* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: 0() -> n__0() activate(X) -> X activate(n__0()) -> 0() activate(n__f(X)) -> f(activate(X)) activate(n__s(X)) -> s(activate(X)) f(X) -> n__f(X) f(0()) -> cons(0(),n__f(n__s(n__0()))) f(s(0())) -> f(p(s(0()))) p(s(X)) -> X s(X) -> n__s(X) - Signature: {0/0,activate/1,f/1,p/1,s/1} / {cons/2,n__0/0,n__f/1,n__s/1} - Obligation: innermost runtime complexity wrt. defined symbols {0,activate,f,p,s} and constructors {cons,n__0,n__f,n__s} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: 0() -> n__0() activate(X) -> X activate(n__0()) -> 0() activate(n__f(X)) -> f(activate(X)) activate(n__s(X)) -> s(activate(X)) f(X) -> n__f(X) f(0()) -> cons(0(),n__f(n__s(n__0()))) f(s(0())) -> f(p(s(0()))) p(s(X)) -> X s(X) -> n__s(X) - Signature: {0/0,activate/1,f/1,p/1,s/1} / {cons/2,n__0/0,n__f/1,n__s/1} - Obligation: innermost runtime complexity wrt. defined symbols {0,activate,f,p,s} and constructors {cons,n__0,n__f,n__s} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: activate(x){x -> n__f(x)} = activate(n__f(x)) ->^+ f(activate(x)) = C[activate(x) = activate(x){}] ** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: 0() -> n__0() activate(X) -> X activate(n__0()) -> 0() activate(n__f(X)) -> f(activate(X)) activate(n__s(X)) -> s(activate(X)) f(X) -> n__f(X) f(0()) -> cons(0(),n__f(n__s(n__0()))) f(s(0())) -> f(p(s(0()))) p(s(X)) -> X s(X) -> n__s(X) - Signature: {0/0,activate/1,f/1,p/1,s/1} / {cons/2,n__0/0,n__f/1,n__s/1} - Obligation: innermost runtime complexity wrt. defined symbols {0,activate,f,p,s} and constructors {cons,n__0,n__f,n__s} + Applied Processor: InnermostRuleRemoval + Details: Arguments of following rules are not normal-forms. f(0()) -> cons(0(),n__f(n__s(n__0()))) f(s(0())) -> f(p(s(0()))) p(s(X)) -> X All above mentioned rules can be savely removed. ** Step 1.b:2: Bounds WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: 0() -> n__0() activate(X) -> X activate(n__0()) -> 0() activate(n__f(X)) -> f(activate(X)) activate(n__s(X)) -> s(activate(X)) f(X) -> n__f(X) s(X) -> n__s(X) - Signature: {0/0,activate/1,f/1,p/1,s/1} / {cons/2,n__0/0,n__f/1,n__s/1} - Obligation: innermost runtime complexity wrt. defined symbols {0,activate,f,p,s} and constructors {cons,n__0,n__f,n__s} + Applied Processor: Bounds {initialAutomaton = minimal, enrichment = match} + Details: The problem is match-bounded by 2. The enriched problem is compatible with follwoing automaton. 0_0() -> 1 0_1() -> 1 0_1() -> 3 activate_0(2) -> 1 activate_1(2) -> 3 cons_0(2,2) -> 1 cons_0(2,2) -> 2 cons_0(2,2) -> 3 f_0(2) -> 1 f_1(3) -> 1 f_1(3) -> 3 n__0_0() -> 1 n__0_0() -> 2 n__0_0() -> 3 n__0_1() -> 1 n__0_2() -> 1 n__0_2() -> 3 n__f_0(2) -> 1 n__f_0(2) -> 2 n__f_0(2) -> 3 n__f_1(2) -> 1 n__f_2(3) -> 1 n__f_2(3) -> 3 n__s_0(2) -> 1 n__s_0(2) -> 2 n__s_0(2) -> 3 n__s_1(2) -> 1 n__s_2(3) -> 1 n__s_2(3) -> 3 p_0(2) -> 1 s_0(2) -> 1 s_1(3) -> 1 s_1(3) -> 3 2 -> 1 2 -> 3 ** Step 1.b:3: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: 0() -> n__0() activate(X) -> X activate(n__0()) -> 0() activate(n__f(X)) -> f(activate(X)) activate(n__s(X)) -> s(activate(X)) f(X) -> n__f(X) s(X) -> n__s(X) - Signature: {0/0,activate/1,f/1,p/1,s/1} / {cons/2,n__0/0,n__f/1,n__s/1} - Obligation: innermost runtime complexity wrt. defined symbols {0,activate,f,p,s} and constructors {cons,n__0,n__f,n__s} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))