(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

f(0) → cons(0, n__f(n__s(n__0)))
f(s(0)) → f(p(s(0)))
p(s(X)) → X
f(X) → n__f(X)
s(X) → n__s(X)
0n__0
activate(n__f(X)) → f(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0
activate(X) → X

Rewrite Strategy: INNERMOST

(1) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)

A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 4.

The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3, 4, 5]
transitions:
cons0(0, 0) → 0
n__f0(0) → 0
n__s0(0) → 0
n__00() → 0
f0(0) → 1
p0(0) → 2
s0(0) → 3
00() → 4
activate0(0) → 5
n__f1(0) → 1
n__s1(0) → 3
n__01() → 4
activate1(0) → 6
f1(6) → 5
activate1(0) → 7
s1(7) → 5
01() → 5
n__f2(6) → 5
n__s2(7) → 5
n__02() → 5
f1(6) → 6
f1(6) → 7
s1(7) → 6
s1(7) → 7
01() → 6
01() → 7
n__f2(6) → 6
n__f2(6) → 7
n__s2(7) → 6
n__s2(7) → 7
n__02() → 6
n__02() → 7
02() → 8
n__02() → 11
n__s2(11) → 10
n__f2(10) → 9
cons2(8, 9) → 5
cons2(8, 9) → 6
cons2(8, 9) → 7
02() → 14
s2(14) → 13
p2(13) → 12
f2(12) → 5
f2(12) → 6
f2(12) → 7
n__f3(12) → 5
n__f3(12) → 6
n__f3(12) → 7
n__s3(14) → 13
n__03() → 8
n__03() → 14
03() → 15
n__03() → 18
n__s3(18) → 17
n__f3(17) → 16
cons3(15, 16) → 5
cons3(15, 16) → 6
cons3(15, 16) → 7
n__04() → 15
0 → 5
0 → 6
0 → 7
14 → 12

(2) BOUNDS(1, n^1)