* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
+ Considered Problem:
- Strict TRS:
0() -> n__0()
activate(X) -> X
activate(n__0()) -> 0()
activate(n__f(X)) -> f(activate(X))
activate(n__s(X)) -> s(activate(X))
f(X) -> n__f(X)
f(0()) -> cons(0(),n__f(n__s(n__0())))
f(s(0())) -> f(p(s(0())))
p(s(X)) -> X
s(X) -> n__s(X)
- Signature:
{0/0,activate/1,f/1,p/1,s/1} / {cons/2,n__0/0,n__f/1,n__s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {0,activate,f,p,s} and constructors {cons,n__0,n__f,n__s}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
0() -> n__0()
activate(X) -> X
activate(n__0()) -> 0()
activate(n__f(X)) -> f(activate(X))
activate(n__s(X)) -> s(activate(X))
f(X) -> n__f(X)
f(0()) -> cons(0(),n__f(n__s(n__0())))
f(s(0())) -> f(p(s(0())))
p(s(X)) -> X
s(X) -> n__s(X)
- Signature:
{0/0,activate/1,f/1,p/1,s/1} / {cons/2,n__0/0,n__f/1,n__s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {0,activate,f,p,s} and constructors {cons,n__0,n__f,n__s}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
activate(x){x -> n__f(x)} =
activate(n__f(x)) ->^+ f(activate(x))
= C[activate(x) = activate(x){}]
** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
0() -> n__0()
activate(X) -> X
activate(n__0()) -> 0()
activate(n__f(X)) -> f(activate(X))
activate(n__s(X)) -> s(activate(X))
f(X) -> n__f(X)
f(0()) -> cons(0(),n__f(n__s(n__0())))
f(s(0())) -> f(p(s(0())))
p(s(X)) -> X
s(X) -> n__s(X)
- Signature:
{0/0,activate/1,f/1,p/1,s/1} / {cons/2,n__0/0,n__f/1,n__s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {0,activate,f,p,s} and constructors {cons,n__0,n__f,n__s}
+ Applied Processor:
InnermostRuleRemoval
+ Details:
Arguments of following rules are not normal-forms.
f(0()) -> cons(0(),n__f(n__s(n__0())))
f(s(0())) -> f(p(s(0())))
p(s(X)) -> X
All above mentioned rules can be savely removed.
** Step 1.b:2: Bounds WORST_CASE(?,O(n^1))
+ Considered Problem:
- Strict TRS:
0() -> n__0()
activate(X) -> X
activate(n__0()) -> 0()
activate(n__f(X)) -> f(activate(X))
activate(n__s(X)) -> s(activate(X))
f(X) -> n__f(X)
s(X) -> n__s(X)
- Signature:
{0/0,activate/1,f/1,p/1,s/1} / {cons/2,n__0/0,n__f/1,n__s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {0,activate,f,p,s} and constructors {cons,n__0,n__f,n__s}
+ Applied Processor:
Bounds {initialAutomaton = minimal, enrichment = match}
+ Details:
The problem is match-bounded by 2.
The enriched problem is compatible with follwoing automaton.
0_0() -> 1
0_1() -> 1
0_1() -> 3
activate_0(2) -> 1
activate_1(2) -> 3
cons_0(2,2) -> 1
cons_0(2,2) -> 2
cons_0(2,2) -> 3
f_0(2) -> 1
f_1(3) -> 1
f_1(3) -> 3
n__0_0() -> 1
n__0_0() -> 2
n__0_0() -> 3
n__0_1() -> 1
n__0_2() -> 1
n__0_2() -> 3
n__f_0(2) -> 1
n__f_0(2) -> 2
n__f_0(2) -> 3
n__f_1(2) -> 1
n__f_2(3) -> 1
n__f_2(3) -> 3
n__s_0(2) -> 1
n__s_0(2) -> 2
n__s_0(2) -> 3
n__s_1(2) -> 1
n__s_2(3) -> 1
n__s_2(3) -> 3
p_0(2) -> 1
s_0(2) -> 1
s_1(3) -> 1
s_1(3) -> 3
2 -> 1
2 -> 3
** Step 1.b:3: EmptyProcessor WORST_CASE(?,O(1))
+ Considered Problem:
- Weak TRS:
0() -> n__0()
activate(X) -> X
activate(n__0()) -> 0()
activate(n__f(X)) -> f(activate(X))
activate(n__s(X)) -> s(activate(X))
f(X) -> n__f(X)
s(X) -> n__s(X)
- Signature:
{0/0,activate/1,f/1,p/1,s/1} / {cons/2,n__0/0,n__f/1,n__s/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {0,activate,f,p,s} and constructors {cons,n__0,n__f,n__s}
+ Applied Processor:
EmptyProcessor
+ Details:
The problem is already closed. The intended complexity is O(1).
WORST_CASE(Omega(n^1),O(n^1))