* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__fact(X)) -> fact(activate(X))
            activate(n__p(X)) -> p(activate(X))
            activate(n__prod(X1,X2)) -> prod(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            fact(X) -> if(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X))))
            fact(X) -> n__fact(X)
            if(false(),X,Y) -> activate(Y)
            if(true(),X,Y) -> activate(X)
            p(X) -> n__p(X)
            p(s(X)) -> X
            prod(X1,X2) -> n__prod(X1,X2)
            prod(0(),X) -> 0()
            prod(s(X),Y) -> add(Y,prod(X,Y))
            s(X) -> n__s(X)
            zero(0()) -> true()
            zero(s(X)) -> false()
        - Signature:
            {0/0,activate/1,add/2,fact/1,if/3,p/1,prod/2,s/1,zero/1} / {false/0,n__0/0,n__fact/1,n__p/1,n__prod/2,n__s/1
            ,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,activate,add,fact,if,p,prod,s
            ,zero} and constructors {false,n__0,n__fact,n__p,n__prod,n__s,true}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__fact(X)) -> fact(activate(X))
            activate(n__p(X)) -> p(activate(X))
            activate(n__prod(X1,X2)) -> prod(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            fact(X) -> if(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X))))
            fact(X) -> n__fact(X)
            if(false(),X,Y) -> activate(Y)
            if(true(),X,Y) -> activate(X)
            p(X) -> n__p(X)
            p(s(X)) -> X
            prod(X1,X2) -> n__prod(X1,X2)
            prod(0(),X) -> 0()
            prod(s(X),Y) -> add(Y,prod(X,Y))
            s(X) -> n__s(X)
            zero(0()) -> true()
            zero(s(X)) -> false()
        - Signature:
            {0/0,activate/1,add/2,fact/1,if/3,p/1,prod/2,s/1,zero/1} / {false/0,n__0/0,n__fact/1,n__p/1,n__prod/2,n__s/1
            ,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,activate,add,fact,if,p,prod,s
            ,zero} and constructors {false,n__0,n__fact,n__p,n__prod,n__s,true}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          activate(x){x -> n__fact(x)} =
            activate(n__fact(x)) ->^+ fact(activate(x))
              = C[activate(x) = activate(x){}]

** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__fact(X)) -> fact(activate(X))
            activate(n__p(X)) -> p(activate(X))
            activate(n__prod(X1,X2)) -> prod(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            add(0(),X) -> X
            add(s(X),Y) -> s(add(X,Y))
            fact(X) -> if(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X))))
            fact(X) -> n__fact(X)
            if(false(),X,Y) -> activate(Y)
            if(true(),X,Y) -> activate(X)
            p(X) -> n__p(X)
            p(s(X)) -> X
            prod(X1,X2) -> n__prod(X1,X2)
            prod(0(),X) -> 0()
            prod(s(X),Y) -> add(Y,prod(X,Y))
            s(X) -> n__s(X)
            zero(0()) -> true()
            zero(s(X)) -> false()
        - Signature:
            {0/0,activate/1,add/2,fact/1,if/3,p/1,prod/2,s/1,zero/1} / {false/0,n__0/0,n__fact/1,n__p/1,n__prod/2,n__s/1
            ,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,activate,add,fact,if,p,prod,s
            ,zero} and constructors {false,n__0,n__fact,n__p,n__prod,n__s,true}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          add(0(),X) -> X
          add(s(X),Y) -> s(add(X,Y))
          p(s(X)) -> X
          prod(0(),X) -> 0()
          prod(s(X),Y) -> add(Y,prod(X,Y))
          zero(0()) -> true()
          zero(s(X)) -> false()
        All above mentioned rules can be savely removed.
** Step 1.b:2: DependencyPairs WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__fact(X)) -> fact(activate(X))
            activate(n__p(X)) -> p(activate(X))
            activate(n__prod(X1,X2)) -> prod(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            fact(X) -> if(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X))))
            fact(X) -> n__fact(X)
            if(false(),X,Y) -> activate(Y)
            if(true(),X,Y) -> activate(X)
            p(X) -> n__p(X)
            prod(X1,X2) -> n__prod(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,add/2,fact/1,if/3,p/1,prod/2,s/1,zero/1} / {false/0,n__0/0,n__fact/1,n__p/1,n__prod/2,n__s/1
            ,true/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0,activate,add,fact,if,p,prod,s
            ,zero} and constructors {false,n__0,n__fact,n__p,n__prod,n__s,true}
    + Applied Processor:
        DependencyPairs {dpKind_ = WIDP}
    + Details:
        We add the following weak innermost dependency pairs:
        
        Strict DPs
          0#() -> c_1()
          activate#(X) -> c_2()
          activate#(n__0()) -> c_3(0#())
          activate#(n__fact(X)) -> c_4(fact#(activate(X)))
          activate#(n__p(X)) -> c_5(p#(activate(X)))
          activate#(n__prod(X1,X2)) -> c_6(prod#(activate(X1),activate(X2)))
          activate#(n__s(X)) -> c_7(s#(activate(X)))
          fact#(X) -> c_8(if#(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X)))))
          fact#(X) -> c_9()
          if#(false(),X,Y) -> c_10(activate#(Y))
          if#(true(),X,Y) -> c_11(activate#(X))
          p#(X) -> c_12()
          prod#(X1,X2) -> c_13()
          s#(X) -> c_14()
        Weak DPs
          
        
        and mark the set of starting terms.
** Step 1.b:3: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            0#() -> c_1()
            activate#(X) -> c_2()
            activate#(n__0()) -> c_3(0#())
            activate#(n__fact(X)) -> c_4(fact#(activate(X)))
            activate#(n__p(X)) -> c_5(p#(activate(X)))
            activate#(n__prod(X1,X2)) -> c_6(prod#(activate(X1),activate(X2)))
            activate#(n__s(X)) -> c_7(s#(activate(X)))
            fact#(X) -> c_8(if#(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X)))))
            fact#(X) -> c_9()
            if#(false(),X,Y) -> c_10(activate#(Y))
            if#(true(),X,Y) -> c_11(activate#(X))
            p#(X) -> c_12()
            prod#(X1,X2) -> c_13()
            s#(X) -> c_14()
        - Strict TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__fact(X)) -> fact(activate(X))
            activate(n__p(X)) -> p(activate(X))
            activate(n__prod(X1,X2)) -> prod(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            fact(X) -> if(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X))))
            fact(X) -> n__fact(X)
            if(false(),X,Y) -> activate(Y)
            if(true(),X,Y) -> activate(X)
            p(X) -> n__p(X)
            prod(X1,X2) -> n__prod(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,add/2,fact/1,if/3,p/1,prod/2,s/1,zero/1,0#/0,activate#/1,add#/2,fact#/1,if#/3,p#/1,prod#/2
            ,s#/1,zero#/1} / {false/0,n__0/0,n__fact/1,n__p/1,n__prod/2,n__s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/1,c_9/0,c_10/1,c_11/1,c_12/0,c_13/0,c_14/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,add#,fact#,if#,p#,prod#,s#
            ,zero#} and constructors {false,n__0,n__fact,n__p,n__prod,n__s,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          0() -> n__0()
          activate(X) -> X
          activate(n__0()) -> 0()
          activate(n__fact(X)) -> fact(activate(X))
          activate(n__p(X)) -> p(activate(X))
          activate(n__prod(X1,X2)) -> prod(activate(X1),activate(X2))
          activate(n__s(X)) -> s(activate(X))
          fact(X) -> if(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X))))
          fact(X) -> n__fact(X)
          p(X) -> n__p(X)
          prod(X1,X2) -> n__prod(X1,X2)
          s(X) -> n__s(X)
          0#() -> c_1()
          activate#(X) -> c_2()
          activate#(n__0()) -> c_3(0#())
          activate#(n__fact(X)) -> c_4(fact#(activate(X)))
          activate#(n__p(X)) -> c_5(p#(activate(X)))
          activate#(n__prod(X1,X2)) -> c_6(prod#(activate(X1),activate(X2)))
          activate#(n__s(X)) -> c_7(s#(activate(X)))
          fact#(X) -> c_8(if#(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X)))))
          fact#(X) -> c_9()
          if#(false(),X,Y) -> c_10(activate#(Y))
          if#(true(),X,Y) -> c_11(activate#(X))
          p#(X) -> c_12()
          prod#(X1,X2) -> c_13()
          s#(X) -> c_14()
** Step 1.b:4: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            0#() -> c_1()
            activate#(X) -> c_2()
            activate#(n__0()) -> c_3(0#())
            activate#(n__fact(X)) -> c_4(fact#(activate(X)))
            activate#(n__p(X)) -> c_5(p#(activate(X)))
            activate#(n__prod(X1,X2)) -> c_6(prod#(activate(X1),activate(X2)))
            activate#(n__s(X)) -> c_7(s#(activate(X)))
            fact#(X) -> c_8(if#(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X)))))
            fact#(X) -> c_9()
            if#(false(),X,Y) -> c_10(activate#(Y))
            if#(true(),X,Y) -> c_11(activate#(X))
            p#(X) -> c_12()
            prod#(X1,X2) -> c_13()
            s#(X) -> c_14()
        - Strict TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__fact(X)) -> fact(activate(X))
            activate(n__p(X)) -> p(activate(X))
            activate(n__prod(X1,X2)) -> prod(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            fact(X) -> if(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X))))
            fact(X) -> n__fact(X)
            p(X) -> n__p(X)
            prod(X1,X2) -> n__prod(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,add/2,fact/1,if/3,p/1,prod/2,s/1,zero/1,0#/0,activate#/1,add#/2,fact#/1,if#/3,p#/1,prod#/2
            ,s#/1,zero#/1} / {false/0,n__0/0,n__fact/1,n__p/1,n__prod/2,n__s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/1,c_9/0,c_10/1,c_11/1,c_12/0,c_13/0,c_14/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,add#,fact#,if#,p#,prod#,s#
            ,zero#} and constructors {false,n__0,n__fact,n__p,n__prod,n__s,true}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(fact) = {1},
            uargs(p) = {1},
            uargs(prod) = {1,2},
            uargs(s) = {1},
            uargs(fact#) = {1},
            uargs(p#) = {1},
            uargs(prod#) = {1,2},
            uargs(s#) = {1},
            uargs(c_3) = {1},
            uargs(c_4) = {1},
            uargs(c_5) = {1},
            uargs(c_6) = {1},
            uargs(c_7) = {1},
            uargs(c_10) = {1},
            uargs(c_11) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                    p(0) = [1]                           
             p(activate) = [3] x1 + [2]                  
                  p(add) = [4] x1 + [1] x2 + [0]         
                 p(fact) = [1] x1 + [2]                  
                p(false) = [0]                           
                   p(if) = [1]                           
                 p(n__0) = [0]                           
              p(n__fact) = [1] x1 + [1]                  
                 p(n__p) = [1] x1 + [1]                  
              p(n__prod) = [1] x1 + [1] x2 + [2]         
                 p(n__s) = [1] x1 + [1]                  
                    p(p) = [1] x1 + [2]                  
                 p(prod) = [1] x1 + [1] x2 + [3]         
                    p(s) = [1] x1 + [2]                  
                 p(true) = [2]                           
                 p(zero) = [0]                           
                   p(0#) = [4]                           
            p(activate#) = [3] x1 + [0]                  
                 p(add#) = [1] x2 + [0]                  
                p(fact#) = [1] x1 + [5]                  
                  p(if#) = [4] x1 + [3] x2 + [3] x3 + [0]
                   p(p#) = [1] x1 + [6]                  
                p(prod#) = [1] x1 + [1] x2 + [0]         
                   p(s#) = [1] x1 + [0]                  
                p(zero#) = [1] x1 + [1]                  
                  p(c_1) = [0]                           
                  p(c_2) = [0]                           
                  p(c_3) = [1] x1 + [0]                  
                  p(c_4) = [1] x1 + [1]                  
                  p(c_5) = [1] x1 + [0]                  
                  p(c_6) = [1] x1 + [4]                  
                  p(c_7) = [1] x1 + [1]                  
                  p(c_8) = [1]                           
                  p(c_9) = [4]                           
                 p(c_10) = [1] x1 + [0]                  
                 p(c_11) = [1] x1 + [4]                  
                 p(c_12) = [0]                           
                 p(c_13) = [1]                           
                 p(c_14) = [0]                           
          
          Following rules are strictly oriented:
                              0#() = [4]                                                       
                                   > [0]                                                       
                                   = c_1()                                                     
          
                          fact#(X) = [1] X + [5]                                               
                                   > [1]                                                       
                                   = c_8(if#(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X)))))
          
                          fact#(X) = [1] X + [5]                                               
                                   > [4]                                                       
                                   = c_9()                                                     
          
                   if#(true(),X,Y) = [3] X + [3] Y + [8]                                       
                                   > [3] X + [4]                                               
                                   = c_11(activate#(X))                                        
          
                             p#(X) = [1] X + [6]                                               
                                   > [0]                                                       
                                   = c_12()                                                    
          
                               0() = [1]                                                       
                                   > [0]                                                       
                                   = n__0()                                                    
          
                       activate(X) = [3] X + [2]                                               
                                   > [1] X + [0]                                               
                                   = X                                                         
          
                  activate(n__0()) = [2]                                                       
                                   > [1]                                                       
                                   = 0()                                                       
          
              activate(n__fact(X)) = [3] X + [5]                                               
                                   > [3] X + [4]                                               
                                   = fact(activate(X))                                         
          
                 activate(n__p(X)) = [3] X + [5]                                               
                                   > [3] X + [4]                                               
                                   = p(activate(X))                                            
          
          activate(n__prod(X1,X2)) = [3] X1 + [3] X2 + [8]                                     
                                   > [3] X1 + [3] X2 + [7]                                     
                                   = prod(activate(X1),activate(X2))                           
          
                 activate(n__s(X)) = [3] X + [5]                                               
                                   > [3] X + [4]                                               
                                   = s(activate(X))                                            
          
                           fact(X) = [1] X + [2]                                               
                                   > [1]                                                       
                                   = if(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X))))      
          
                           fact(X) = [1] X + [2]                                               
                                   > [1] X + [1]                                               
                                   = n__fact(X)                                                
          
                              p(X) = [1] X + [2]                                               
                                   > [1] X + [1]                                               
                                   = n__p(X)                                                   
          
                       prod(X1,X2) = [1] X1 + [1] X2 + [3]                                     
                                   > [1] X1 + [1] X2 + [2]                                     
                                   = n__prod(X1,X2)                                            
          
                              s(X) = [1] X + [2]                                               
                                   > [1] X + [1]                                               
                                   = n__s(X)                                                   
          
          
          Following rules are (at-least) weakly oriented:
                       activate#(X) =  [3] X + [0]                          
                                    >= [0]                                  
                                    =  c_2()                                
          
                  activate#(n__0()) =  [0]                                  
                                    >= [4]                                  
                                    =  c_3(0#())                            
          
              activate#(n__fact(X)) =  [3] X + [3]                          
                                    >= [3] X + [8]                          
                                    =  c_4(fact#(activate(X)))              
          
                 activate#(n__p(X)) =  [3] X + [3]                          
                                    >= [3] X + [8]                          
                                    =  c_5(p#(activate(X)))                 
          
          activate#(n__prod(X1,X2)) =  [3] X1 + [3] X2 + [6]                
                                    >= [3] X1 + [3] X2 + [8]                
                                    =  c_6(prod#(activate(X1),activate(X2)))
          
                 activate#(n__s(X)) =  [3] X + [3]                          
                                    >= [3] X + [3]                          
                                    =  c_7(s#(activate(X)))                 
          
                   if#(false(),X,Y) =  [3] X + [3] Y + [0]                  
                                    >= [3] Y + [0]                          
                                    =  c_10(activate#(Y))                   
          
                       prod#(X1,X2) =  [1] X1 + [1] X2 + [0]                
                                    >= [1]                                  
                                    =  c_13()                               
          
                              s#(X) =  [1] X + [0]                          
                                    >= [0]                                  
                                    =  c_14()                               
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:5: PredecessorEstimation WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            activate#(X) -> c_2()
            activate#(n__0()) -> c_3(0#())
            activate#(n__fact(X)) -> c_4(fact#(activate(X)))
            activate#(n__p(X)) -> c_5(p#(activate(X)))
            activate#(n__prod(X1,X2)) -> c_6(prod#(activate(X1),activate(X2)))
            activate#(n__s(X)) -> c_7(s#(activate(X)))
            if#(false(),X,Y) -> c_10(activate#(Y))
            prod#(X1,X2) -> c_13()
            s#(X) -> c_14()
        - Weak DPs:
            0#() -> c_1()
            fact#(X) -> c_8(if#(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X)))))
            fact#(X) -> c_9()
            if#(true(),X,Y) -> c_11(activate#(X))
            p#(X) -> c_12()
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__fact(X)) -> fact(activate(X))
            activate(n__p(X)) -> p(activate(X))
            activate(n__prod(X1,X2)) -> prod(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            fact(X) -> if(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X))))
            fact(X) -> n__fact(X)
            p(X) -> n__p(X)
            prod(X1,X2) -> n__prod(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,add/2,fact/1,if/3,p/1,prod/2,s/1,zero/1,0#/0,activate#/1,add#/2,fact#/1,if#/3,p#/1,prod#/2
            ,s#/1,zero#/1} / {false/0,n__0/0,n__fact/1,n__p/1,n__prod/2,n__s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/1,c_9/0,c_10/1,c_11/1,c_12/0,c_13/0,c_14/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,add#,fact#,if#,p#,prod#,s#
            ,zero#} and constructors {false,n__0,n__fact,n__p,n__prod,n__s,true}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {8,9}
        by application of
          Pre({8,9}) = {5,6}.
        Here rules are labelled as follows:
          1: activate#(X) -> c_2()
          2: activate#(n__0()) -> c_3(0#())
          3: activate#(n__fact(X)) -> c_4(fact#(activate(X)))
          4: activate#(n__p(X)) -> c_5(p#(activate(X)))
          5: activate#(n__prod(X1,X2)) -> c_6(prod#(activate(X1),activate(X2)))
          6: activate#(n__s(X)) -> c_7(s#(activate(X)))
          7: if#(false(),X,Y) -> c_10(activate#(Y))
          8: prod#(X1,X2) -> c_13()
          9: s#(X) -> c_14()
          10: 0#() -> c_1()
          11: fact#(X) -> c_8(if#(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X)))))
          12: fact#(X) -> c_9()
          13: if#(true(),X,Y) -> c_11(activate#(X))
          14: p#(X) -> c_12()
** Step 1.b:6: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            activate#(X) -> c_2()
            activate#(n__0()) -> c_3(0#())
            activate#(n__fact(X)) -> c_4(fact#(activate(X)))
            activate#(n__p(X)) -> c_5(p#(activate(X)))
            activate#(n__prod(X1,X2)) -> c_6(prod#(activate(X1),activate(X2)))
            activate#(n__s(X)) -> c_7(s#(activate(X)))
            if#(false(),X,Y) -> c_10(activate#(Y))
        - Weak DPs:
            0#() -> c_1()
            fact#(X) -> c_8(if#(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X)))))
            fact#(X) -> c_9()
            if#(true(),X,Y) -> c_11(activate#(X))
            p#(X) -> c_12()
            prod#(X1,X2) -> c_13()
            s#(X) -> c_14()
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__fact(X)) -> fact(activate(X))
            activate(n__p(X)) -> p(activate(X))
            activate(n__prod(X1,X2)) -> prod(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            fact(X) -> if(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X))))
            fact(X) -> n__fact(X)
            p(X) -> n__p(X)
            prod(X1,X2) -> n__prod(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,add/2,fact/1,if/3,p/1,prod/2,s/1,zero/1,0#/0,activate#/1,add#/2,fact#/1,if#/3,p#/1,prod#/2
            ,s#/1,zero#/1} / {false/0,n__0/0,n__fact/1,n__p/1,n__prod/2,n__s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/1,c_9/0,c_10/1,c_11/1,c_12/0,c_13/0,c_14/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,add#,fact#,if#,p#,prod#,s#
            ,zero#} and constructors {false,n__0,n__fact,n__p,n__prod,n__s,true}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:activate#(X) -> c_2()
             
          
          2:S:activate#(n__0()) -> c_3(0#())
             -->_1 0#() -> c_1():8
          
          3:S:activate#(n__fact(X)) -> c_4(fact#(activate(X)))
             -->_1 fact#(X) -> c_9():10
             -->_1 fact#(X) -> c_8(if#(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X))))):9
          
          4:S:activate#(n__p(X)) -> c_5(p#(activate(X)))
             -->_1 p#(X) -> c_12():12
          
          5:S:activate#(n__prod(X1,X2)) -> c_6(prod#(activate(X1),activate(X2)))
             -->_1 prod#(X1,X2) -> c_13():13
          
          6:S:activate#(n__s(X)) -> c_7(s#(activate(X)))
             -->_1 s#(X) -> c_14():14
          
          7:S:if#(false(),X,Y) -> c_10(activate#(Y))
             -->_1 activate#(n__s(X)) -> c_7(s#(activate(X))):6
             -->_1 activate#(n__prod(X1,X2)) -> c_6(prod#(activate(X1),activate(X2))):5
             -->_1 activate#(n__p(X)) -> c_5(p#(activate(X))):4
             -->_1 activate#(n__fact(X)) -> c_4(fact#(activate(X))):3
             -->_1 activate#(n__0()) -> c_3(0#()):2
             -->_1 activate#(X) -> c_2():1
          
          8:W:0#() -> c_1()
             
          
          9:W:fact#(X) -> c_8(if#(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X)))))
             
          
          10:W:fact#(X) -> c_9()
             
          
          11:W:if#(true(),X,Y) -> c_11(activate#(X))
             -->_1 activate#(n__s(X)) -> c_7(s#(activate(X))):6
             -->_1 activate#(n__prod(X1,X2)) -> c_6(prod#(activate(X1),activate(X2))):5
             -->_1 activate#(n__p(X)) -> c_5(p#(activate(X))):4
             -->_1 activate#(n__fact(X)) -> c_4(fact#(activate(X))):3
             -->_1 activate#(n__0()) -> c_3(0#()):2
             -->_1 activate#(X) -> c_2():1
          
          12:W:p#(X) -> c_12()
             
          
          13:W:prod#(X1,X2) -> c_13()
             
          
          14:W:s#(X) -> c_14()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          14: s#(X) -> c_14()
          13: prod#(X1,X2) -> c_13()
          12: p#(X) -> c_12()
          9: fact#(X) -> c_8(if#(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X)))))
          10: fact#(X) -> c_9()
          8: 0#() -> c_1()
** Step 1.b:7: SimplifyRHS WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            activate#(X) -> c_2()
            activate#(n__0()) -> c_3(0#())
            activate#(n__fact(X)) -> c_4(fact#(activate(X)))
            activate#(n__p(X)) -> c_5(p#(activate(X)))
            activate#(n__prod(X1,X2)) -> c_6(prod#(activate(X1),activate(X2)))
            activate#(n__s(X)) -> c_7(s#(activate(X)))
            if#(false(),X,Y) -> c_10(activate#(Y))
        - Weak DPs:
            if#(true(),X,Y) -> c_11(activate#(X))
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__fact(X)) -> fact(activate(X))
            activate(n__p(X)) -> p(activate(X))
            activate(n__prod(X1,X2)) -> prod(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            fact(X) -> if(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X))))
            fact(X) -> n__fact(X)
            p(X) -> n__p(X)
            prod(X1,X2) -> n__prod(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,add/2,fact/1,if/3,p/1,prod/2,s/1,zero/1,0#/0,activate#/1,add#/2,fact#/1,if#/3,p#/1,prod#/2
            ,s#/1,zero#/1} / {false/0,n__0/0,n__fact/1,n__p/1,n__prod/2,n__s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1
            ,c_6/1,c_7/1,c_8/1,c_9/0,c_10/1,c_11/1,c_12/0,c_13/0,c_14/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,add#,fact#,if#,p#,prod#,s#
            ,zero#} and constructors {false,n__0,n__fact,n__p,n__prod,n__s,true}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:activate#(X) -> c_2()
             
          
          2:S:activate#(n__0()) -> c_3(0#())
             
          
          3:S:activate#(n__fact(X)) -> c_4(fact#(activate(X)))
             
          
          4:S:activate#(n__p(X)) -> c_5(p#(activate(X)))
             
          
          5:S:activate#(n__prod(X1,X2)) -> c_6(prod#(activate(X1),activate(X2)))
             
          
          6:S:activate#(n__s(X)) -> c_7(s#(activate(X)))
             
          
          7:S:if#(false(),X,Y) -> c_10(activate#(Y))
             -->_1 activate#(n__s(X)) -> c_7(s#(activate(X))):6
             -->_1 activate#(n__prod(X1,X2)) -> c_6(prod#(activate(X1),activate(X2))):5
             -->_1 activate#(n__p(X)) -> c_5(p#(activate(X))):4
             -->_1 activate#(n__fact(X)) -> c_4(fact#(activate(X))):3
             -->_1 activate#(n__0()) -> c_3(0#()):2
             -->_1 activate#(X) -> c_2():1
          
          11:W:if#(true(),X,Y) -> c_11(activate#(X))
             -->_1 activate#(n__s(X)) -> c_7(s#(activate(X))):6
             -->_1 activate#(n__prod(X1,X2)) -> c_6(prod#(activate(X1),activate(X2))):5
             -->_1 activate#(n__p(X)) -> c_5(p#(activate(X))):4
             -->_1 activate#(n__fact(X)) -> c_4(fact#(activate(X))):3
             -->_1 activate#(n__0()) -> c_3(0#()):2
             -->_1 activate#(X) -> c_2():1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          activate#(n__0()) -> c_3()
          activate#(n__fact(X)) -> c_4()
          activate#(n__p(X)) -> c_5()
          activate#(n__prod(X1,X2)) -> c_6()
          activate#(n__s(X)) -> c_7()
** Step 1.b:8: UsableRules WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            activate#(X) -> c_2()
            activate#(n__0()) -> c_3()
            activate#(n__fact(X)) -> c_4()
            activate#(n__p(X)) -> c_5()
            activate#(n__prod(X1,X2)) -> c_6()
            activate#(n__s(X)) -> c_7()
            if#(false(),X,Y) -> c_10(activate#(Y))
        - Weak DPs:
            if#(true(),X,Y) -> c_11(activate#(X))
        - Weak TRS:
            0() -> n__0()
            activate(X) -> X
            activate(n__0()) -> 0()
            activate(n__fact(X)) -> fact(activate(X))
            activate(n__p(X)) -> p(activate(X))
            activate(n__prod(X1,X2)) -> prod(activate(X1),activate(X2))
            activate(n__s(X)) -> s(activate(X))
            fact(X) -> if(zero(X),n__s(n__0()),n__prod(X,n__fact(n__p(X))))
            fact(X) -> n__fact(X)
            p(X) -> n__p(X)
            prod(X1,X2) -> n__prod(X1,X2)
            s(X) -> n__s(X)
        - Signature:
            {0/0,activate/1,add/2,fact/1,if/3,p/1,prod/2,s/1,zero/1,0#/0,activate#/1,add#/2,fact#/1,if#/3,p#/1,prod#/2
            ,s#/1,zero#/1} / {false/0,n__0/0,n__fact/1,n__p/1,n__prod/2,n__s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0
            ,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/1,c_12/0,c_13/0,c_14/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,add#,fact#,if#,p#,prod#,s#
            ,zero#} and constructors {false,n__0,n__fact,n__p,n__prod,n__s,true}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          activate#(X) -> c_2()
          activate#(n__0()) -> c_3()
          activate#(n__fact(X)) -> c_4()
          activate#(n__p(X)) -> c_5()
          activate#(n__prod(X1,X2)) -> c_6()
          activate#(n__s(X)) -> c_7()
          if#(false(),X,Y) -> c_10(activate#(Y))
          if#(true(),X,Y) -> c_11(activate#(X))
** Step 1.b:9: RemoveHeads WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            activate#(X) -> c_2()
            activate#(n__0()) -> c_3()
            activate#(n__fact(X)) -> c_4()
            activate#(n__p(X)) -> c_5()
            activate#(n__prod(X1,X2)) -> c_6()
            activate#(n__s(X)) -> c_7()
            if#(false(),X,Y) -> c_10(activate#(Y))
        - Weak DPs:
            if#(true(),X,Y) -> c_11(activate#(X))
        - Signature:
            {0/0,activate/1,add/2,fact/1,if/3,p/1,prod/2,s/1,zero/1,0#/0,activate#/1,add#/2,fact#/1,if#/3,p#/1,prod#/2
            ,s#/1,zero#/1} / {false/0,n__0/0,n__fact/1,n__p/1,n__prod/2,n__s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0
            ,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/1,c_12/0,c_13/0,c_14/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,add#,fact#,if#,p#,prod#,s#
            ,zero#} and constructors {false,n__0,n__fact,n__p,n__prod,n__s,true}
    + Applied Processor:
        RemoveHeads
    + Details:
        Consider the dependency graph
        
        1:S:activate#(X) -> c_2()
           
        
        2:S:activate#(n__0()) -> c_3()
           
        
        3:S:activate#(n__fact(X)) -> c_4()
           
        
        4:S:activate#(n__p(X)) -> c_5()
           
        
        5:S:activate#(n__prod(X1,X2)) -> c_6()
           
        
        6:S:activate#(n__s(X)) -> c_7()
           
        
        7:S:if#(false(),X,Y) -> c_10(activate#(Y))
           -->_1 activate#(n__s(X)) -> c_7():6
           -->_1 activate#(n__prod(X1,X2)) -> c_6():5
           -->_1 activate#(n__p(X)) -> c_5():4
           -->_1 activate#(n__fact(X)) -> c_4():3
           -->_1 activate#(n__0()) -> c_3():2
           -->_1 activate#(X) -> c_2():1
        
        8:W:if#(true(),X,Y) -> c_11(activate#(X))
           -->_1 activate#(n__s(X)) -> c_7():6
           -->_1 activate#(n__prod(X1,X2)) -> c_6():5
           -->_1 activate#(n__p(X)) -> c_5():4
           -->_1 activate#(n__fact(X)) -> c_4():3
           -->_1 activate#(n__0()) -> c_3():2
           -->_1 activate#(X) -> c_2():1
        
        
        Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
        
        [(7,if#(false(),X,Y) -> c_10(activate#(Y))),(8,if#(true(),X,Y) -> c_11(activate#(X)))]
** Step 1.b:10: RemoveHeads WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            activate#(X) -> c_2()
            activate#(n__0()) -> c_3()
            activate#(n__fact(X)) -> c_4()
            activate#(n__p(X)) -> c_5()
            activate#(n__prod(X1,X2)) -> c_6()
            activate#(n__s(X)) -> c_7()
        - Signature:
            {0/0,activate/1,add/2,fact/1,if/3,p/1,prod/2,s/1,zero/1,0#/0,activate#/1,add#/2,fact#/1,if#/3,p#/1,prod#/2
            ,s#/1,zero#/1} / {false/0,n__0/0,n__fact/1,n__p/1,n__prod/2,n__s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0
            ,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/1,c_12/0,c_13/0,c_14/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,add#,fact#,if#,p#,prod#,s#
            ,zero#} and constructors {false,n__0,n__fact,n__p,n__prod,n__s,true}
    + Applied Processor:
        RemoveHeads
    + Details:
        Consider the dependency graph
        
        1:S:activate#(X) -> c_2()
           
        
        2:S:activate#(n__0()) -> c_3()
           
        
        3:S:activate#(n__fact(X)) -> c_4()
           
        
        4:S:activate#(n__p(X)) -> c_5()
           
        
        5:S:activate#(n__prod(X1,X2)) -> c_6()
           
        
        6:S:activate#(n__s(X)) -> c_7()
           
        
        
        Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
        
        [(1,activate#(X) -> c_2())
        ,(2,activate#(n__0()) -> c_3())
        ,(3,activate#(n__fact(X)) -> c_4())
        ,(4,activate#(n__p(X)) -> c_5())
        ,(5,activate#(n__prod(X1,X2)) -> c_6())
        ,(6,activate#(n__s(X)) -> c_7())]
** Step 1.b:11: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {0/0,activate/1,add/2,fact/1,if/3,p/1,prod/2,s/1,zero/1,0#/0,activate#/1,add#/2,fact#/1,if#/3,p#/1,prod#/2
            ,s#/1,zero#/1} / {false/0,n__0/0,n__fact/1,n__p/1,n__prod/2,n__s/1,true/0,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0
            ,c_6/0,c_7/0,c_8/1,c_9/0,c_10/1,c_11/1,c_12/0,c_13/0,c_14/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {0#,activate#,add#,fact#,if#,p#,prod#,s#
            ,zero#} and constructors {false,n__0,n__fact,n__p,n__prod,n__s,true}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))