                                  
                p(c_43) = 0                                        
                p(c_44) = x1 + x2                                  
                p(c_45) = x1                                       
                p(c_46) = x1 + x2                                  
                p(c_47) = 0                                        
                p(c_48) = 0                                        
                p(c_49) = 0                                        
        
        Following rules are strictly oriented:
        isNatKind#(n__plus(V1,V2)) = 1 + V1 + V2                                                              
                                   > V1 + V2                                                                  
                                   = c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        
              isNatKind#(n__s(V1)) = 1 + V1                                                                   
                                   > V1                                                                       
                                   = c_45(isNatKind#(activate(V1)))                                           
        
           isNatKind#(n__x(V1,V2)) = 1 + V1 + V2                                                              
                                   > V1 + V2                                                                  
                                   = c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        
        
        Following rules are (at-least) weakly oriented:
                  U101#(tt(),M,N) =  2 + 2*M + M*N + N + N^2                                                               
                                  >= 2 + 2*M + N + N^2                                                                     
                                  =  c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))    
        
                  U102#(tt(),M,N) =  1 + M + N + N^2                                                                       
                                  >= 1 + N + N^2                                                                           
                                  =  c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))            
        
                  U103#(tt(),M,N) =  1 + N                                                                                 
                                  >= 1 + N                                                                                 
                                  =  c_4(isNatKind#(activate(N)))                                                          
        
                 U11#(tt(),V1,V2) =  1 + V1 + V1*V2 + V1^2 + V2 + V2^2                                                     
                                  >= 1 + V1 + V1*V2 + V1^2 + V2 + V2^2                                                     
                                  =  c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1))) 
        
                 U12#(tt(),V1,V2) =  1 + V1^2 + 2*V2 + V2^2                                                                
                                  >= 1 + V1^2 + 2*V2 + V2^2                                                                
                                  =  c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2))) 
        
                 U13#(tt(),V1,V2) =  1 + V1^2 + V2 + V2^2                                                                  
                                  >= 1 + V1^2 + V2 + V2^2                                                                  
                                  =  c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2))) 
        
                 U14#(tt(),V1,V2) =  1 + V1^2 + V2^2                                                                       
                                  >= 1 + V1^2 + V2^2                                                                       
                                  =  c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))                      
        
                    U15#(tt(),V2) =  V2^2                                                                                  
                                  >= V2^2                                                                                  
                                  =  c_10(isNat#(activate(V2)))                                                            
        
                    U21#(tt(),V1) =  1 + V1 + V1^2                                                                         
                                  >= 1 + V1 + V1^2                                                                         
                                  =  c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))             
        
                    U22#(tt(),V1) =  1 + V1^2                                                                              
                                  >= 1 + V1^2                                                                              
                                  =  c_13(isNat#(activate(V1)))                                                            
        
                 U31#(tt(),V1,V2) =  1 + V1 + V1*V2 + V1^2 + 2*V2 + V2^2                                                   
                                  >= 1 + V1 + V1*V2 + V1^2 + V2 + V2^2                                                     
                                  =  c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        
                 U32#(tt(),V1,V2) =  V1^2 + 2*V2 + V2^2                                                                    
                                  >= V1^2 + 2*V2 + V2^2                                                                    
                                  =  c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
        
                 U33#(tt(),V1,V2) =  V1^2 + V2 + V2^2                                                                      
                                  >= V1^2 + V2 + V2^2                                                                      
                                  =  c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
        
                 U34#(tt(),V1,V2) =  V1^2 + V2^2                                                                           
                                  >= V1^2 + V2^2                                                                           
                                  =  c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))                     
        
                    U35#(tt(),V2) =  V2^2                                                                                  
                                  >= V2^2                                                                                  
                                  =  c_19(isNat#(activate(V2)))                                                            
        
                    U41#(tt(),V2) =  V2                                                                                    
                                  >= V2                                                                                    
                                  =  c_21(isNatKind#(activate(V2)))                                                        
        
                    U61#(tt(),V2) =  V2                                                                                    
                                  >= V2                                                                                    
                                  =  c_24(isNatKind#(activate(V2)))                                                        
        
                     U71#(tt(),N) =  N                                                                                     
                                  >= N                                                                                     
                                  =  c_26(isNatKind#(activate(N)))                                                         
        
                   U81#(tt(),M,N) =  1 + 2*M + M*N + M^2 + N + N^2                                                         
                                  >= 1 + 2*M + M*N + M^2 + N + N^2                                                         
                                  =  c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))    
        
                   U82#(tt(),M,N) =  2 + M*N + N + N^2                                                                     
                                  >= N + N^2                                                                               
                                  =  c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))            
        
                   U83#(tt(),M,N) =  N                                                                                     
                                  >= N                                                                                     
                                  =  c_30(isNatKind#(activate(N)))                                                         
        
                     U91#(tt(),N) =  N                                                                                     
                                  >= N                                                                                     
                                  =  c_32(isNatKind#(activate(N)))                                                         
        
           isNat#(n__plus(V1,V2)) =  1 + 2*V1 + 2*V1*V2 + V1^2 + 2*V2 + V2^2                                               
                                  >= 1 + 2*V1 + 2*V1*V2 + V1^2 + V2^2                                                      
                                  =  c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        
                 isNat#(n__s(V1)) =  1 + 2*V1 + V1^2                                                                       
                                  >= 1 + 2*V1 + V1^2                                                                       
                                  =  c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))             
        
              isNat#(n__x(V1,V2)) =  1 + 2*V1 + 2*V1*V2 + V1^2 + 2*V2 + V2^2                                               
                                  >= 1 + 2*V1 + 2*V1*V2 + V1^2 + V2 + V2^2                                                 
                                  =  c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
        
                              0() =  1                                                                                     
                                  >= 1                                                                                     
                                  =  n__0()                                                                                
        
                     U41(tt(),V2) =  V2                                                                                    
                                  >= V2                                                                                    
                                  =  U42(isNatKind(activate(V2)))                                                          
        
                        U42(tt()) =  1                                                                                     
                                  >= 1                                                                                     
                                  =  tt()                                                                                  
        
                        U51(tt()) =  1                                                                                     
                                  >= 1                                                                                     
                                  =  tt()                                                                                  
        
                     U61(tt(),V2) =  1                                                                                     
                                  >= 1                                                                                     
                                  =  U62(isNatKind(activate(V2)))                                                          
        
                        U62(tt()) =  1                                                                                     
                                  >= 1                                                                                     
                                  =  tt()                                                                                  
        
                      activate(X) =  X                                                                                     
                                  >= X                                                                                     
                                  =  X                                                                                     
        
                 activate(n__0()) =  1                                                                                     
                                  >= 1                                                                                     
                                  =  0()                                                                                   
        
         activate(n__plus(X1,X2)) =  1 + X1 + X2                                                                           
                                  >= 1 + X1 + X2                                                                           
                                  =  plus(X1,X2)                                                                           
        
                activate(n__s(X)) =  1 + X                                                                                 
                                  >= 1 + X                                                                                 
                                  =  s(X)                                                                                  
        
            activate(n__x(X1,X2)) =  1 + X1 + X2                                                                           
                                  >= 1 + X1 + X2                                                                           
                                  =  x(X1,X2)                                                                              
        
                isNatKind(n__0()) =  1                                                                                     
                                  >= 1                                                                                     
                                  =  tt()                                                                                  
        
        isNatKind(n__plus(V1,V2)) =  1 + V1 + V2                                                                           
                                  >= V2                                                                                    
                                  =  U41(isNatKind(activate(V1)),activate(V2))                                             
        
              isNatKind(n__s(V1)) =  1 + V1                                                                                
                                  >= 1                                                                                     
                                  =  U51(isNatKind(activate(V1)))                                                          
        
           isNatKind(n__x(V1,V2)) =  1 + V1 + V2                                                                           
                                  >= V1                                                                                    
                                  =  U61(isNatKind(activate(V1)),activate(V2))                                             
        
                      plus(X1,X2) =  1 + X1 + X2                                                                           
                                  >= 1 + X1 + X2                                                                           
                                  =  n__plus(X1,X2)                                                                        
        
                             s(X) =  1 + X                                                                                 
                                  >= 1 + X                                                                                 
                                  =  n__s(X)                                                                               
        
                         x(X1,X2) =  1 + X1 + X2                                                                           
                                  >= 1 + X1 + X2                                                                           
                                  =  n__x(X1,X2)                                                                           
        
*** Step 10.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
            U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
        - Weak DPs:
            U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
            U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V1)))
            isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
            isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1
            ,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2
            ,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

*** Step 10.a:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
            U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
            U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
            U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V1)))
            isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
            isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1
            ,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2
            ,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N))):2
          
          2:W:U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))):25
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):24
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):23
             -->_1 U103#(tt(),M,N) -> c_4(isNatKind#(activate(N))):3
          
          3:W:U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
             -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
          
          4:W:U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))):5
          
          5:W:U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))):6
          
          6:W:U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):7
          
          7:W:U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))):25
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):24
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):23
             -->_1 U15#(tt(),V2) -> c_10(isNat#(activate(V2))):8
          
          8:W:U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))):25
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):24
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):23
          
          9:W:U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U22#(tt(),V1) -> c_13(isNat#(activate(V1))):10
          
          10:W:U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))):25
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):24
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):23
          
          11:W:U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                           ,isNatKind#(activate(V2))):12
          
          12:W:U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V2)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                           ,isNatKind#(activate(V2))):13
          
          13:W:U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V2)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):14
          
          14:W:U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))):25
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):24
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):23
             -->_1 U35#(tt(),V2) -> c_19(isNat#(activate(V2))):15
          
          15:W:U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))):25
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):24
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):23
          
          16:W:U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
             -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
          
          17:W:U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
             -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
          
          18:W:U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
             -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
          
          19:W:U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N))):20
          
          20:W:U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))):25
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):24
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):23
             -->_1 U83#(tt(),M,N) -> c_30(isNatKind#(activate(N))):21
          
          21:W:U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
             -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
          
          22:W:U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
             -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
          
          23:W:isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                             ,isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))):4
          
          24:W:isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):9
          
          25:W:isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                           ,isNatKind#(activate(V1))):11
          
          26:W:isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U41#(tt(),V2) -> c_21(isNatKind#(activate(V2))):16
          
          27:W:isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
             -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
          
          28:W:isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U61#(tt(),V2) -> c_24(isNatKind#(activate(V2))):17
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          22: U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
          19: U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          20: U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          21: U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
          18: U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
          1: U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          2: U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          3: U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
          25: isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                         ,isNatKind#(activate(V1)))
          15: U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
          14: U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          13: U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                      ,isNatKind#(activate(V2)))
          12: U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                      ,isNatKind#(activate(V2)))
          11: U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                      ,isNatKind#(activate(V1)))
          10: U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
          9: U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          24: isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          8: U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
          7: U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          6: U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          5: U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          4: U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          23: isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1)))
          28: isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          27: isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
          26: isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          17: U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
          16: U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
*** Step 10.a:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1
            ,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2
            ,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

** Step 10.b:1: PredecessorEstimation WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
            U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V1)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
            U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
            isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
            isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1
            ,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2
            ,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {2,15,18,19}
        by application of
          Pre({2,15,18,19}) = {1,17}.
        Here rules are labelled as follows:
          1: U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          2: U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
          3: U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
          4: U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          5: U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
          6: U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          7: U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
          8: U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          9: U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
          10: U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                      ,isNatKind#(activate(V1)))
          11: U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                      ,isNatKind#(activate(V2)))
          12: U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                      ,isNatKind#(activate(V2)))
          13: U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          14: U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
          15: U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
          16: U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          17: U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
          18: U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
          19: U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
          20: isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                            ,isNatKind#(activate(V1)))
          21: isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
          22: isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                         ,isNatKind#(activate(V1)))
          23: U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
          24: U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
          25: U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
          26: isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          27: isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
          28: isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
** Step 10.b:2: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V1)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
            U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
            U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
            U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
            U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
            U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
            isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
            isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
            isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1
            ,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2
            ,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
             -->_1 U103#(tt(),M,N) -> c_4(isNatKind#(activate(N))):20
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))):18
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):16
          
          2:S:U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))):3
          
          3:S:U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))):4
          
          4:S:U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5
          
          5:S:U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))):18
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):16
             -->_1 U15#(tt(),V2) -> c_10(isNat#(activate(V2))):6
          
          6:S:U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))):18
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):16
          
          7:S:U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U22#(tt(),V1) -> c_13(isNat#(activate(V1))):8
          
          8:S:U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))):18
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):16
          
          9:S:U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                      ,isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                           ,isNatKind#(activate(V2))):10
          
          10:S:U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V2)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                           ,isNatKind#(activate(V2))):11
          
          11:S:U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V2)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):12
          
          12:S:U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))):18
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):16
             -->_1 U35#(tt(),V2) -> c_19(isNat#(activate(V2))):13
          
          13:S:U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))):18
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):16
          
          14:S:U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N))):15
          
          15:S:U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
             -->_1 U83#(tt(),M,N) -> c_30(isNatKind#(activate(N))):24
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))):18
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):16
          
          16:S:isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                             ,isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))):2
          
          17:S:isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):7
          
          18:S:isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                           ,isNatKind#(activate(V1))):9
          
          19:W:U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N))):1
          
          20:W:U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
             -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
          
          21:W:U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
             -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
          
          22:W:U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
             -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
          
          23:W:U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
             -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
          
          24:W:U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
             -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
          
          25:W:U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
             -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
          
          26:W:isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U41#(tt(),V2) -> c_21(isNatKind#(activate(V2))):21
          
          27:W:isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
             -->_1 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_1 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_1 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
          
          28:W:isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
             -->_2 isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2))
                                                  ,isNatKind#(activate(V1))):28
             -->_2 isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1))):27
             -->_2 isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2))
                                                     ,isNatKind#(activate(V1))):26
             -->_1 U61#(tt(),V2) -> c_24(isNatKind#(activate(V2))):22
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          25: U91#(tt(),N) -> c_32(isNatKind#(activate(N)))
          23: U71#(tt(),N) -> c_26(isNatKind#(activate(N)))
          24: U83#(tt(),M,N) -> c_30(isNatKind#(activate(N)))
          20: U103#(tt(),M,N) -> c_4(isNatKind#(activate(N)))
          28: isNatKind#(n__x(V1,V2)) -> c_46(U61#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          27: isNatKind#(n__s(V1)) -> c_45(isNatKind#(activate(V1)))
          26: isNatKind#(n__plus(V1,V2)) -> c_44(U41#(isNatKind(activate(V1)),activate(V2)),isNatKind#(activate(V1)))
          22: U61#(tt(),V2) -> c_24(isNatKind#(activate(V2)))
          21: U41#(tt(),V2) -> c_21(isNatKind#(activate(V2)))
** Step 10.b:3: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)),isNatKind#(activate(V1)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)),isNatKind#(activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
            U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V1)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/2,c_3/2,c_4/1,c_5/5,c_6/2,c_7/2,c_8/2,c_9/2,c_10/1
            ,c_11/0,c_12/2,c_13/1,c_14/0,c_15/2,c_16/2,c_17/2,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/2,c_29/2,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/2
            ,c_41/2,c_42/2,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))):18
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):16
          
          2:S:U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V1)))
             -->_1 U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))):3
          
          3:S:U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2)))
             -->_1 U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V2))):4
          
          4:S:U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                     ,isNatKind#(activate(V2)))
             -->_1 U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):5
          
          5:S:U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))):18
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):16
             -->_1 U15#(tt(),V2) -> c_10(isNat#(activate(V2))):6
          
          6:S:U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))):18
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):16
          
          7:S:U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
             -->_1 U22#(tt(),V1) -> c_13(isNat#(activate(V1))):8
          
          8:S:U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))):18
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):16
          
          9:S:U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                      ,isNatKind#(activate(V1)))
             -->_1 U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                           ,isNatKind#(activate(V2))):10
          
          10:S:U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V2)))
             -->_1 U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                           ,isNatKind#(activate(V2))):11
          
          11:S:U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))
                                       ,isNatKind#(activate(V2)))
             -->_1 U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):12
          
          12:S:U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))):18
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):16
             -->_1 U35#(tt(),V2) -> c_19(isNat#(activate(V2))):13
          
          13:S:U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))):18
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):16
          
          14:S:U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
             -->_1 U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N))):15
          
          15:S:U82#(tt(),M,N) -> c_29(U83#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N)))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                              ,isNatKind#(activate(V1))):18
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):17
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                                 ,isNatKind#(activate(V1))):16
          
          16:S:isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                             ,isNatKind#(activate(V1)))
             -->_1 U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1))):2
          
          17:S:isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1)))
             -->_1 U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)),isNatKind#(activate(V1))):7
          
          18:S:isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                          ,isNatKind#(activate(V1)))
             -->_1 U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))
                                           ,isNatKind#(activate(V1))):9
          
          19:W:U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)),isNatKind#(activate(M)))
             -->_1 U102#(tt(),M,N) -> c_3(U103#(isNat(activate(N)),activate(M),activate(N)),isNat#(activate(N))):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
          U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
          U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
          U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
          U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
          isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
          isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
** Step 10.b:4: Decompose WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
              U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
              U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
              U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
              U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
              isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
              isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          - Weak DPs:
              U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
              U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
              U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
          - Weak TRS:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
              U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
              U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
              U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
              U35(tt(),V2) -> U36(isNat(activate(V2)))
              U36(tt()) -> tt()
              U41(tt(),V2) -> U42(isNatKind(activate(V2)))
              U42(tt()) -> tt()
              U51(tt()) -> tt()
              U61(tt(),V2) -> U62(isNatKind(activate(V2)))
              U62(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(X1,X2)
              activate(n__s(X)) -> s(X)
              activate(n__x(X1,X2)) -> x(X1,X2)
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
              isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
              x(X1,X2) -> n__x(X1,X2)
          - Signature:
              {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
              ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1
              ,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3
              ,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1
              ,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1
              ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1
              ,c_9/2,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0
              ,c_24/1,c_25/0,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1
              ,c_39/0,c_40/1,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#
              ,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#
              ,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
        
        Problem (S)
          - Strict DPs:
              U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
              U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
          - Weak DPs:
              U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
              U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
              U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
              U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
              U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
              U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
              U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
              U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
              isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
              isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
              isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          - Weak TRS:
              0() -> n__0()
              U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
              U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
              U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
              U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
              U15(tt(),V2) -> U16(isNat(activate(V2)))
              U16(tt()) -> tt()
              U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
              U22(tt(),V1) -> U23(isNat(activate(V1)))
              U23(tt()) -> tt()
              U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
              U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
              U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
              U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
              U35(tt(),V2) -> U36(isNat(activate(V2)))
              U36(tt()) -> tt()
              U41(tt(),V2) -> U42(isNatKind(activate(V2)))
              U42(tt()) -> tt()
              U51(tt()) -> tt()
              U61(tt(),V2) -> U62(isNatKind(activate(V2)))
              U62(tt()) -> tt()
              activate(X) -> X
              activate(n__0()) -> 0()
              activate(n__plus(X1,X2)) -> plus(X1,X2)
              activate(n__s(X)) -> s(X)
              activate(n__x(X1,X2)) -> x(X1,X2)
              isNat(n__0()) -> tt()
              isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
              isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
              isNatKind(n__0()) -> tt()
              isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
              isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
              isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
              plus(X1,X2) -> n__plus(X1,X2)
              s(X) -> n__s(X)
              x(X1,X2) -> n__x(X1,X2)
          - Signature:
              {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
              ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1
              ,activate/1,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3
              ,U14#/3,U15#/2,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1
              ,U61#/2,U62#/1,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1
              ,plus#/2,s#/1,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1
              ,c_9/2,c_10/1,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0
              ,c_24/1,c_25/0,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1
              ,c_39/0,c_40/1,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#
              ,U16#,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#
              ,U91#,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
*** Step 10.b:4.a:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
          12: U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          
        Consider the set of all dependency pairs
          1: U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
          2: U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          3: U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          4: U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          5: U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          6: U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
          7: U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
          8: U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
          9: U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          10: U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          11: U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          12: U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          13: U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
          14: U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
          15: U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
          16: isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          17: isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
          18: isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          19: U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
        Processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {1,12}
        These cover all (indirect) predecessors of dependency pairs
          {1,12,13,14,15,19}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
**** Step 10.b:4.a:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1},
          uargs(c_8) = {1},
          uargs(c_9) = {1,2},
          uargs(c_10) = {1},
          uargs(c_12) = {1},
          uargs(c_13) = {1},
          uargs(c_15) = {1},
          uargs(c_16) = {1},
          uargs(c_17) = {1},
          uargs(c_18) = {1,2},
          uargs(c_19) = {1},
          uargs(c_28) = {1},
          uargs(c_29) = {1},
          uargs(c_40) = {1},
          uargs(c_41) = {1},
          uargs(c_42) = {1}
        
        Following symbols are considered usable:
          {0,activate,plus,s,x,0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
          ,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#
          ,isNatKind#,plus#,s#,x#}
        TcT has computed the following interpretation:
                   p(0) = [0]                                 
                          [0]                                 
                p(U101) = [0]                                 
                          [0]                                 
                p(U102) = [0]                                 
                          [0]                                 
                p(U103) = [0]                                 
                          [0]                                 
                p(U104) = [0]                                 
                          [0]                                 
                 p(U11) = [0 0] x1 + [0]                      
                          [0 1]      [0]                      
                 p(U12) = [0 0] x2 + [1 0] x3 + [1]           
                          [1 0]      [0 0]      [0]           
                 p(U13) = [1]                                 
                          [0]                                 
                 p(U14) = [0 1] x1 + [0]                      
                          [0 0]      [0]                      
                 p(U15) = [0]                                 
                          [0]                                 
                 p(U16) = [0]                                 
                          [0]                                 
                 p(U21) = [0]                                 
                          [1]                                 
                 p(U22) = [0 0] x1 + [0]                      
                          [0 1]      [1]                      
                 p(U23) = [0]                                 
                          [1]                                 
                 p(U31) = [0]                                 
                          [0]                                 
                 p(U32) = [0 0] x1 + [1 0] x2 + [0 1] x3 + [0]
                          [0 1]      [0 0]      [0 1]      [1]
                 p(U33) = [0]                                 
                          [0]                                 
                 p(U34) = [0 1] x1 + [0 0] x3 + [0]           
                          [0 0]      [1 0]      [0]           
                 p(U35) = [0]                                 
                          [0]                                 
                 p(U36) = [0]                                 
                          [1]                                 
                 p(U41) = [1 0] x2 + [1]                      
                          [1 0]      [0]                      
                 p(U42) = [0]                                 
                          [1]                                 
                 p(U51) = [0 1] x1 + [0]                      
                          [0 0]      [1]                      
                 p(U61) = [0 0] x2 + [0]                      
                          [0 1]      [0]                      
                 p(U62) = [1]                                 
                          [1]                                 
                 p(U71) = [0]                                 
                          [0]                                 
                 p(U72) = [0]                                 
                          [0]                                 
                 p(U81) = [0]                                 
                          [0]                                 
                 p(U82) = [0]                                 
                          [0]                                 
                 p(U83) = [0]                                 
                          [0]                                 
                 p(U84) = [0]                                 
                          [0]                                 
                 p(U91) = [0]                                 
                          [0]                                 
                 p(U92) = [0]                                 
                          [0]                                 
            p(activate) = [1 0] x1 + [0]                      
                          [0 1]      [0]                      
               p(isNat) = [0 0] x1 + [0]                      
                          [0 1]      [0]                      
           p(isNatKind) = [0 0] x1 + [0]                      
                          [0 1]      [0]                      
                p(n__0) = [0]                                 
                          [0]                                 
             p(n__plus) = [1 1] x1 + [1 1] x2 + [0]           
                          [0 0]      [0 0]      [1]           
                p(n__s) = [1 1] x1 + [0]                      
                          [0 0]      [0]                      
                p(n__x) = [1 0] x1 + [1 1] x2 + [1]           
                          [0 0]      [0 0]      [0]           
                p(plus) = [1 1] x1 + [1 1] x2 + [0]           
                          [0 0]      [0 0]      [1]           
                   p(s) = [1 1] x1 + [0]                      
                          [0 0]      [0]                      
                  p(tt) = [0]                                 
                          [0]                                 
                   p(x) = [1 0] x1 + [1 1] x2 + [1]           
                          [0 0]      [0 0]      [0]           
                  p(0#) = [0]                                 
                          [0]                                 
               p(U101#) = [1 1] x3 + [1]                      
                          [1 0]      [1]                      
               p(U102#) = [1 0] x3 + [1]                      
                          [1 0]      [1]                      
               p(U103#) = [0]                                 
                          [0]                                 
               p(U104#) = [0]                                 
                          [0]                                 
                p(U11#) = [1 1] x2 + [1 1] x3 + [0]           
                          [1 0]      [0 0]      [1]           
                p(U12#) = [1 1] x2 + [1 1] x3 + [0]           
                          [0 1]      [0 1]      [0]           
                p(U13#) = [1 1] x2 + [1 1] x3 + [0]           
                          [0 0]      [0 0]      [0]           
                p(U14#) = [1 0] x2 + [1 1] x3 + [0]           
                          [0 1]      [0 0]      [0]           
                p(U15#) = [1 1] x2 + [0]                      
                          [0 0]      [0]                      
                p(U16#) = [0]                                 
                          [0]                                 
                p(U21#) = [1 1] x2 + [0]                      
                          [0 0]      [0]                      
                p(U22#) = [1 0] x2 + [0]                      
                          [0 1]      [0]                      
                p(U23#) = [0]                                 
                          [0]                                 
                p(U31#) = [1 0] x2 + [1 1] x3 + [1]           
                          [0 0]      [1 0]      [1]           
                p(U32#) = [1 0] x2 + [1 1] x3 + [1]           
                          [0 0]      [0 0]      [0]           
                p(U33#) = [1 0] x2 + [1 1] x3 + [1]           
                          [0 0]      [1 1]      [1]           
                p(U34#) = [1 0] x2 + [1 1] x3 + [1]           
                          [0 0]      [1 1]      [1]           
                p(U35#) = [1 0] x2 + [0]                      
                          [1 0]      [1]                      
                p(U36#) = [0]                                 
                          [0]                                 
                p(U41#) = [0]                                 
                          [0]                                 
                p(U42#) = [0]                                 
                          [0]                                 
                p(U51#) = [0]                                 
                          [0]                                 
                p(U61#) = [0]                                 
                          [0]                                 
                p(U62#) = [0]                                 
                          [0]                                 
                p(U71#) = [0]                                 
                          [0]                                 
                p(U72#) = [0]                                 
                          [0]                                 
                p(U81#) = [1 1] x3 + [1]                      
                          [0 0]      [1]                      
                p(U82#) = [1 0] x3 + [0]                      
                          [1 0]      [1]                      
                p(U83#) = [0]                                 
                          [0]                                 
                p(U84#) = [0]                                 
                          [0]                                 
                p(U91#) = [0]                                 
                          [0]                                 
                p(U92#) = [0]                                 
                          [0]                                 
           p(activate#) = [0]                                 
                          [0]                                 
              p(isNat#) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
          p(isNatKind#) = [0]                                 
                          [0]                                 
               p(plus#) = [0]                                 
                          [0]                                 
                  p(s#) = [0]                                 
                          [0]                                 
                  p(x#) = [0]                                 
                          [0]                                 
                 p(c_1) = [0]                                 
                          [0]                                 
                 p(c_2) = [1 0] x1 + [0]                      
                          [0 1]      [0]                      
                 p(c_3) = [1 0] x1 + [0]                      
                          [0 0]      [1]                      
                 p(c_4) = [0]                                 
                          [0]                                 
                 p(c_5) = [0]                                 
                          [0]                                 
                 p(c_6) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                 p(c_7) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                 p(c_8) = [1 1] x1 + [0]                      
                          [0 0]      [0]                      
                 p(c_9) = [1 0] x1 + [1 0] x2 + [0]           
                          [0 0]      [0 0]      [0]           
                p(c_10) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_11) = [0]                                 
                          [0]                                 
                p(c_12) = [1 1] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_13) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_14) = [0]                                 
                          [0]                                 
                p(c_15) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_16) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_17) = [1 0] x1 + [0]                      
                          [0 1]      [0]                      
                p(c_18) = [1 0] x1 + [1 0] x2 + [0]           
                          [0 1]      [0 0]      [0]           
                p(c_19) = [1 0] x1 + [0]                      
                          [1 0]      [1]                      
                p(c_20) = [0]                                 
                          [0]                                 
                p(c_21) = [0]                                 
                          [0]                                 
                p(c_22) = [0]                                 
                          [0]                                 
                p(c_23) = [0]                                 
                          [0]                                 
                p(c_24) = [0]                                 
                          [0]                                 
                p(c_25) = [0]                                 
                          [0]                                 
                p(c_26) = [0]                                 
                          [0]                                 
                p(c_27) = [0]                                 
                          [0]                                 
                p(c_28) = [1 0] x1 + [1]                      
                          [0 0]      [0]                      
                p(c_29) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_30) = [0]                                 
                          [0]                                 
                p(c_31) = [0]                                 
                          [0]                                 
                p(c_32) = [0]                                 
                          [0]                                 
                p(c_33) = [0]                                 
                          [0]                                 
                p(c_34) = [0]                                 
                          [0]                                 
                p(c_35) = [0]                                 
                          [0]                                 
                p(c_36) = [0]                                 
                          [0]                                 
                p(c_37) = [0]                                 
                          [0]                                 
                p(c_38) = [0]                                 
                          [0]                                 
                p(c_39) = [0]                                 
                          [0]                                 
                p(c_40) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_41) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_42) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_43) = [0]                                 
                          [0]                                 
                p(c_44) = [0]                                 
                          [0]                                 
                p(c_45) = [0]                                 
                          [0]                                 
                p(c_46) = [0]                                 
                          [0]                                 
                p(c_47) = [0]                                 
                          [0]                                 
                p(c_48) = [0]                                 
                          [0]                                 
                p(c_49) = [0]                                 
                          [0]                                 
        
        Following rules are strictly oriented:
         U102#(tt(),M,N) = [1 0] N + [1]                                                    
                           [1 0]     [1]                                                    
                         > [1 0] N + [0]                                                    
                           [0 0]     [1]                                                    
                         = c_3(isNat#(activate(N)))                                         
        
        U34#(tt(),V1,V2) = [1 0] V1 + [1 1] V2 + [1]                                        
                           [0 0]      [1 1]      [1]                                        
                         > [1 0] V1 + [1 0] V2 + [0]                                        
                           [0 0]      [1 0]      [1]                                        
                         = c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
        
        Following rules are (at-least) weakly oriented:
                 U101#(tt(),M,N) =  [1 1] N + [1]                                                   
                                    [1 0]     [1]                                                   
                                 >= [1 0] N + [1]                                                   
                                    [1 0]     [1]                                                   
                                 =  c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))      
        
                U11#(tt(),V1,V2) =  [1 1] V1 + [1 1] V2 + [0]                                       
                                    [1 0]      [0 0]      [1]                                       
                                 >= [1 1] V1 + [1 1] V2 + [0]                                       
                                    [0 0]      [0 0]      [0]                                       
                                 =  c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))    
        
                U12#(tt(),V1,V2) =  [1 1] V1 + [1 1] V2 + [0]                                       
                                    [0 1]      [0 1]      [0]                                       
                                 >= [1 1] V1 + [1 1] V2 + [0]                                       
                                    [0 0]      [0 0]      [0]                                       
                                 =  c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U13#(tt(),V1,V2) =  [1 1] V1 + [1 1] V2 + [0]                                       
                                    [0 0]      [0 0]      [0]                                       
                                 >= [1 1] V1 + [1 1] V2 + [0]                                       
                                    [0 0]      [0 0]      [0]                                       
                                 =  c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U14#(tt(),V1,V2) =  [1 0] V1 + [1 1] V2 + [0]                                       
                                    [0 1]      [0 0]      [0]                                       
                                 >= [1 0] V1 + [1 1] V2 + [0]                                       
                                    [0 0]      [0 0]      [0]                                       
                                 =  c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
                   U15#(tt(),V2) =  [1 1] V2 + [0]                                                  
                                    [0 0]      [0]                                                  
                                 >= [1 0] V2 + [0]                                                  
                                    [0 0]      [0]                                                  
                                 =  c_10(isNat#(activate(V2)))                                      
        
                   U21#(tt(),V1) =  [1 1] V1 + [0]                                                  
                                    [0 0]      [0]                                                  
                                 >= [1 1] V1 + [0]                                                  
                                    [0 0]      [0]                                                  
                                 =  c_12(U22#(isNatKind(activate(V1)),activate(V1)))                
        
                   U22#(tt(),V1) =  [1 0] V1 + [0]                                                  
                                    [0 1]      [0]                                                  
                                 >= [1 0] V1 + [0]                                                  
                                    [0 0]      [0]                                                  
                                 =  c_13(isNat#(activate(V1)))                                      
        
                U31#(tt(),V1,V2) =  [1 0] V1 + [1 1] V2 + [1]                                       
                                    [0 0]      [1 0]      [1]                                       
                                 >= [1 0] V1 + [1 1] V2 + [1]                                       
                                    [0 0]      [0 0]      [0]                                       
                                 =  c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))   
        
                U32#(tt(),V1,V2) =  [1 0] V1 + [1 1] V2 + [1]                                       
                                    [0 0]      [0 0]      [0]                                       
                                 >= [1 0] V1 + [1 1] V2 + [1]                                       
                                    [0 0]      [0 0]      [0]                                       
                                 =  c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))   
        
                U33#(tt(),V1,V2) =  [1 0] V1 + [1 1] V2 + [1]                                       
                                    [0 0]      [1 1]      [1]                                       
                                 >= [1 0] V1 + [1 1] V2 + [1]                                       
                                    [0 0]      [1 1]      [1]                                       
                                 =  c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))   
        
                   U35#(tt(),V2) =  [1 0] V2 + [0]                                                  
                                    [1 0]      [1]                                                  
                                 >= [1 0] V2 + [0]                                                  
                                    [1 0]      [1]                                                  
                                 =  c_19(isNat#(activate(V2)))                                      
        
                  U81#(tt(),M,N) =  [1 1] N + [1]                                                   
                                    [0 0]     [1]                                                   
                                 >= [1 0] N + [1]                                                   
                                    [0 0]     [0]                                                   
                                 =  c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))      
        
                  U82#(tt(),M,N) =  [1 0] N + [0]                                                   
                                    [1 0]     [1]                                                   
                                 >= [1 0] N + [0]                                                   
                                    [0 0]     [0]                                                   
                                 =  c_29(isNat#(activate(N)))                                       
        
          isNat#(n__plus(V1,V2)) =  [1 1] V1 + [1 1] V2 + [0]                                       
                                    [0 0]      [0 0]      [0]                                       
                                 >= [1 1] V1 + [1 1] V2 + [0]                                       
                                    [0 0]      [0 0]      [0]                                       
                                 =  c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))   
        
                isNat#(n__s(V1)) =  [1 1] V1 + [0]                                                  
                                    [0 0]      [0]                                                  
                                 >= [1 1] V1 + [0]                                                  
                                    [0 0]      [0]                                                  
                                 =  c_41(U21#(isNatKind(activate(V1)),activate(V1)))                
        
             isNat#(n__x(V1,V2)) =  [1 0] V1 + [1 1] V2 + [1]                                       
                                    [0 0]      [0 0]      [0]                                       
                                 >= [1 0] V1 + [1 1] V2 + [1]                                       
                                    [0 0]      [0 0]      [0]                                       
                                 =  c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))   
        
                             0() =  [0]                                                             
                                    [0]                                                             
                                 >= [0]                                                             
                                    [0]                                                             
                                 =  n__0()                                                          
        
                     activate(X) =  [1 0] X + [0]                                                   
                                    [0 1]     [0]                                                   
                                 >= [1 0] X + [0]                                                   
                                    [0 1]     [0]                                                   
                                 =  X                                                               
        
                activate(n__0()) =  [0]                                                             
                                    [0]                                                             
                                 >= [0]                                                             
                                    [0]                                                             
                                 =  0()                                                             
        
        activate(n__plus(X1,X2)) =  [1 1] X1 + [1 1] X2 + [0]                                       
                                    [0 0]      [0 0]      [1]                                       
                                 >= [1 1] X1 + [1 1] X2 + [0]                                       
                                    [0 0]      [0 0]      [1]                                       
                                 =  plus(X1,X2)                                                     
        
               activate(n__s(X)) =  [1 1] X + [0]                                                   
                                    [0 0]     [0]                                                   
                                 >= [1 1] X + [0]                                                   
                                    [0 0]     [0]                                                   
                                 =  s(X)                                                            
        
           activate(n__x(X1,X2)) =  [1 0] X1 + [1 1] X2 + [1]                                       
                                    [0 0]      [0 0]      [0]                                       
                                 >= [1 0] X1 + [1 1] X2 + [1]                                       
                                    [0 0]      [0 0]      [0]                                       
                                 =  x(X1,X2)                                                        
        
                     plus(X1,X2) =  [1 1] X1 + [1 1] X2 + [0]                                       
                                    [0 0]      [0 0]      [1]                                       
                                 >= [1 1] X1 + [1 1] X2 + [0]                                       
                                    [0 0]      [0 0]      [1]                                       
                                 =  n__plus(X1,X2)                                                  
        
                            s(X) =  [1 1] X + [0]                                                   
                                    [0 0]     [0]                                                   
                                 >= [1 1] X + [0]                                                   
                                    [0 0]     [0]                                                   
                                 =  n__s(X)                                                         
        
                        x(X1,X2) =  [1 0] X1 + [1 1] X2 + [1]                                       
                                    [0 0]      [0 0]      [0]                                       
                                 >= [1 0] X1 + [1 1] X2 + [1]                                       
                                    [0 0]      [0 0]      [0]                                       
                                 =  n__x(X1,X2)                                                     
        
**** Step 10.b:4.a:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 10.b:4.a:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          6: U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
          
        Consider the set of all dependency pairs
          1: U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          2: U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          3: U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          4: U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          5: U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
          6: U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
          7: U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
          8: U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          9: U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          10: U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          11: isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          12: isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
          13: isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          14: U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
          15: U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
          16: U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          17: U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
          18: U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
          19: U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
        Processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {1,6}
        These cover all (indirect) predecessors of dependency pairs
          {1,2,3,4,5,6,7,14,15,18,19}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
***** Step 10.b:4.a:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1},
          uargs(c_8) = {1},
          uargs(c_9) = {1,2},
          uargs(c_10) = {1},
          uargs(c_12) = {1},
          uargs(c_13) = {1},
          uargs(c_15) = {1},
          uargs(c_16) = {1},
          uargs(c_17) = {1},
          uargs(c_18) = {1,2},
          uargs(c_19) = {1},
          uargs(c_28) = {1},
          uargs(c_29) = {1},
          uargs(c_40) = {1},
          uargs(c_41) = {1},
          uargs(c_42) = {1}
        
        Following symbols are considered usable:
          {0,activate,plus,s,x,0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
          ,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#
          ,isNatKind#,plus#,s#,x#}
        TcT has computed the following interpretation:
                   p(0) = [0]                      
                          [1]                      
                p(U101) = [0]                      
                          [0]                      
                p(U102) = [0]                      
                          [0]                      
                p(U103) = [0]                      
                          [0]                      
                p(U104) = [0]                      
                          [0]                      
                 p(U11) = [1]                      
                          [0]                      
                 p(U12) = [1 0] x2 + [0]           
                          [1 1]      [0]           
                 p(U13) = [1 0] x2 + [0]           
                          [0 0]      [1]           
                 p(U14) = [0 0] x2 + [1 1] x3 + [1]
                          [0 1]      [0 0]      [0]
                 p(U15) = [0]                      
                          [1]                      
                 p(U16) = [0]                      
                          [1]                      
                 p(U21) = [0]                      
                          [0]                      
                 p(U22) = [1 0] x2 + [1]           
                          [0 0]      [0]           
                 p(U23) = [0]                      
                          [0]                      
                 p(U31) = [0 0] x2 + [0]           
                          [1 0]      [1]           
                 p(U32) = [1 0] x2 + [1]           
                          [0 0]      [1]           
                 p(U33) = [0 0] x2 + [0 0] x3 + [1]
                          [1 0]      [1 0]      [0]
                 p(U34) = [1 0] x3 + [0]           
                          [0 0]      [0]           
                 p(U35) = [1]                      
                          [1]                      
                 p(U36) = [0 1] x1 + [1]           
                          [0 0]      [0]           
                 p(U41) = [1]                      
                          [0]                      
                 p(U42) = [0]                      
                          [0]                      
                 p(U51) = [0]                      
                          [0]                      
                 p(U61) = [0 1] x2 + [0]           
                          [0 0]      [1]           
                 p(U62) = [0]                      
                          [0]                      
                 p(U71) = [0]                      
                          [0]                      
                 p(U72) = [0]                      
                          [0]                      
                 p(U81) = [0]                      
                          [0]                      
                 p(U82) = [0]                      
                          [0]                      
                 p(U83) = [0]                      
                          [0]                      
                 p(U84) = [0]                      
                          [0]                      
                 p(U91) = [0]                      
                          [0]                      
                 p(U92) = [0]                      
                          [0]                      
            p(activate) = [1 0] x1 + [0]           
                          [0 1]      [0]           
               p(isNat) = [0]                      
                          [1]                      
           p(isNatKind) = [0]                      
                          [0]                      
                p(n__0) = [0]                      
                          [1]                      
             p(n__plus) = [0 0] x1 + [0 0] x2 + [1]
                          [0 1]      [0 1]      [1]
                p(n__s) = [0 0] x1 + [1]           
                          [0 1]      [1]           
                p(n__x) = [0 0] x1 + [0 0] x2 + [1]
                          [0 1]      [0 1]      [0]
                p(plus) = [0 0] x1 + [0 0] x2 + [1]
                          [0 1]      [0 1]      [1]
                   p(s) = [0 0] x1 + [1]           
                          [0 1]      [1]           
                  p(tt) = [0]                      
                          [0]                      
                   p(x) = [0 0] x1 + [0 0] x2 + [1]
                          [0 1]      [0 1]      [0]
                  p(0#) = [0]                      
                          [0]                      
               p(U101#) = [0 0] x2 + [1 1] x3 + [0]
                          [1 1]      [1 1]      [1]
               p(U102#) = [0 0] x2 + [1 1] x3 + [0]
                          [1 0]      [0 1]      [1]
               p(U103#) = [0]                      
                          [0]                      
               p(U104#) = [0]                      
                          [0]                      
                p(U11#) = [0 1] x2 + [0 1] x3 + [1]
                          [1 1]      [0 1]      [1]
                p(U12#) = [0 1] x2 + [0 1] x3 + [0]
                          [0 0]      [0 0]      [1]
                p(U13#) = [0 1] x2 + [0 1] x3 + [0]
                          [0 0]      [0 0]      [0]
                p(U14#) = [0 1] x2 + [0 1] x3 + [0]
                          [0 0]      [0 0]      [1]
                p(U15#) = [0 1] x2 + [0]           
                          [1 0]      [1]           
                p(U16#) = [0]                      
                          [0]                      
                p(U21#) = [0 1] x2 + [1]           
                          [1 1]      [1]           
                p(U22#) = [0 1] x2 + [0]           
                          [0 1]      [0]           
                p(U23#) = [0]                      
                          [0]                      
                p(U31#) = [0 1] x2 + [0 1] x3 + [0]
                          [0 1]      [1 0]      [0]
                p(U32#) = [0 1] x2 + [0 1] x3 + [0]
                          [0 1]      [0 0]      [0]
                p(U33#) = [0 1] x2 + [0 1] x3 + [0]
                          [0 0]      [1 0]      [0]
                p(U34#) = [0 1] x2 + [0 1] x3 + [0]
                          [0 0]      [0 1]      [1]
                p(U35#) = [0 1] x2 + [0]           
                          [0 1]      [0]           
                p(U36#) = [0]                      
                          [0]                      
                p(U41#) = [0]                      
                          [0]                      
                p(U42#) = [0]                      
                          [0]                      
                p(U51#) = [0]                      
                          [0]                      
                p(U61#) = [0]                      
                          [0]                      
                p(U62#) = [0]                      
                          [0]                      
                p(U71#) = [0]                      
                          [0]                      
                p(U72#) = [0]                      
                          [0]                      
                p(U81#) = [1 1] x3 + [1]           
                          [1 0]      [1]           
                p(U82#) = [0 0] x2 + [0 1] x3 + [1]
                          [0 1]      [1 0]      [1]
                p(U83#) = [0]                      
                          [0]                      
                p(U84#) = [0]                      
                          [0]                      
                p(U91#) = [0]                      
                          [0]                      
                p(U92#) = [0]                      
                          [0]                      
           p(activate#) = [0]                      
                          [0]                      
              p(isNat#) = [0 1] x1 + [0]           
                          [0 0]      [1]           
          p(isNatKind#) = [0]                      
                          [0]                      
               p(plus#) = [0]                      
                          [0]                      
                  p(s#) = [0]                      
                          [0]                      
                  p(x#) = [0]                      
                          [0]                      
                 p(c_1) = [0]                      
                          [0]                      
                 p(c_2) = [1 0] x1 + [0]           
                          [1 0]      [0]           
                 p(c_3) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                 p(c_4) = [0]                      
                          [0]                      
                 p(c_5) = [0]                      
                          [0]                      
                 p(c_6) = [1 0] x1 + [0]           
                          [1 0]      [1]           
                 p(c_7) = [1 0] x1 + [0]           
                          [0 0]      [1]           
                 p(c_8) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                 p(c_9) = [1 0] x1 + [1 0] x2 + [0]
                          [0 0]      [0 0]      [1]
                p(c_10) = [1 0] x1 + [0]           
                          [0 1]      [0]           
                p(c_11) = [0]                      
                          [0]                      
                p(c_12) = [1 0] x1 + [0]           
                          [0 1]      [1]           
                p(c_13) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_14) = [0]                      
                          [0]                      
                p(c_15) = [1 0] x1 + [0]           
                          [0 1]      [0]           
                p(c_16) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_17) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_18) = [1 0] x1 + [1 0] x2 + [0]
                          [0 1]      [0 0]      [0]
                p(c_19) = [1 0] x1 + [0]           
                          [1 0]      [0]           
                p(c_20) = [0]                      
                          [0]                      
                p(c_21) = [0]                      
                          [0]                      
                p(c_22) = [0]                      
                          [0]                      
                p(c_23) = [0]                      
                          [0]                      
                p(c_24) = [0]                      
                          [0]                      
                p(c_25) = [0]                      
                          [0]                      
                p(c_26) = [0]                      
                          [0]                      
                p(c_27) = [0]                      
                          [0]                      
                p(c_28) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_29) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_30) = [0]                      
                          [0]                      
                p(c_31) = [0]                      
                          [0]                      
                p(c_32) = [0]                      
                          [0]                      
                p(c_33) = [0]                      
                          [0]                      
                p(c_34) = [0]                      
                          [0]                      
                p(c_35) = [0]                      
                          [0]                      
                p(c_36) = [0]                      
                          [0]                      
                p(c_37) = [0]                      
                          [0]                      
                p(c_38) = [0]                      
                          [0]                      
                p(c_39) = [0]                      
                          [0]                      
                p(c_40) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_41) = [1 0] x1 + [0]           
                          [0 0]      [1]           
                p(c_42) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_43) = [0]                      
                          [0]                      
                p(c_44) = [0]                      
                          [0]                      
                p(c_45) = [0]                      
                          [0]                      
                p(c_46) = [0]                      
                          [0]                      
                p(c_47) = [0]                      
                          [0]                      
                p(c_48) = [0]                      
                          [0]                      
                p(c_49) = [0]                      
                          [0]                      
        
        Following rules are strictly oriented:
        U11#(tt(),V1,V2) = [0 1] V1 + [0 1] V2 + [1]                                   
                           [1 1]      [0 1]      [1]                                   
                         > [0 1] V1 + [0 1] V2 + [0]                                   
                           [0 1]      [0 1]      [1]                                   
                         = c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        
           U21#(tt(),V1) = [0 1] V1 + [1]                                              
                           [1 1]      [1]                                              
                         > [0 1] V1 + [0]                                              
                           [0 1]      [1]                                              
                         = c_12(U22#(isNatKind(activate(V1)),activate(V1)))            
        
        
        Following rules are (at-least) weakly oriented:
                 U101#(tt(),M,N) =  [0 0] M + [1 1] N + [0]                                          
                                    [1 1]     [1 1]     [1]                                          
                                 >= [1 1] N + [0]                                                    
                                    [1 1]     [0]                                                    
                                 =  c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))       
        
                 U102#(tt(),M,N) =  [0 0] M + [1 1] N + [0]                                          
                                    [1 0]     [0 1]     [1]                                          
                                 >= [0 1] N + [0]                                                    
                                    [0 0]     [0]                                                    
                                 =  c_3(isNat#(activate(N)))                                         
        
                U12#(tt(),V1,V2) =  [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 >= [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 =  c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))     
        
                U13#(tt(),V1,V2) =  [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 >= [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))     
        
                U14#(tt(),V1,V2) =  [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 >= [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 =  c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) 
        
                   U15#(tt(),V2) =  [0 1] V2 + [0]                                                   
                                    [1 0]      [1]                                                   
                                 >= [0 1] V2 + [0]                                                   
                                    [0 0]      [1]                                                   
                                 =  c_10(isNat#(activate(V2)))                                       
        
                   U22#(tt(),V1) =  [0 1] V1 + [0]                                                   
                                    [0 1]      [0]                                                   
                                 >= [0 1] V1 + [0]                                                   
                                    [0 0]      [0]                                                   
                                 =  c_13(isNat#(activate(V1)))                                       
        
                U31#(tt(),V1,V2) =  [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 1]      [1 0]      [0]                                        
                                 >= [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 1]      [0 0]      [0]                                        
                                 =  c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))    
        
                U32#(tt(),V1,V2) =  [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 1]      [0 0]      [0]                                        
                                 >= [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U33#(tt(),V1,V2) =  [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 0]      [1 0]      [0]                                        
                                 >= [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U34#(tt(),V1,V2) =  [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 0]      [0 1]      [1]                                        
                                 >= [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 0]      [0 1]      [0]                                        
                                 =  c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
                   U35#(tt(),V2) =  [0 1] V2 + [0]                                                   
                                    [0 1]      [0]                                                   
                                 >= [0 1] V2 + [0]                                                   
                                    [0 1]      [0]                                                   
                                 =  c_19(isNat#(activate(V2)))                                       
        
                  U81#(tt(),M,N) =  [1 1] N + [1]                                                    
                                    [1 0]     [1]                                                    
                                 >= [0 1] N + [1]                                                    
                                    [0 0]     [0]                                                    
                                 =  c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))       
        
                  U82#(tt(),M,N) =  [0 0] M + [0 1] N + [1]                                          
                                    [0 1]     [1 0]     [1]                                          
                                 >= [0 1] N + [0]                                                    
                                    [0 0]     [0]                                                    
                                 =  c_29(isNat#(activate(N)))                                        
        
          isNat#(n__plus(V1,V2)) =  [0 1] V1 + [0 1] V2 + [1]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 >= [0 1] V1 + [0 1] V2 + [1]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))    
        
                isNat#(n__s(V1)) =  [0 1] V1 + [1]                                                   
                                    [0 0]      [1]                                                   
                                 >= [0 1] V1 + [1]                                                   
                                    [0 0]      [1]                                                   
                                 =  c_41(U21#(isNatKind(activate(V1)),activate(V1)))                 
        
             isNat#(n__x(V1,V2)) =  [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 >= [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))    
        
                             0() =  [0]                                                              
                                    [1]                                                              
                                 >= [0]                                                              
                                    [1]                                                              
                                 =  n__0()                                                           
        
                     activate(X) =  [1 0] X + [0]                                                    
                                    [0 1]     [0]                                                    
                                 >= [1 0] X + [0]                                                    
                                    [0 1]     [0]                                                    
                                 =  X                                                                
        
                activate(n__0()) =  [0]                                                              
                                    [1]                                                              
                                 >= [0]                                                              
                                    [1]                                                              
                                 =  0()                                                              
        
        activate(n__plus(X1,X2)) =  [0 0] X1 + [0 0] X2 + [1]                                        
                                    [0 1]      [0 1]      [1]                                        
                                 >= [0 0] X1 + [0 0] X2 + [1]                                        
                                    [0 1]      [0 1]      [1]                                        
                                 =  plus(X1,X2)                                                      
        
               activate(n__s(X)) =  [0 0] X + [1]                                                    
                                    [0 1]     [1]                                                    
                                 >= [0 0] X + [1]                                                    
                                    [0 1]     [1]                                                    
                                 =  s(X)                                                             
        
           activate(n__x(X1,X2)) =  [0 0] X1 + [0 0] X2 + [1]                                        
                                    [0 1]      [0 1]      [0]                                        
                                 >= [0 0] X1 + [0 0] X2 + [1]                                        
                                    [0 1]      [0 1]      [0]                                        
                                 =  x(X1,X2)                                                         
        
                     plus(X1,X2) =  [0 0] X1 + [0 0] X2 + [1]                                        
                                    [0 1]      [0 1]      [1]                                        
                                 >= [0 0] X1 + [0 0] X2 + [1]                                        
                                    [0 1]      [0 1]      [1]                                        
                                 =  n__plus(X1,X2)                                                   
        
                            s(X) =  [0 0] X + [1]                                                    
                                    [0 1]     [1]                                                    
                                 >= [0 0] X + [1]                                                    
                                    [0 1]     [1]                                                    
                                 =  n__s(X)                                                          
        
                        x(X1,X2) =  [0 0] X1 + [0 0] X2 + [1]                                        
                                    [0 1]      [0 1]      [0]                                        
                                 >= [0 0] X1 + [0 0] X2 + [1]                                        
                                    [0 1]      [0 1]      [0]                                        
                                 =  n__x(X1,X2)                                                      
        
***** Step 10.b:4.a:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 10.b:4.a:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          3: U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          
        Consider the set of all dependency pairs
          1: U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          2: U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          3: U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          4: isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          5: isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
          6: isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          7: U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
          8: U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
          9: U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          10: U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          11: U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          12: U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          13: U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
          14: U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
          15: U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
          16: U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          17: U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
          18: U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
          19: U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
        Processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {3}
        These cover all (indirect) predecessors of dependency pairs
          {3,7,8,16,17,18,19}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
****** Step 10.b:4.a:1.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1},
          uargs(c_8) = {1},
          uargs(c_9) = {1,2},
          uargs(c_10) = {1},
          uargs(c_12) = {1},
          uargs(c_13) = {1},
          uargs(c_15) = {1},
          uargs(c_16) = {1},
          uargs(c_17) = {1},
          uargs(c_18) = {1,2},
          uargs(c_19) = {1},
          uargs(c_28) = {1},
          uargs(c_29) = {1},
          uargs(c_40) = {1},
          uargs(c_41) = {1},
          uargs(c_42) = {1}
        
        Following symbols are considered usable:
          {0,activate,plus,s,x,0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
          ,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#
          ,isNatKind#,plus#,s#,x#}
        TcT has computed the following interpretation:
                   p(0) = [0]                      
                          [1]                      
                p(U101) = [0]                      
                          [0]                      
                p(U102) = [0]                      
                          [0]                      
                p(U103) = [0]                      
                          [0]                      
                p(U104) = [0]                      
                          [0]                      
                 p(U11) = [0]                      
                          [1]                      
                 p(U12) = [1 0] x3 + [0]           
                          [0 0]      [0]           
                 p(U13) = [0 0] x2 + [0]           
                          [0 1]      [0]           
                 p(U14) = [0 0] x2 + [0 0] x3 + [0]
                          [0 1]      [0 1]      [1]
                 p(U15) = [1]                      
                          [1]                      
                 p(U16) = [1]                      
                          [1]                      
                 p(U21) = [1]                      
                          [0]                      
                 p(U22) = [0]                      
                          [1]                      
                 p(U23) = [0 1] x1 + [0]           
                          [0 0]      [0]           
                 p(U31) = [1 1] x2 + [0]           
                          [0 0]      [1]           
                 p(U32) = [1 0] x2 + [0]           
                          [1 0]      [0]           
                 p(U33) = [1]                      
                          [1]                      
                 p(U34) = [1]                      
                          [0]                      
                 p(U35) = [0 0] x1 + [0]           
                          [1 1]      [1]           
                 p(U36) = [0 1] x1 + [0]           
                          [1 1]      [1]           
                 p(U41) = [1]                      
                          [0]                      
                 p(U42) = [1]                      
                          [1]                      
                 p(U51) = [0]                      
                          [0]                      
                 p(U61) = [1]                      
                          [1]                      
                 p(U62) = [1]                      
                          [0]                      
                 p(U71) = [0]                      
                          [0]                      
                 p(U72) = [0]                      
                          [0]                      
                 p(U81) = [0]                      
                          [0]                      
                 p(U82) = [0]                      
                          [0]                      
                 p(U83) = [0]                      
                          [0]                      
                 p(U84) = [0]                      
                          [0]                      
                 p(U91) = [0]                      
                          [0]                      
                 p(U92) = [0]                      
                          [0]                      
            p(activate) = [1 0] x1 + [0]           
                          [0 1]      [0]           
               p(isNat) = [0 0] x1 + [1]           
                          [0 1]      [1]           
           p(isNatKind) = [0]                      
                          [0]                      
                p(n__0) = [0]                      
                          [1]                      
             p(n__plus) = [0 0] x1 + [0 0] x2 + [1]
                          [0 1]      [0 1]      [1]
                p(n__s) = [0 0] x1 + [0]           
                          [0 1]      [0]           
                p(n__x) = [0 0] x1 + [0 0] x2 + [0]
                          [0 1]      [0 1]      [1]
                p(plus) = [0 0] x1 + [0 0] x2 + [1]
                          [0 1]      [0 1]      [1]
                   p(s) = [0 0] x1 + [0]           
                          [0 1]      [0]           
                  p(tt) = [0]                      
                          [0]                      
                   p(x) = [0 0] x1 + [0 0] x2 + [0]
                          [0 1]      [0 1]      [1]
                  p(0#) = [0]                      
                          [0]                      
               p(U101#) = [1 1] x2 + [1 1] x3 + [1]
                          [1 0]      [1 1]      [0]
               p(U102#) = [1 0] x2 + [0 1] x3 + [0]
                          [0 0]      [1 0]      [1]
               p(U103#) = [0]                      
                          [0]                      
               p(U104#) = [0]                      
                          [0]                      
                p(U11#) = [0 1] x2 + [0 1] x3 + [1]
                          [0 0]      [0 0]      [1]
                p(U12#) = [0 1] x2 + [0 1] x3 + [0]
                          [0 0]      [0 0]      [1]
                p(U13#) = [0 1] x2 + [0 1] x3 + [0]
                          [0 0]      [0 0]      [0]
                p(U14#) = [0 1] x2 + [0 1] x3 + [0]
                          [0 0]      [0 0]      [0]
                p(U15#) = [0 1] x2 + [0]           
                          [0 1]      [0]           
                p(U16#) = [0]                      
                          [0]                      
                p(U21#) = [0 1] x2 + [0]           
                          [0 0]      [0]           
                p(U22#) = [0 1] x2 + [0]           
                          [0 0]      [1]           
                p(U23#) = [0]                      
                          [0]                      
                p(U31#) = [0 1] x2 + [0 1] x3 + [1]
                          [0 0]      [0 0]      [1]
                p(U32#) = [0 1] x2 + [0 1] x3 + [1]
                          [0 0]      [0 0]      [0]
                p(U33#) = [0 1] x2 + [0 1] x3 + [1]
                          [0 0]      [0 0]      [1]
                p(U34#) = [0 1] x2 + [0 1] x3 + [0]
                          [0 1]      [0 0]      [0]
                p(U35#) = [0 1] x2 + [0]           
                          [0 1]      [0]           
                p(U36#) = [0]                      
                          [0]                      
                p(U41#) = [0]                      
                          [0]                      
                p(U42#) = [0]                      
                          [0]                      
                p(U51#) = [0]                      
                          [0]                      
                p(U61#) = [0]                      
                          [0]                      
                p(U62#) = [0]                      
                          [0]                      
                p(U71#) = [0]                      
                          [0]                      
                p(U72#) = [0]                      
                          [0]                      
                p(U81#) = [1 0] x2 + [1 1] x3 + [1]
                          [1 1]      [0 1]      [1]
                p(U82#) = [0 0] x2 + [1 1] x3 + [1]
                          [1 0]      [0 0]      [1]
                p(U83#) = [0]                      
                          [0]                      
                p(U84#) = [0]                      
                          [0]                      
                p(U91#) = [0]                      
                          [0]                      
                p(U92#) = [0]                      
                          [0]                      
           p(activate#) = [0]                      
                          [0]                      
              p(isNat#) = [0 1] x1 + [0]           
                          [1 0]      [0]           
          p(isNatKind#) = [0]                      
                          [0]                      
               p(plus#) = [0]                      
                          [0]                      
                  p(s#) = [0]                      
                          [0]                      
                  p(x#) = [0]                      
                          [0]                      
                 p(c_1) = [0]                      
                          [0]                      
                 p(c_2) = [1 0] x1 + [1]           
                          [1 0]      [0]           
                 p(c_3) = [1 0] x1 + [0]           
                          [0 0]      [1]           
                 p(c_4) = [0]                      
                          [0]                      
                 p(c_5) = [0]                      
                          [0]                      
                 p(c_6) = [1 0] x1 + [0]           
                          [0 0]      [1]           
                 p(c_7) = [1 0] x1 + [0]           
                          [0 0]      [1]           
                 p(c_8) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                 p(c_9) = [1 0] x1 + [1 0] x2 + [0]
                          [0 0]      [0 0]      [0]
                p(c_10) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_11) = [0]                      
                          [0]                      
                p(c_12) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_13) = [1 0] x1 + [0]           
                          [0 0]      [1]           
                p(c_14) = [0]                      
                          [0]                      
                p(c_15) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_16) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_17) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_18) = [1 0] x1 + [1 0] x2 + [0]
                          [0 0]      [0 0]      [0]
                p(c_19) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_20) = [0]                      
                          [0]                      
                p(c_21) = [0]                      
                          [0]                      
                p(c_22) = [0]                      
                          [0]                      
                p(c_23) = [0]                      
                          [0]                      
                p(c_24) = [0]                      
                          [0]                      
                p(c_25) = [0]                      
                          [0]                      
                p(c_26) = [0]                      
                          [0]                      
                p(c_27) = [0]                      
                          [0]                      
                p(c_28) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_29) = [1 1] x1 + [0]           
                          [0 0]      [0]           
                p(c_30) = [0]                      
                          [0]                      
                p(c_31) = [0]                      
                          [0]                      
                p(c_32) = [0]                      
                          [0]                      
                p(c_33) = [0]                      
                          [0]                      
                p(c_34) = [0]                      
                          [0]                      
                p(c_35) = [0]                      
                          [0]                      
                p(c_36) = [0]                      
                          [0]                      
                p(c_37) = [0]                      
                          [0]                      
                p(c_38) = [0]                      
                          [0]                      
                p(c_39) = [0]                      
                          [0]                      
                p(c_40) = [1 0] x1 + [0]           
                          [0 1]      [0]           
                p(c_41) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_42) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_43) = [0]                      
                          [0]                      
                p(c_44) = [0]                      
                          [0]                      
                p(c_45) = [0]                      
                          [0]                      
                p(c_46) = [0]                      
                          [0]                      
                p(c_47) = [0]                      
                          [0]                      
                p(c_48) = [0]                      
                          [0]                      
                p(c_49) = [0]                      
                          [0]                      
        
        Following rules are strictly oriented:
        U33#(tt(),V1,V2) = [0 1] V1 + [0 1] V2 + [1]                                    
                           [0 0]      [0 0]      [1]                                    
                         > [0 1] V1 + [0 1] V2 + [0]                                    
                           [0 0]      [0 0]      [0]                                    
                         = c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
        
        
        Following rules are (at-least) weakly oriented:
                 U101#(tt(),M,N) =  [1 1] M + [1 1] N + [1]                                          
                                    [1 0]     [1 1]     [0]                                          
                                 >= [1 0] M + [0 1] N + [1]                                          
                                    [1 0]     [0 1]     [0]                                          
                                 =  c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))       
        
                 U102#(tt(),M,N) =  [1 0] M + [0 1] N + [0]                                          
                                    [0 0]     [1 0]     [1]                                          
                                 >= [0 1] N + [0]                                                    
                                    [0 0]     [1]                                                    
                                 =  c_3(isNat#(activate(N)))                                         
        
                U11#(tt(),V1,V2) =  [0 1] V1 + [0 1] V2 + [1]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 >= [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 =  c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))     
        
                U12#(tt(),V1,V2) =  [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 >= [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 =  c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))     
        
                U13#(tt(),V1,V2) =  [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 >= [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))     
        
                U14#(tt(),V1,V2) =  [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 >= [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) 
        
                   U15#(tt(),V2) =  [0 1] V2 + [0]                                                   
                                    [0 1]      [0]                                                   
                                 >= [0 1] V2 + [0]                                                   
                                    [0 0]      [0]                                                   
                                 =  c_10(isNat#(activate(V2)))                                       
        
                   U21#(tt(),V1) =  [0 1] V1 + [0]                                                   
                                    [0 0]      [0]                                                   
                                 >= [0 1] V1 + [0]                                                   
                                    [0 0]      [0]                                                   
                                 =  c_12(U22#(isNatKind(activate(V1)),activate(V1)))                 
        
                   U22#(tt(),V1) =  [0 1] V1 + [0]                                                   
                                    [0 0]      [1]                                                   
                                 >= [0 1] V1 + [0]                                                   
                                    [0 0]      [1]                                                   
                                 =  c_13(isNat#(activate(V1)))                                       
        
                U31#(tt(),V1,V2) =  [0 1] V1 + [0 1] V2 + [1]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 >= [0 1] V1 + [0 1] V2 + [1]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))    
        
                U32#(tt(),V1,V2) =  [0 1] V1 + [0 1] V2 + [1]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 >= [0 1] V1 + [0 1] V2 + [1]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U34#(tt(),V1,V2) =  [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 1]      [0 0]      [0]                                        
                                 >= [0 1] V1 + [0 1] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
                   U35#(tt(),V2) =  [0 1] V2 + [0]                                                   
                                    [0 1]      [0]                                                   
                                 >= [0 1] V2 + [0]                                                   
                                    [0 0]      [0]                                                   
                                 =  c_19(isNat#(activate(V2)))                                       
        
                  U81#(tt(),M,N) =  [1 0] M + [1 1] N + [1]                                          
                                    [1 1]     [0 1]     [1]                                          
                                 >= [1 1] N + [1]                                                    
                                    [0 0]     [0]                                                    
                                 =  c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))       
        
                  U82#(tt(),M,N) =  [0 0] M + [1 1] N + [1]                                          
                                    [1 0]     [0 0]     [1]                                          
                                 >= [1 1] N + [0]                                                    
                                    [0 0]     [0]                                                    
                                 =  c_29(isNat#(activate(N)))                                        
        
          isNat#(n__plus(V1,V2)) =  [0 1] V1 + [0 1] V2 + [1]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 >= [0 1] V1 + [0 1] V2 + [1]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 =  c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))    
        
                isNat#(n__s(V1)) =  [0 1] V1 + [0]                                                   
                                    [0 0]      [0]                                                   
                                 >= [0 1] V1 + [0]                                                   
                                    [0 0]      [0]                                                   
                                 =  c_41(U21#(isNatKind(activate(V1)),activate(V1)))                 
        
             isNat#(n__x(V1,V2)) =  [0 1] V1 + [0 1] V2 + [1]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 >= [0 1] V1 + [0 1] V2 + [1]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))    
        
                             0() =  [0]                                                              
                                    [1]                                                              
                                 >= [0]                                                              
                                    [1]                                                              
                                 =  n__0()                                                           
        
                     activate(X) =  [1 0] X + [0]                                                    
                                    [0 1]     [0]                                                    
                                 >= [1 0] X + [0]                                                    
                                    [0 1]     [0]                                                    
                                 =  X                                                                
        
                activate(n__0()) =  [0]                                                              
                                    [1]                                                              
                                 >= [0]                                                              
                                    [1]                                                              
                                 =  0()                                                              
        
        activate(n__plus(X1,X2)) =  [0 0] X1 + [0 0] X2 + [1]                                        
                                    [0 1]      [0 1]      [1]                                        
                                 >= [0 0] X1 + [0 0] X2 + [1]                                        
                                    [0 1]      [0 1]      [1]                                        
                                 =  plus(X1,X2)                                                      
        
               activate(n__s(X)) =  [0 0] X + [0]                                                    
                                    [0 1]     [0]                                                    
                                 >= [0 0] X + [0]                                                    
                                    [0 1]     [0]                                                    
                                 =  s(X)                                                             
        
           activate(n__x(X1,X2)) =  [0 0] X1 + [0 0] X2 + [0]                                        
                                    [0 1]      [0 1]      [1]                                        
                                 >= [0 0] X1 + [0 0] X2 + [0]                                        
                                    [0 1]      [0 1]      [1]                                        
                                 =  x(X1,X2)                                                         
        
                     plus(X1,X2) =  [0 0] X1 + [0 0] X2 + [1]                                        
                                    [0 1]      [0 1]      [1]                                        
                                 >= [0 0] X1 + [0 0] X2 + [1]                                        
                                    [0 1]      [0 1]      [1]                                        
                                 =  n__plus(X1,X2)                                                   
        
                            s(X) =  [0 0] X + [0]                                                    
                                    [0 1]     [0]                                                    
                                 >= [0 0] X + [0]                                                    
                                    [0 1]     [0]                                                    
                                 =  n__s(X)                                                          
        
                        x(X1,X2) =  [0 0] X1 + [0 0] X2 + [0]                                        
                                    [0 1]      [0 1]      [1]                                        
                                 >= [0 0] X1 + [0 0] X2 + [0]                                        
                                    [0 1]      [0 1]      [1]                                        
                                 =  n__x(X1,X2)                                                      
        
****** Step 10.b:4.a:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

****** Step 10.b:4.a:1.b:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          5: isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          
        Consider the set of all dependency pairs
          1: U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          2: U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          3: isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          4: isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
          5: isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          6: U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
          7: U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
          8: U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          9: U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          10: U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          11: U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          12: U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
          13: U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
          14: U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
          15: U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          16: U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          17: U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
          18: U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
          19: U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
        Processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {5}
        These cover all (indirect) predecessors of dependency pairs
          {1,2,5,6,7,15,16,17,18,19}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
******* Step 10.b:4.a:1.b:1.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1},
          uargs(c_8) = {1},
          uargs(c_9) = {1,2},
          uargs(c_10) = {1},
          uargs(c_12) = {1},
          uargs(c_13) = {1},
          uargs(c_15) = {1},
          uargs(c_16) = {1},
          uargs(c_17) = {1},
          uargs(c_18) = {1,2},
          uargs(c_19) = {1},
          uargs(c_28) = {1},
          uargs(c_29) = {1},
          uargs(c_40) = {1},
          uargs(c_41) = {1},
          uargs(c_42) = {1}
        
        Following symbols are considered usable:
          {0,activate,plus,s,x,0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
          ,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#
          ,isNatKind#,plus#,s#,x#}
        TcT has computed the following interpretation:
                   p(0) = [0]                                 
                          [0]                                 
                p(U101) = [0]                                 
                          [0]                                 
                p(U102) = [0]                                 
                          [0]                                 
                p(U103) = [0]                                 
                          [0]                                 
                p(U104) = [0]                                 
                          [0]                                 
                 p(U11) = [1 0] x1 + [0 0] x2 + [1 0] x3 + [1]
                          [0 1]      [0 1]      [0 0]      [0]
                 p(U12) = [0 0] x1 + [0 0] x2 + [0]           
                          [1 0]      [1 1]      [0]           
                 p(U13) = [0 0] x3 + [0]                      
                          [1 0]      [0]                      
                 p(U14) = [1 0] x1 + [0 0] x3 + [1]           
                          [1 0]      [0 1]      [1]           
                 p(U15) = [1]                                 
                          [0]                                 
                 p(U16) = [0]                                 
                          [0]                                 
                 p(U21) = [0]                                 
                          [1]                                 
                 p(U22) = [0]                                 
                          [0]                                 
                 p(U23) = [0]                                 
                          [0]                                 
                 p(U31) = [0 0] x1 + [1]                      
                          [1 0]      [1]                      
                 p(U32) = [1 0] x1 + [1 0] x2 + [0 0] x3 + [1]
                          [0 0]      [0 0]      [1 0]      [1]
                 p(U33) = [1 1] x1 + [1]                      
                          [1 0]      [0]                      
                 p(U34) = [0 0] x1 + [0 1] x3 + [0]           
                          [1 0]      [0 0]      [0]           
                 p(U35) = [0]                                 
                          [1]                                 
                 p(U36) = [0]                                 
                          [0]                                 
                 p(U41) = [0]                                 
                          [0]                                 
                 p(U42) = [0 1] x1 + [0]                      
                          [0 0]      [0]                      
                 p(U51) = [0 0] x1 + [0]                      
                          [1 0]      [1]                      
                 p(U61) = [1 0] x1 + [0]                      
                          [1 0]      [1]                      
                 p(U62) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                 p(U71) = [0]                                 
                          [0]                                 
                 p(U72) = [0]                                 
                          [0]                                 
                 p(U81) = [0]                                 
                          [0]                                 
                 p(U82) = [0]                                 
                          [0]                                 
                 p(U83) = [0]                                 
                          [0]                                 
                 p(U84) = [0]                                 
                          [0]                                 
                 p(U91) = [0]                                 
                          [0]                                 
                 p(U92) = [0]                                 
                          [0]                                 
            p(activate) = [1 0] x1 + [0]                      
                          [0 1]      [0]                      
               p(isNat) = [0]                                 
                          [0]                                 
           p(isNatKind) = [0 0] x1 + [1]                      
                          [0 1]      [0]                      
                p(n__0) = [0]                                 
                          [0]                                 
             p(n__plus) = [1 1] x1 + [1 0] x2 + [0]           
                          [0 0]      [0 0]      [0]           
                p(n__s) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(n__x) = [1 0] x1 + [1 1] x2 + [1]           
                          [0 0]      [0 0]      [0]           
                p(plus) = [1 1] x1 + [1 0] x2 + [0]           
                          [0 0]      [0 0]      [0]           
                   p(s) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                  p(tt) = [0]                                 
                          [0]                                 
                   p(x) = [1 0] x1 + [1 1] x2 + [1]           
                          [0 0]      [0 0]      [0]           
                  p(0#) = [0]                                 
                          [0]                                 
               p(U101#) = [0 0] x2 + [1 1] x3 + [1]           
                          [1 1]      [0 0]      [0]           
               p(U102#) = [1 0] x3 + [0]                      
                          [0 0]      [0]                      
               p(U103#) = [0]                                 
                          [0]                                 
               p(U104#) = [0]                                 
                          [0]                                 
                p(U11#) = [1 0] x2 + [1 0] x3 + [0]           
                          [0 0]      [0 0]      [1]           
                p(U12#) = [1 0] x2 + [1 0] x3 + [0]           
                          [1 0]      [0 0]      [0]           
                p(U13#) = [1 0] x2 + [1 0] x3 + [0]           
                          [0 0]      [1 1]      [0]           
                p(U14#) = [1 0] x2 + [1 0] x3 + [0]           
                          [0 0]      [0 0]      [1]           
                p(U15#) = [1 0] x2 + [0]                      
                          [0 0]      [1]                      
                p(U16#) = [0]                                 
                          [0]                                 
                p(U21#) = [1 0] x2 + [0]                      
                          [0 0]      [0]                      
                p(U22#) = [1 0] x2 + [0]                      
                          [0 0]      [0]                      
                p(U23#) = [0]                                 
                          [0]                                 
                p(U31#) = [1 0] x2 + [1 0] x3 + [0]           
                          [0 0]      [0 1]      [0]           
                p(U32#) = [1 0] x2 + [1 0] x3 + [0]           
                          [0 0]      [0 0]      [1]           
                p(U33#) = [1 0] x2 + [1 0] x3 + [0]           
                          [0 0]      [0 0]      [0]           
                p(U34#) = [1 0] x2 + [1 0] x3 + [0]           
                          [0 1]      [0 1]      [1]           
                p(U35#) = [1 0] x2 + [0]                      
                          [0 0]      [1]                      
                p(U36#) = [0]                                 
                          [0]                                 
                p(U41#) = [0]                                 
                          [0]                                 
                p(U42#) = [0]                                 
                          [0]                                 
                p(U51#) = [0]                                 
                          [0]                                 
                p(U61#) = [0]                                 
                          [0]                                 
                p(U62#) = [0]                                 
                          [0]                                 
                p(U71#) = [0]                                 
                          [0]                                 
                p(U72#) = [0]                                 
                          [0]                                 
                p(U81#) = [0 0] x2 + [1 0] x3 + [1]           
                          [1 1]      [0 1]      [0]           
                p(U82#) = [1 0] x3 + [0]                      
                          [0 0]      [0]                      
                p(U83#) = [0]                                 
                          [0]                                 
                p(U84#) = [0]                                 
                          [0]                                 
                p(U91#) = [0]                                 
                          [0]                                 
                p(U92#) = [0]                                 
                          [0]                                 
           p(activate#) = [0]                                 
                          [0]                                 
              p(isNat#) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
          p(isNatKind#) = [0]                                 
                          [0]                                 
               p(plus#) = [0]                                 
                          [0]                                 
                  p(s#) = [0]                                 
                          [0]                                 
                  p(x#) = [0]                                 
                          [0]                                 
                 p(c_1) = [0]                                 
                          [0]                                 
                 p(c_2) = [1 0] x1 + [1]                      
                          [0 0]      [0]                      
                 p(c_3) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                 p(c_4) = [0]                                 
                          [0]                                 
                 p(c_5) = [0]                                 
                          [0]                                 
                 p(c_6) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                 p(c_7) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                 p(c_8) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                 p(c_9) = [1 0] x1 + [1 0] x2 + [0]           
                          [0 0]      [0 0]      [0]           
                p(c_10) = [1 0] x1 + [0]                      
                          [0 0]      [1]                      
                p(c_11) = [0]                                 
                          [0]                                 
                p(c_12) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_13) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_14) = [0]                                 
                          [0]                                 
                p(c_15) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_16) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_17) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_18) = [1 0] x1 + [1 0] x2 + [0]           
                          [0 1]      [0 0]      [0]           
                p(c_19) = [1 0] x1 + [0]                      
                          [0 0]      [1]                      
                p(c_20) = [0]                                 
                          [0]                                 
                p(c_21) = [0]                                 
                          [0]                                 
                p(c_22) = [0]                                 
                          [0]                                 
                p(c_23) = [0]                                 
                          [0]                                 
                p(c_24) = [0]                                 
                          [0]                                 
                p(c_25) = [0]                                 
                          [0]                                 
                p(c_26) = [0]                                 
                          [0]                                 
                p(c_27) = [0]                                 
                          [0]                                 
                p(c_28) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_29) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_30) = [0]                                 
                          [0]                                 
                p(c_31) = [0]                                 
                          [0]                                 
                p(c_32) = [0]                                 
                          [0]                                 
                p(c_33) = [0]                                 
                          [0]                                 
                p(c_34) = [0]                                 
                          [0]                                 
                p(c_35) = [0]                                 
                          [0]                                 
                p(c_36) = [0]                                 
                          [0]                                 
                p(c_37) = [0]                                 
                          [0]                                 
                p(c_38) = [0]                                 
                          [0]                                 
                p(c_39) = [0]                                 
                          [0]                                 
                p(c_40) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_41) = [1 0] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_42) = [1 1] x1 + [0]                      
                          [0 0]      [0]                      
                p(c_43) = [0]                                 
                          [0]                                 
                p(c_44) = [0]                                 
                          [0]                                 
                p(c_45) = [0]                                 
                          [0]                                 
                p(c_46) = [0]                                 
                          [0]                                 
                p(c_47) = [0]                                 
                          [0]                                 
                p(c_48) = [0]                                 
                          [0]                                 
                p(c_49) = [0]                                 
                          [0]                                 
        
        Following rules are strictly oriented:
        isNat#(n__x(V1,V2)) = [1 0] V1 + [1 1] V2 + [1]                                    
                              [0 0]      [0 0]      [0]                                    
                            > [1 0] V1 + [1 1] V2 + [0]                                    
                              [0 0]      [0 0]      [0]                                    
                            = c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        
        
        Following rules are (at-least) weakly oriented:
                 U101#(tt(),M,N) =  [0 0] M + [1 1] N + [1]                                          
                                    [1 1]     [0 0]     [0]                                          
                                 >= [1 0] N + [1]                                                    
                                    [0 0]     [0]                                                    
                                 =  c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))       
        
                 U102#(tt(),M,N) =  [1 0] N + [0]                                                    
                                    [0 0]     [0]                                                    
                                 >= [1 0] N + [0]                                                    
                                    [0 0]     [0]                                                    
                                 =  c_3(isNat#(activate(N)))                                         
        
                U11#(tt(),V1,V2) =  [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 >= [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))     
        
                U12#(tt(),V1,V2) =  [1 0] V1 + [1 0] V2 + [0]                                        
                                    [1 0]      [0 0]      [0]                                        
                                 >= [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))     
        
                U13#(tt(),V1,V2) =  [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [1 1]      [0]                                        
                                 >= [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))     
        
                U14#(tt(),V1,V2) =  [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 >= [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) 
        
                   U15#(tt(),V2) =  [1 0] V2 + [0]                                                   
                                    [0 0]      [1]                                                   
                                 >= [1 0] V2 + [0]                                                   
                                    [0 0]      [1]                                                   
                                 =  c_10(isNat#(activate(V2)))                                       
        
                   U21#(tt(),V1) =  [1 0] V1 + [0]                                                   
                                    [0 0]      [0]                                                   
                                 >= [1 0] V1 + [0]                                                   
                                    [0 0]      [0]                                                   
                                 =  c_12(U22#(isNatKind(activate(V1)),activate(V1)))                 
        
                   U22#(tt(),V1) =  [1 0] V1 + [0]                                                   
                                    [0 0]      [0]                                                   
                                 >= [1 0] V1 + [0]                                                   
                                    [0 0]      [0]                                                   
                                 =  c_13(isNat#(activate(V1)))                                       
        
                U31#(tt(),V1,V2) =  [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 1]      [0]                                        
                                 >= [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))    
        
                U32#(tt(),V1,V2) =  [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 >= [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U33#(tt(),V1,V2) =  [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 >= [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U34#(tt(),V1,V2) =  [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 1]      [0 1]      [1]                                        
                                 >= [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 =  c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
                   U35#(tt(),V2) =  [1 0] V2 + [0]                                                   
                                    [0 0]      [1]                                                   
                                 >= [1 0] V2 + [0]                                                   
                                    [0 0]      [1]                                                   
                                 =  c_19(isNat#(activate(V2)))                                       
        
                  U81#(tt(),M,N) =  [0 0] M + [1 0] N + [1]                                          
                                    [1 1]     [0 1]     [0]                                          
                                 >= [1 0] N + [0]                                                    
                                    [0 0]     [0]                                                    
                                 =  c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))       
        
                  U82#(tt(),M,N) =  [1 0] N + [0]                                                    
                                    [0 0]     [0]                                                    
                                 >= [1 0] N + [0]                                                    
                                    [0 0]     [0]                                                    
                                 =  c_29(isNat#(activate(N)))                                        
        
          isNat#(n__plus(V1,V2)) =  [1 1] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 >= [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))    
        
                isNat#(n__s(V1)) =  [1 0] V1 + [0]                                                   
                                    [0 0]      [0]                                                   
                                 >= [1 0] V1 + [0]                                                   
                                    [0 0]      [0]                                                   
                                 =  c_41(U21#(isNatKind(activate(V1)),activate(V1)))                 
        
                             0() =  [0]                                                              
                                    [0]                                                              
                                 >= [0]                                                              
                                    [0]                                                              
                                 =  n__0()                                                           
        
                     activate(X) =  [1 0] X + [0]                                                    
                                    [0 1]     [0]                                                    
                                 >= [1 0] X + [0]                                                    
                                    [0 1]     [0]                                                    
                                 =  X                                                                
        
                activate(n__0()) =  [0]                                                              
                                    [0]                                                              
                                 >= [0]                                                              
                                    [0]                                                              
                                 =  0()                                                              
        
        activate(n__plus(X1,X2)) =  [1 1] X1 + [1 0] X2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 >= [1 1] X1 + [1 0] X2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  plus(X1,X2)                                                      
        
               activate(n__s(X)) =  [1 0] X + [0]                                                    
                                    [0 0]     [0]                                                    
                                 >= [1 0] X + [0]                                                    
                                    [0 0]     [0]                                                    
                                 =  s(X)                                                             
        
           activate(n__x(X1,X2)) =  [1 0] X1 + [1 1] X2 + [1]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 >= [1 0] X1 + [1 1] X2 + [1]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  x(X1,X2)                                                         
        
                     plus(X1,X2) =  [1 1] X1 + [1 0] X2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 >= [1 1] X1 + [1 0] X2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  n__plus(X1,X2)                                                   
        
                            s(X) =  [1 0] X + [0]                                                    
                                    [0 0]     [0]                                                    
                                 >= [1 0] X + [0]                                                    
                                    [0 0]     [0]                                                    
                                 =  n__s(X)                                                          
        
                        x(X1,X2) =  [1 0] X1 + [1 1] X2 + [1]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 >= [1 0] X1 + [1 1] X2 + [1]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  n__x(X1,X2)                                                      
        
******* Step 10.b:4.a:1.b:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******* Step 10.b:4.a:1.b:1.b:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          
        Consider the set of all dependency pairs
          1: isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          2: isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
          3: U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
          4: U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
          5: U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          6: U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          7: U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          8: U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          9: U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
          10: U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
          11: U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
          12: U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          13: U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          14: U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          15: U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          16: U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
          17: U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
          18: U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
          19: isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        Processor NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,3,4,5,6,7,8,9,17,18}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
******** Step 10.b:4.a:1.b:1.b:1.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        NaturalMI {miDimension = 2, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 1 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1},
          uargs(c_8) = {1},
          uargs(c_9) = {1,2},
          uargs(c_10) = {1},
          uargs(c_12) = {1},
          uargs(c_13) = {1},
          uargs(c_15) = {1},
          uargs(c_16) = {1},
          uargs(c_17) = {1},
          uargs(c_18) = {1,2},
          uargs(c_19) = {1},
          uargs(c_28) = {1},
          uargs(c_29) = {1},
          uargs(c_40) = {1},
          uargs(c_41) = {1},
          uargs(c_42) = {1}
        
        Following symbols are considered usable:
          {0,activate,plus,s,x,0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
          ,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#
          ,isNatKind#,plus#,s#,x#}
        TcT has computed the following interpretation:
                   p(0) = [0]                      
                          [0]                      
                p(U101) = [0]                      
                          [0]                      
                p(U102) = [0]                      
                          [0]                      
                p(U103) = [0]                      
                          [0]                      
                p(U104) = [0]                      
                          [0]                      
                 p(U11) = [0 1] x3 + [0]           
                          [0 0]      [0]           
                 p(U12) = [0 1] x1 + [0]           
                          [0 0]      [1]           
                 p(U13) = [0 1] x1 + [0]           
                          [0 0]      [0]           
                 p(U14) = [0]                      
                          [0]                      
                 p(U15) = [1]                      
                          [0]                      
                 p(U16) = [0]                      
                          [1]                      
                 p(U21) = [0]                      
                          [0]                      
                 p(U22) = [0]                      
                          [0]                      
                 p(U23) = [0]                      
                          [1]                      
                 p(U31) = [1]                      
                          [0]                      
                 p(U32) = [0]                      
                          [1]                      
                 p(U33) = [0]                      
                          [0]                      
                 p(U34) = [0 0] x2 + [0 0] x3 + [1]
                          [1 0]      [1 0]      [0]
                 p(U35) = [1]                      
                          [0]                      
                 p(U36) = [0]                      
                          [0]                      
                 p(U41) = [0]                      
                          [0]                      
                 p(U42) = [0 0] x1 + [0]           
                          [0 1]      [0]           
                 p(U51) = [0]                      
                          [1]                      
                 p(U61) = [0]                      
                          [0]                      
                 p(U62) = [0]                      
                          [0]                      
                 p(U71) = [0]                      
                          [0]                      
                 p(U72) = [0]                      
                          [0]                      
                 p(U81) = [0]                      
                          [0]                      
                 p(U82) = [0]                      
                          [0]                      
                 p(U83) = [0]                      
                          [0]                      
                 p(U84) = [0]                      
                          [0]                      
                 p(U91) = [0]                      
                          [0]                      
                 p(U92) = [0]                      
                          [0]                      
            p(activate) = [1 0] x1 + [0]           
                          [0 1]      [0]           
               p(isNat) = [1]                      
                          [1]                      
           p(isNatKind) = [0]                      
                          [1]                      
                p(n__0) = [0]                      
                          [0]                      
             p(n__plus) = [1 0] x1 + [1 1] x2 + [1]
                          [0 0]      [0 0]      [0]
                p(n__s) = [1 1] x1 + [1]           
                          [0 0]      [0]           
                p(n__x) = [1 1] x1 + [1 0] x2 + [0]
                          [0 0]      [0 0]      [0]
                p(plus) = [1 0] x1 + [1 1] x2 + [1]
                          [0 0]      [0 0]      [0]
                   p(s) = [1 1] x1 + [1]           
                          [0 0]      [0]           
                  p(tt) = [0]                      
                          [0]                      
                   p(x) = [1 1] x1 + [1 0] x2 + [0]
                          [0 0]      [0 0]      [0]
                  p(0#) = [0]                      
                          [0]                      
               p(U101#) = [0 1] x2 + [1 1] x3 + [1]
                          [1 0]      [1 0]      [0]
               p(U102#) = [1 0] x3 + [1]           
                          [0 1]      [0]           
               p(U103#) = [0]                      
                          [0]                      
               p(U104#) = [0]                      
                          [0]                      
                p(U11#) = [1 0] x2 + [1 1] x3 + [0]
                          [0 0]      [0 0]      [0]
                p(U12#) = [1 0] x2 + [1 0] x3 + [0]
                          [1 0]      [0 0]      [0]
                p(U13#) = [1 0] x2 + [1 0] x3 + [0]
                          [0 0]      [0 0]      [1]
                p(U14#) = [1 0] x2 + [1 0] x3 + [0]
                          [0 0]      [1 1]      [1]
                p(U15#) = [1 0] x2 + [0]           
                          [0 1]      [0]           
                p(U16#) = [0]                      
                          [0]                      
                p(U21#) = [1 1] x2 + [1]           
                          [0 0]      [0]           
                p(U22#) = [1 0] x2 + [0]           
                          [0 0]      [0]           
                p(U23#) = [0]                      
                          [0]                      
                p(U31#) = [1 1] x2 + [1 0] x3 + [0]
                          [0 0]      [0 0]      [1]
                p(U32#) = [1 1] x2 + [1 0] x3 + [0]
                          [0 1]      [0 0]      [0]
                p(U33#) = [1 1] x2 + [1 0] x3 + [0]
                          [0 0]      [0 0]      [1]
                p(U34#) = [1 0] x2 + [1 0] x3 + [0]
                          [0 1]      [0 0]      [0]
                p(U35#) = [1 0] x2 + [0]           
                          [1 1]      [0]           
                p(U36#) = [0]                      
                          [0]                      
                p(U41#) = [0]                      
                          [0]                      
                p(U42#) = [0]                      
                          [0]                      
                p(U51#) = [0]                      
                          [0]                      
                p(U61#) = [0]                      
                          [0]                      
                p(U62#) = [0]                      
                          [0]                      
                p(U71#) = [0]                      
                          [0]                      
                p(U72#) = [0]                      
                          [0]                      
                p(U81#) = [0 0] x2 + [1 1] x3 + [0]
                          [1 0]      [0 0]      [0]
                p(U82#) = [0 0] x2 + [1 0] x3 + [0]
                          [1 0]      [0 0]      [0]
                p(U83#) = [0]                      
                          [0]                      
                p(U84#) = [0]                      
                          [0]                      
                p(U91#) = [0]                      
                          [0]                      
                p(U92#) = [0]                      
                          [0]                      
           p(activate#) = [0]                      
                          [0]                      
              p(isNat#) = [1 0] x1 + [0]           
                          [0 0]      [1]           
          p(isNatKind#) = [0]                      
                          [0]                      
               p(plus#) = [0]                      
                          [0]                      
                  p(s#) = [0]                      
                          [0]                      
                  p(x#) = [0]                      
                          [0]                      
                 p(c_1) = [0]                      
                          [0]                      
                 p(c_2) = [1 1] x1 + [0]           
                          [0 0]      [0]           
                 p(c_3) = [1 0] x1 + [1]           
                          [0 0]      [0]           
                 p(c_4) = [0]                      
                          [0]                      
                 p(c_5) = [0]                      
                          [0]                      
                 p(c_6) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                 p(c_7) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                 p(c_8) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                 p(c_9) = [1 0] x1 + [1 0] x2 + [0]
                          [0 1]      [0 0]      [0]
                p(c_10) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_11) = [0]                      
                          [0]                      
                p(c_12) = [1 0] x1 + [1]           
                          [0 0]      [0]           
                p(c_13) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_14) = [0]                      
                          [0]                      
                p(c_15) = [1 0] x1 + [0]           
                          [0 0]      [1]           
                p(c_16) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_17) = [1 1] x1 + [0]           
                          [0 0]      [1]           
                p(c_18) = [1 0] x1 + [1 0] x2 + [0]
                          [0 0]      [0 0]      [0]
                p(c_19) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_20) = [0]                      
                          [0]                      
                p(c_21) = [0]                      
                          [0]                      
                p(c_22) = [0]                      
                          [0]                      
                p(c_23) = [0]                      
                          [0]                      
                p(c_24) = [0]                      
                          [0]                      
                p(c_25) = [0]                      
                          [0]                      
                p(c_26) = [0]                      
                          [0]                      
                p(c_27) = [0]                      
                          [0]                      
                p(c_28) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_29) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_30) = [0]                      
                          [0]                      
                p(c_31) = [0]                      
                          [0]                      
                p(c_32) = [0]                      
                          [0]                      
                p(c_33) = [0]                      
                          [0]                      
                p(c_34) = [0]                      
                          [0]                      
                p(c_35) = [0]                      
                          [0]                      
                p(c_36) = [0]                      
                          [0]                      
                p(c_37) = [0]                      
                          [0]                      
                p(c_38) = [0]                      
                          [0]                      
                p(c_39) = [0]                      
                          [0]                      
                p(c_40) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_41) = [1 0] x1 + [0]           
                          [0 0]      [0]           
                p(c_42) = [1 0] x1 + [0]           
                          [0 1]      [0]           
                p(c_43) = [0]                      
                          [0]                      
                p(c_44) = [0]                      
                          [0]                      
                p(c_45) = [0]                      
                          [0]                      
                p(c_46) = [0]                      
                          [0]                      
                p(c_47) = [0]                      
                          [0]                      
                p(c_48) = [0]                      
                          [0]                      
                p(c_49) = [0]                      
                          [0]                      
        
        Following rules are strictly oriented:
        isNat#(n__plus(V1,V2)) = [1 0] V1 + [1 1] V2 + [1]                                    
                                 [0 0]      [0 0]      [1]                                    
                               > [1 0] V1 + [1 1] V2 + [0]                                    
                                 [0 0]      [0 0]      [0]                                    
                               = c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        
        
        Following rules are (at-least) weakly oriented:
                 U101#(tt(),M,N) =  [0 1] M + [1 1] N + [1]                                          
                                    [1 0]     [1 0]     [0]                                          
                                 >= [1 1] N + [1]                                                    
                                    [0 0]     [0]                                                    
                                 =  c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))       
        
                 U102#(tt(),M,N) =  [1 0] N + [1]                                                    
                                    [0 1]     [0]                                                    
                                 >= [1 0] N + [1]                                                    
                                    [0 0]     [0]                                                    
                                 =  c_3(isNat#(activate(N)))                                         
        
                U11#(tt(),V1,V2) =  [1 0] V1 + [1 1] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 >= [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))     
        
                U12#(tt(),V1,V2) =  [1 0] V1 + [1 0] V2 + [0]                                        
                                    [1 0]      [0 0]      [0]                                        
                                 >= [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))     
        
                U13#(tt(),V1,V2) =  [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 >= [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))     
        
                U14#(tt(),V1,V2) =  [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [1 1]      [1]                                        
                                 >= [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 1]      [0]                                        
                                 =  c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) 
        
                   U15#(tt(),V2) =  [1 0] V2 + [0]                                                   
                                    [0 1]      [0]                                                   
                                 >= [1 0] V2 + [0]                                                   
                                    [0 0]      [0]                                                   
                                 =  c_10(isNat#(activate(V2)))                                       
        
                   U21#(tt(),V1) =  [1 1] V1 + [1]                                                   
                                    [0 0]      [0]                                                   
                                 >= [1 0] V1 + [1]                                                   
                                    [0 0]      [0]                                                   
                                 =  c_12(U22#(isNatKind(activate(V1)),activate(V1)))                 
        
                   U22#(tt(),V1) =  [1 0] V1 + [0]                                                   
                                    [0 0]      [0]                                                   
                                 >= [1 0] V1 + [0]                                                   
                                    [0 0]      [0]                                                   
                                 =  c_13(isNat#(activate(V1)))                                       
        
                U31#(tt(),V1,V2) =  [1 1] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 >= [1 1] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 =  c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))    
        
                U32#(tt(),V1,V2) =  [1 1] V1 + [1 0] V2 + [0]                                        
                                    [0 1]      [0 0]      [0]                                        
                                 >= [1 1] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U33#(tt(),V1,V2) =  [1 1] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 >= [1 1] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 =  c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U34#(tt(),V1,V2) =  [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 1]      [0 0]      [0]                                        
                                 >= [1 0] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
                   U35#(tt(),V2) =  [1 0] V2 + [0]                                                   
                                    [1 1]      [0]                                                   
                                 >= [1 0] V2 + [0]                                                   
                                    [0 0]      [0]                                                   
                                 =  c_19(isNat#(activate(V2)))                                       
        
                  U81#(tt(),M,N) =  [0 0] M + [1 1] N + [0]                                          
                                    [1 0]     [0 0]     [0]                                          
                                 >= [1 0] N + [0]                                                    
                                    [0 0]     [0]                                                    
                                 =  c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))       
        
                  U82#(tt(),M,N) =  [0 0] M + [1 0] N + [0]                                          
                                    [1 0]     [0 0]     [0]                                          
                                 >= [1 0] N + [0]                                                    
                                    [0 0]     [0]                                                    
                                 =  c_29(isNat#(activate(N)))                                        
        
                isNat#(n__s(V1)) =  [1 1] V1 + [1]                                                   
                                    [0 0]      [1]                                                   
                                 >= [1 1] V1 + [1]                                                   
                                    [0 0]      [0]                                                   
                                 =  c_41(U21#(isNatKind(activate(V1)),activate(V1)))                 
        
             isNat#(n__x(V1,V2)) =  [1 1] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 >= [1 1] V1 + [1 0] V2 + [0]                                        
                                    [0 0]      [0 0]      [1]                                        
                                 =  c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))    
        
                             0() =  [0]                                                              
                                    [0]                                                              
                                 >= [0]                                                              
                                    [0]                                                              
                                 =  n__0()                                                           
        
                     activate(X) =  [1 0] X + [0]                                                    
                                    [0 1]     [0]                                                    
                                 >= [1 0] X + [0]                                                    
                                    [0 1]     [0]                                                    
                                 =  X                                                                
        
                activate(n__0()) =  [0]                                                              
                                    [0]                                                              
                                 >= [0]                                                              
                                    [0]                                                              
                                 =  0()                                                              
        
        activate(n__plus(X1,X2)) =  [1 0] X1 + [1 1] X2 + [1]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 >= [1 0] X1 + [1 1] X2 + [1]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  plus(X1,X2)                                                      
        
               activate(n__s(X)) =  [1 1] X + [1]                                                    
                                    [0 0]     [0]                                                    
                                 >= [1 1] X + [1]                                                    
                                    [0 0]     [0]                                                    
                                 =  s(X)                                                             
        
           activate(n__x(X1,X2)) =  [1 1] X1 + [1 0] X2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 >= [1 1] X1 + [1 0] X2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  x(X1,X2)                                                         
        
                     plus(X1,X2) =  [1 0] X1 + [1 1] X2 + [1]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 >= [1 0] X1 + [1 1] X2 + [1]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  n__plus(X1,X2)                                                   
        
                            s(X) =  [1 1] X + [1]                                                    
                                    [0 0]     [0]                                                    
                                 >= [1 1] X + [1]                                                    
                                    [0 0]     [0]                                                    
                                 =  n__s(X)                                                          
        
                        x(X1,X2) =  [1 1] X1 + [1 0] X2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 >= [1 1] X1 + [1 0] X2 + [0]                                        
                                    [0 0]      [0 0]      [0]                                        
                                 =  n__x(X1,X2)                                                      
        
******** Step 10.b:4.a:1.b:1.b:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

******** Step 10.b:4.a:1.b:1.b:1.b:1.b:1.b:1: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
          
        Consider the set of all dependency pairs
          1: isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
          2: U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
          3: U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
          4: U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          5: U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          6: U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          7: U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          8: U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
          9: U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
          10: U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
          11: U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          12: U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          13: U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          14: U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          15: U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
          16: U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
          17: U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
          18: isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          19: isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {1}
        These cover all (indirect) predecessors of dependency pairs
          {1,2,3,9,10,16,17}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
********* Step 10.b:4.a:1.b:1.b:1.b:1.b:1.b:1.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_6) = {1},
          uargs(c_7) = {1},
          uargs(c_8) = {1},
          uargs(c_9) = {1,2},
          uargs(c_10) = {1},
          uargs(c_12) = {1},
          uargs(c_13) = {1},
          uargs(c_15) = {1},
          uargs(c_16) = {1},
          uargs(c_17) = {1},
          uargs(c_18) = {1,2},
          uargs(c_19) = {1},
          uargs(c_28) = {1},
          uargs(c_29) = {1},
          uargs(c_40) = {1},
          uargs(c_41) = {1},
          uargs(c_42) = {1}
        
        Following symbols are considered usable:
          {0,activate,plus,s,x,0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#,U21#,U22#,U23#,U31#,U32#
          ,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#,U92#,activate#,isNat#
          ,isNatKind#,plus#,s#,x#}
        TcT has computed the following interpretation:
                   p(0) = [0]                           
                p(U101) = [1] x2 + [1]                  
                p(U102) = [1] x1 + [4]                  
                p(U103) = [0]                           
                p(U104) = [0]                           
                 p(U11) = [4] x1 + [1] x2 + [2] x3 + [7]
                 p(U12) = [1] x1 + [2] x2 + [0]         
                 p(U13) = [2] x1 + [6] x3 + [4]         
                 p(U14) = [1] x2 + [1]                  
                 p(U15) = [1] x1 + [3]                  
                 p(U16) = [4]                           
                 p(U21) = [4] x2 + [0]                  
                 p(U22) = [0]                           
                 p(U23) = [1] x1 + [0]                  
                 p(U31) = [4] x2 + [2] x3 + [0]         
                 p(U32) = [1] x2 + [2]                  
                 p(U33) = [1] x3 + [0]                  
                 p(U34) = [4]                           
                 p(U35) = [1] x1 + [2] x2 + [6]         
                 p(U36) = [1] x1 + [0]                  
                 p(U41) = [1] x1 + [6]                  
                 p(U42) = [2]                           
                 p(U51) = [1] x1 + [2]                  
                 p(U61) = [1] x1 + [4] x2 + [0]         
                 p(U62) = [4]                           
                 p(U71) = [1] x1 + [0]                  
                 p(U72) = [1] x1 + [1]                  
                 p(U81) = [1] x1 + [1] x3 + [1]         
                 p(U82) = [2] x1 + [2]                  
                 p(U83) = [1] x1 + [1] x3 + [1]         
                 p(U84) = [1]                           
                 p(U91) = [1] x1 + [4]                  
                 p(U92) = [1] x1 + [1]                  
            p(activate) = [1] x1 + [0]                  
               p(isNat) = [4]                           
           p(isNatKind) = [0]                           
                p(n__0) = [0]                           
             p(n__plus) = [1] x1 + [1] x2 + [1]         
                p(n__s) = [1] x1 + [1]                  
                p(n__x) = [1] x1 + [1] x2 + [1]         
                p(plus) = [1] x1 + [1] x2 + [1]         
                   p(s) = [1] x1 + [1]                  
                  p(tt) = [0]                           
                   p(x) = [1] x1 + [1] x2 + [1]         
                  p(0#) = [1]                           
               p(U101#) = [4] x2 + [4] x3 + [4]         
               p(U102#) = [4] x3 + [2]                  
               p(U103#) = [1] x1 + [1] x2 + [4] x3 + [0]
               p(U104#) = [1] x2 + [1] x3 + [0]         
                p(U11#) = [4] x2 + [4] x3 + [4]         
                p(U12#) = [4] x2 + [4] x3 + [2]         
                p(U13#) = [4] x2 + [4] x3 + [1]         
                p(U14#) = [4] x2 + [4] x3 + [0]         
                p(U15#) = [4] x2 + [0]                  
                p(U16#) = [2]                           
                p(U21#) = [4] x2 + [2]                  
                p(U22#) = [4] x2 + [1]                  
                p(U23#) = [1]                           
                p(U31#) = [4] x2 + [4] x3 + [3]         
                p(U32#) = [4] x2 + [4] x3 + [3]         
                p(U33#) = [4] x2 + [4] x3 + [2]         
                p(U34#) = [4] x2 + [4] x3 + [1]         
                p(U35#) = [4] x2 + [0]                  
                p(U36#) = [4] x1 + [0]                  
                p(U41#) = [0]                           
                p(U42#) = [1] x1 + [2]                  
                p(U51#) = [1] x1 + [4]                  
                p(U61#) = [1] x2 + [0]                  
                p(U62#) = [0]                           
                p(U71#) = [1] x1 + [4] x2 + [2]         
                p(U72#) = [2]                           
                p(U81#) = [1] x2 + [5] x3 + [4]         
                p(U82#) = [5] x3 + [4]                  
                p(U83#) = [1] x1 + [1] x3 + [1]         
                p(U84#) = [4] x2 + [0]                  
                p(U91#) = [2]                           
                p(U92#) = [1] x1 + [4]                  
           p(activate#) = [2] x1 + [0]                  
              p(isNat#) = [4] x1 + [0]                  
          p(isNatKind#) = [1] x1 + [1]                  
               p(plus#) = [1] x1 + [1]                  
                  p(s#) = [1]                           
                  p(x#) = [1] x1 + [1]                  
                 p(c_1) = [1]                           
                 p(c_2) = [1] x1 + [2]                  
                 p(c_3) = [1] x1 + [0]                  
                 p(c_4) = [1] x1 + [1]                  
                 p(c_5) = [4] x1 + [1] x2 + [0]         
                 p(c_6) = [1] x1 + [1]                  
                 p(c_7) = [1] x1 + [0]                  
                 p(c_8) = [1] x1 + [1]                  
                 p(c_9) = [1] x1 + [1] x2 + [0]         
                p(c_10) = [1] x1 + [0]                  
                p(c_11) = [4]                           
                p(c_12) = [1] x1 + [1]                  
                p(c_13) = [1] x1 + [0]                  
                p(c_14) = [0]                           
                p(c_15) = [1] x1 + [0]                  
                p(c_16) = [1] x1 + [0]                  
                p(c_17) = [1] x1 + [0]                  
                p(c_18) = [1] x1 + [1] x2 + [1]         
                p(c_19) = [1] x1 + [0]                  
                p(c_20) = [2]                           
                p(c_21) = [1] x1 + [0]                  
                p(c_22) = [2]                           
                p(c_23) = [1]                           
                p(c_24) = [0]                           
                p(c_25) = [0]                           
                p(c_26) = [0]                           
                p(c_27) = [0]                           
                p(c_28) = [1] x1 + [0]                  
                p(c_29) = [1] x1 + [4]                  
                p(c_30) = [0]                           
                p(c_31) = [2] x3 + [0]                  
                p(c_32) = [1]                           
                p(c_33) = [1] x1 + [2]                  
                p(c_34) = [2]                           
                p(c_35) = [0]                           
                p(c_36) = [0]                           
                p(c_37) = [1]                           
                p(c_38) = [1] x1 + [0]                  
                p(c_39) = [0]                           
                p(c_40) = [1] x1 + [0]                  
                p(c_41) = [1] x1 + [1]                  
                p(c_42) = [1] x1 + [0]                  
                p(c_43) = [4]                           
                p(c_44) = [1] x1 + [1]                  
                p(c_45) = [0]                           
                p(c_46) = [2] x2 + [2]                  
                p(c_47) = [4]                           
                p(c_48) = [1]                           
                p(c_49) = [2]                           
        
        Following rules are strictly oriented:
        isNat#(n__s(V1)) = [4] V1 + [4]                                    
                         > [4] V1 + [3]                                    
                         = c_41(U21#(isNatKind(activate(V1)),activate(V1)))
        
        
        Following rules are (at-least) weakly oriented:
                 U101#(tt(),M,N) =  [4] M + [4] N + [4]                                              
                                 >= [4] N + [4]                                                      
                                 =  c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))       
        
                 U102#(tt(),M,N) =  [4] N + [2]                                                      
                                 >= [4] N + [0]                                                      
                                 =  c_3(isNat#(activate(N)))                                         
        
                U11#(tt(),V1,V2) =  [4] V1 + [4] V2 + [4]                                            
                                 >= [4] V1 + [4] V2 + [3]                                            
                                 =  c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))     
        
                U12#(tt(),V1,V2) =  [4] V1 + [4] V2 + [2]                                            
                                 >= [4] V1 + [4] V2 + [1]                                            
                                 =  c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))     
        
                U13#(tt(),V1,V2) =  [4] V1 + [4] V2 + [1]                                            
                                 >= [4] V1 + [4] V2 + [1]                                            
                                 =  c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))     
        
                U14#(tt(),V1,V2) =  [4] V1 + [4] V2 + [0]                                            
                                 >= [4] V1 + [4] V2 + [0]                                            
                                 =  c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))) 
        
                   U15#(tt(),V2) =  [4] V2 + [0]                                                     
                                 >= [4] V2 + [0]                                                     
                                 =  c_10(isNat#(activate(V2)))                                       
        
                   U21#(tt(),V1) =  [4] V1 + [2]                                                     
                                 >= [4] V1 + [2]                                                     
                                 =  c_12(U22#(isNatKind(activate(V1)),activate(V1)))                 
        
                   U22#(tt(),V1) =  [4] V1 + [1]                                                     
                                 >= [4] V1 + [0]                                                     
                                 =  c_13(isNat#(activate(V1)))                                       
        
                U31#(tt(),V1,V2) =  [4] V1 + [4] V2 + [3]                                            
                                 >= [4] V1 + [4] V2 + [3]                                            
                                 =  c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))    
        
                U32#(tt(),V1,V2) =  [4] V1 + [4] V2 + [3]                                            
                                 >= [4] V1 + [4] V2 + [2]                                            
                                 =  c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U33#(tt(),V1,V2) =  [4] V1 + [4] V2 + [2]                                            
                                 >= [4] V1 + [4] V2 + [1]                                            
                                 =  c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))    
        
                U34#(tt(),V1,V2) =  [4] V1 + [4] V2 + [1]                                            
                                 >= [4] V1 + [4] V2 + [1]                                            
                                 =  c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
        
                   U35#(tt(),V2) =  [4] V2 + [0]                                                     
                                 >= [4] V2 + [0]                                                     
                                 =  c_19(isNat#(activate(V2)))                                       
        
                  U81#(tt(),M,N) =  [1] M + [5] N + [4]                                              
                                 >= [5] N + [4]                                                      
                                 =  c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))       
        
                  U82#(tt(),M,N) =  [5] N + [4]                                                      
                                 >= [4] N + [4]                                                      
                                 =  c_29(isNat#(activate(N)))                                        
        
          isNat#(n__plus(V1,V2)) =  [4] V1 + [4] V2 + [4]                                            
                                 >= [4] V1 + [4] V2 + [4]                                            
                                 =  c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))    
        
             isNat#(n__x(V1,V2)) =  [4] V1 + [4] V2 + [4]                                            
                                 >= [4] V1 + [4] V2 + [3]                                            
                                 =  c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))    
        
                             0() =  [0]                                                              
                                 >= [0]                                                              
                                 =  n__0()                                                           
        
                     activate(X) =  [1] X + [0]                                                      
                                 >= [1] X + [0]                                                      
                                 =  X                                                                
        
                activate(n__0()) =  [0]                                                              
                                 >= [0]                                                              
                                 =  0()                                                              
        
        activate(n__plus(X1,X2)) =  [1] X1 + [1] X2 + [1]                                            
                                 >= [1] X1 + [1] X2 + [1]                                            
                                 =  plus(X1,X2)                                                      
        
               activate(n__s(X)) =  [1] X + [1]                                                      
                                 >= [1] X + [1]                                                      
                                 =  s(X)                                                             
        
           activate(n__x(X1,X2)) =  [1] X1 + [1] X2 + [1]                                            
                                 >= [1] X1 + [1] X2 + [1]                                            
                                 =  x(X1,X2)                                                         
        
                     plus(X1,X2) =  [1] X1 + [1] X2 + [1]                                            
                                 >= [1] X1 + [1] X2 + [1]                                            
                                 =  n__plus(X1,X2)                                                   
        
                            s(X) =  [1] X + [1]                                                      
                                 >= [1] X + [1]                                                      
                                 =  n__s(X)                                                          
        
                        x(X1,X2) =  [1] X1 + [1] X2 + [1]                                            
                                 >= [1] X1 + [1] X2 + [1]                                            
                                 =  n__x(X1,X2)                                                      
        
********* Step 10.b:4.a:1.b:1.b:1.b:1.b:1.b:1.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

********* Step 10.b:4.a:1.b:1.b:1.b:1.b:1.b:1.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
             -->_1 U102#(tt(),M,N) -> c_3(isNat#(activate(N))):2
          
          2:W:U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
          
          3:W:U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
             -->_1 U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))):4
          
          4:W:U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
             -->_1 U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))):5
          
          5:W:U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
             -->_1 U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):6
          
          6:W:U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
             -->_1 U15#(tt(),V2) -> c_10(isNat#(activate(V2))):7
          
          7:W:U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
          
          8:W:U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
             -->_1 U22#(tt(),V1) -> c_13(isNat#(activate(V1))):9
          
          9:W:U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
          
          10:W:U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
             -->_1 U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))):11
          
          11:W:U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
             -->_1 U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))):12
          
          12:W:U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
             -->_1 U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):13
          
          13:W:U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
             -->_1 U35#(tt(),V2) -> c_19(isNat#(activate(V2))):14
          
          14:W:U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
          
          15:W:U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
             -->_1 U82#(tt(),M,N) -> c_29(isNat#(activate(N))):16
          
          16:W:U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
          
          17:W:isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
             -->_1 U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))):3
          
          18:W:isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
             -->_1 U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1))):8
          
          19:W:isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
             -->_1 U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))):10
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          15: U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
          16: U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
          1: U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
          2: U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
          19: isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          14: U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
          13: U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          12: U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          11: U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          10: U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          9: U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
          8: U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
          18: isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
          7: U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
          6: U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          5: U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          4: U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          3: U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          17: isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
********* Step 10.b:4.a:1.b:1.b:1.b:1.b:1.b:1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 10.b:4.b:1: PredecessorEstimation WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {2}
        by application of
          Pre({2}) = {1}.
        Here rules are labelled as follows:
          1: U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
          2: U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
          3: U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
          4: U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
          5: U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          6: U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          7: U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          8: U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          9: U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
          10: U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
          11: U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
          12: U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          13: U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          14: U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          15: U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          16: U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
          17: isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          18: isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
          19: isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
*** Step 10.b:4.b:2: PredecessorEstimation WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1}
        by application of
          Pre({1}) = {}.
        Here rules are labelled as follows:
          1: U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
          2: U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
          3: U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
          4: U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          5: U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          6: U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          7: U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          8: U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
          9: U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
          10: U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
          11: U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          12: U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          13: U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          14: U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          15: U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
          16: U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
          17: isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          18: isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
          19: isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
*** Step 10.b:4.b:3: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
            U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
            U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
            U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
            U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
            U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
            U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
            U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
            U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
            U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
            isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
            isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
            isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
             -->_1 U102#(tt(),M,N) -> c_3(isNat#(activate(N))):2
          
          2:W:U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
          
          3:W:U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
             -->_1 U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2))):4
          
          4:W:U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
             -->_1 U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2))):5
          
          5:W:U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
             -->_1 U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):6
          
          6:W:U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
             -->_1 U15#(tt(),V2) -> c_10(isNat#(activate(V2))):7
          
          7:W:U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
          
          8:W:U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
             -->_1 U22#(tt(),V1) -> c_13(isNat#(activate(V1))):9
          
          9:W:U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
          
          10:W:U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
             -->_1 U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2))):11
          
          11:W:U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
             -->_1 U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2))):12
          
          12:W:U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
             -->_1 U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1))):13
          
          13:W:U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
             -->_2 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
             -->_2 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
             -->_2 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
             -->_1 U35#(tt(),V2) -> c_19(isNat#(activate(V2))):14
          
          14:W:U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
          
          15:W:U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
             -->_1 U82#(tt(),M,N) -> c_29(isNat#(activate(N))):16
          
          16:W:U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
             -->_1 isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2))):19
             -->_1 isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1))):18
             -->_1 isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2))):17
          
          17:W:isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
             -->_1 U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2))):3
          
          18:W:isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
             -->_1 U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1))):8
          
          19:W:isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
             -->_1 U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2))):10
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          15: U81#(tt(),M,N) -> c_28(U82#(isNatKind(activate(M)),activate(M),activate(N)))
          16: U82#(tt(),M,N) -> c_29(isNat#(activate(N)))
          1: U101#(tt(),M,N) -> c_2(U102#(isNatKind(activate(M)),activate(M),activate(N)))
          2: U102#(tt(),M,N) -> c_3(isNat#(activate(N)))
          19: isNat#(n__x(V1,V2)) -> c_42(U31#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          14: U35#(tt(),V2) -> c_19(isNat#(activate(V2)))
          13: U34#(tt(),V1,V2) -> c_18(U35#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          12: U33#(tt(),V1,V2) -> c_17(U34#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          11: U32#(tt(),V1,V2) -> c_16(U33#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          10: U31#(tt(),V1,V2) -> c_15(U32#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          9: U22#(tt(),V1) -> c_13(isNat#(activate(V1)))
          8: U21#(tt(),V1) -> c_12(U22#(isNatKind(activate(V1)),activate(V1)))
          18: isNat#(n__s(V1)) -> c_41(U21#(isNatKind(activate(V1)),activate(V1)))
          7: U15#(tt(),V2) -> c_10(isNat#(activate(V2)))
          6: U14#(tt(),V1,V2) -> c_9(U15#(isNat(activate(V1)),activate(V2)),isNat#(activate(V1)))
          5: U13#(tt(),V1,V2) -> c_8(U14#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          4: U12#(tt(),V1,V2) -> c_7(U13#(isNatKind(activate(V2)),activate(V1),activate(V2)))
          3: U11#(tt(),V1,V2) -> c_6(U12#(isNatKind(activate(V1)),activate(V1),activate(V2)))
          17: isNat#(n__plus(V1,V2)) -> c_40(U11#(isNatKind(activate(V1)),activate(V1),activate(V2)))
*** Step 10.b:4.b:4: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            0() -> n__0()
            U11(tt(),V1,V2) -> U12(isNatKind(activate(V1)),activate(V1),activate(V2))
            U12(tt(),V1,V2) -> U13(isNatKind(activate(V2)),activate(V1),activate(V2))
            U13(tt(),V1,V2) -> U14(isNatKind(activate(V2)),activate(V1),activate(V2))
            U14(tt(),V1,V2) -> U15(isNat(activate(V1)),activate(V2))
            U15(tt(),V2) -> U16(isNat(activate(V2)))
            U16(tt()) -> tt()
            U21(tt(),V1) -> U22(isNatKind(activate(V1)),activate(V1))
            U22(tt(),V1) -> U23(isNat(activate(V1)))
            U23(tt()) -> tt()
            U31(tt(),V1,V2) -> U32(isNatKind(activate(V1)),activate(V1),activate(V2))
            U32(tt(),V1,V2) -> U33(isNatKind(activate(V2)),activate(V1),activate(V2))
            U33(tt(),V1,V2) -> U34(isNatKind(activate(V2)),activate(V1),activate(V2))
            U34(tt(),V1,V2) -> U35(isNat(activate(V1)),activate(V2))
            U35(tt(),V2) -> U36(isNat(activate(V2)))
            U36(tt()) -> tt()
            U41(tt(),V2) -> U42(isNatKind(activate(V2)))
            U42(tt()) -> tt()
            U51(tt()) -> tt()
            U61(tt(),V2) -> U62(isNatKind(activate(V2)))
            U62(tt()) -> tt()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__plus(X1,X2)) -> plus(X1,X2)
            activate(n__s(X)) -> s(X)
            activate(n__x(X1,X2)) -> x(X1,X2)
            isNat(n__0()) -> tt()
            isNat(n__plus(V1,V2)) -> U11(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNat(n__s(V1)) -> U21(isNatKind(activate(V1)),activate(V1))
            isNat(n__x(V1,V2)) -> U31(isNatKind(activate(V1)),activate(V1),activate(V2))
            isNatKind(n__0()) -> tt()
            isNatKind(n__plus(V1,V2)) -> U41(isNatKind(activate(V1)),activate(V2))
            isNatKind(n__s(V1)) -> U51(isNatKind(activate(V1)))
            isNatKind(n__x(V1,V2)) -> U61(isNatKind(activate(V1)),activate(V2))
            plus(X1,X2) -> n__plus(X1,X2)
            s(X) -> n__s(X)
            x(X1,X2) -> n__x(X1,X2)
        - Signature:
            {0/0,U101/3,U102/3,U103/3,U104/3,U11/3,U12/3,U13/3,U14/3,U15/2,U16/1,U21/2,U22/2,U23/1,U31/3,U32/3,U33/3
            ,U34/3,U35/2,U36/1,U41/2,U42/1,U51/1,U61/2,U62/1,U71/2,U72/2,U81/3,U82/3,U83/3,U84/3,U91/2,U92/1,activate/1
            ,isNat/1,isNatKind/1,plus/2,s/1,x/2,0#/0,U101#/3,U102#/3,U103#/3,U104#/3,U11#/3,U12#/3,U13#/3,U14#/3,U15#/2
            ,U16#/1,U21#/2,U22#/2,U23#/1,U31#/3,U32#/3,U33#/3,U34#/3,U35#/2,U36#/1,U41#/2,U42#/1,U51#/1,U61#/2,U62#/1
            ,U71#/2,U72#/2,U81#/3,U82#/3,U83#/3,U84#/3,U91#/2,U92#/1,activate#/1,isNat#/1,isNatKind#/1,plus#/2,s#/1
            ,x#/2} / {n__0/0,n__plus/2,n__s/1,n__x/2,tt/0,c_1/0,c_2/1,c_3/1,c_4/1,c_5/5,c_6/1,c_7/1,c_8/1,c_9/2,c_10/1
            ,c_11/0,c_12/1,c_13/1,c_14/0,c_15/1,c_16/1,c_17/1,c_18/2,c_19/1,c_20/0,c_21/1,c_22/0,c_23/0,c_24/1,c_25/0
            ,c_26/1,c_27/1,c_28/1,c_29/1,c_30/1,c_31/4,c_32/1,c_33/1,c_34/0,c_35/1,c_36/1,c_37/1,c_38/1,c_39/0,c_40/1
            ,c_41/1,c_42/1,c_43/0,c_44/2,c_45/1,c_46/2,c_47/0,c_48/0,c_49/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,U101#,U102#,U103#,U104#,U11#,U12#,U13#,U14#,U15#,U16#
            ,U21#,U22#,U23#,U31#,U32#,U33#,U34#,U35#,U36#,U41#,U42#,U51#,U61#,U62#,U71#,U72#,U81#,U82#,U83#,U84#,U91#
            ,U92#,activate#,isNat#,isNatKind#,plus#,s#,x#} and constructors {n__0,n__plus,n__s,n__x,tt}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(?,O(n^2))