* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: active(cons(X1,X2)) -> cons(active(X1),X2) active(divides(X1,X2)) -> divides(X1,active(X2)) active(divides(X1,X2)) -> divides(active(X1),X2) active(filter(X1,X2)) -> filter(X1,active(X2)) active(filter(X1,X2)) -> filter(active(X1),X2) active(filter(s(s(X)),cons(Y,Z))) -> mark(if(divides(s(s(X)),Y) ,filter(s(s(X)),Z) ,cons(Y,filter(X,sieve(Y))))) active(from(X)) -> from(active(X)) active(from(X)) -> mark(cons(X,from(s(X)))) active(head(X)) -> head(active(X)) active(head(cons(X,Y))) -> mark(X) active(if(X1,X2,X3)) -> if(active(X1),X2,X3) active(if(false(),X,Y)) -> mark(Y) active(if(true(),X,Y)) -> mark(X) active(primes()) -> mark(sieve(from(s(s(0()))))) active(s(X)) -> s(active(X)) active(sieve(X)) -> sieve(active(X)) active(sieve(cons(X,Y))) -> mark(cons(X,filter(X,sieve(Y)))) active(tail(X)) -> tail(active(X)) active(tail(cons(X,Y))) -> mark(Y) cons(mark(X1),X2) -> mark(cons(X1,X2)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) divides(X1,mark(X2)) -> mark(divides(X1,X2)) divides(mark(X1),X2) -> mark(divides(X1,X2)) divides(ok(X1),ok(X2)) -> ok(divides(X1,X2)) filter(X1,mark(X2)) -> mark(filter(X1,X2)) filter(mark(X1),X2) -> mark(filter(X1,X2)) filter(ok(X1),ok(X2)) -> ok(filter(X1,X2)) from(mark(X)) -> mark(from(X)) from(ok(X)) -> ok(from(X)) head(mark(X)) -> mark(head(X)) head(ok(X)) -> ok(head(X)) if(mark(X1),X2,X3) -> mark(if(X1,X2,X3)) if(ok(X1),ok(X2),ok(X3)) -> ok(if(X1,X2,X3)) proper(0()) -> ok(0()) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(divides(X1,X2)) -> divides(proper(X1),proper(X2)) proper(false()) -> ok(false()) proper(filter(X1,X2)) -> filter(proper(X1),proper(X2)) proper(from(X)) -> from(proper(X)) proper(head(X)) -> head(proper(X)) proper(if(X1,X2,X3)) -> if(proper(X1),proper(X2),proper(X3)) proper(primes()) -> ok(primes()) proper(s(X)) -> s(proper(X)) proper(sieve(X)) -> sieve(proper(X)) proper(tail(X)) -> tail(proper(X)) proper(true()) -> ok(true()) s(mark(X)) -> mark(s(X)) s(ok(X)) -> ok(s(X)) sieve(mark(X)) -> mark(sieve(X)) sieve(ok(X)) -> ok(sieve(X)) tail(mark(X)) -> mark(tail(X)) tail(ok(X)) -> ok(tail(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) - Signature: {active/1,cons/2,divides/2,filter/2,from/1,head/1,if/3,proper/1,s/1,sieve/1,tail/1,top/1} / {0/0,false/0 ,mark/1,ok/1,primes/0,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {active,cons,divides,filter,from,head,if,proper,s,sieve ,tail,top} and constructors {0,false,mark,ok,primes,true} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: active(cons(X1,X2)) -> cons(active(X1),X2) active(divides(X1,X2)) -> divides(X1,active(X2)) active(divides(X1,X2)) -> divides(active(X1),X2) active(filter(X1,X2)) -> filter(X1,active(X2)) active(filter(X1,X2)) -> filter(active(X1),X2) active(filter(s(s(X)),cons(Y,Z))) -> mark(if(divides(s(s(X)),Y) ,filter(s(s(X)),Z) ,cons(Y,filter(X,sieve(Y))))) active(from(X)) -> from(active(X)) active(from(X)) -> mark(cons(X,from(s(X)))) active(head(X)) -> head(active(X)) active(head(cons(X,Y))) -> mark(X) active(if(X1,X2,X3)) -> if(active(X1),X2,X3) active(if(false(),X,Y)) -> mark(Y) active(if(true(),X,Y)) -> mark(X) active(primes()) -> mark(sieve(from(s(s(0()))))) active(s(X)) -> s(active(X)) active(sieve(X)) -> sieve(active(X)) active(sieve(cons(X,Y))) -> mark(cons(X,filter(X,sieve(Y)))) active(tail(X)) -> tail(active(X)) active(tail(cons(X,Y))) -> mark(Y) cons(mark(X1),X2) -> mark(cons(X1,X2)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) divides(X1,mark(X2)) -> mark(divides(X1,X2)) divides(mark(X1),X2) -> mark(divides(X1,X2)) divides(ok(X1),ok(X2)) -> ok(divides(X1,X2)) filter(X1,mark(X2)) -> mark(filter(X1,X2)) filter(mark(X1),X2) -> mark(filter(X1,X2)) filter(ok(X1),ok(X2)) -> ok(filter(X1,X2)) from(mark(X)) -> mark(from(X)) from(ok(X)) -> ok(from(X)) head(mark(X)) -> mark(head(X)) head(ok(X)) -> ok(head(X)) if(mark(X1),X2,X3) -> mark(if(X1,X2,X3)) if(ok(X1),ok(X2),ok(X3)) -> ok(if(X1,X2,X3)) proper(0()) -> ok(0()) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(divides(X1,X2)) -> divides(proper(X1),proper(X2)) proper(false()) -> ok(false()) proper(filter(X1,X2)) -> filter(proper(X1),proper(X2)) proper(from(X)) -> from(proper(X)) proper(head(X)) -> head(proper(X)) proper(if(X1,X2,X3)) -> if(proper(X1),proper(X2),proper(X3)) proper(primes()) -> ok(primes()) proper(s(X)) -> s(proper(X)) proper(sieve(X)) -> sieve(proper(X)) proper(tail(X)) -> tail(proper(X)) proper(true()) -> ok(true()) s(mark(X)) -> mark(s(X)) s(ok(X)) -> ok(s(X)) sieve(mark(X)) -> mark(sieve(X)) sieve(ok(X)) -> ok(sieve(X)) tail(mark(X)) -> mark(tail(X)) tail(ok(X)) -> ok(tail(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) - Signature: {active/1,cons/2,divides/2,filter/2,from/1,head/1,if/3,proper/1,s/1,sieve/1,tail/1,top/1} / {0/0,false/0 ,mark/1,ok/1,primes/0,true/0} - Obligation: innermost runtime complexity wrt. defined symbols {active,cons,divides,filter,from,head,if,proper,s,sieve ,tail,top} and constructors {0,false,mark,ok,primes,true} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: cons(x,y){x -> mark(x)} = cons(mark(x),y) ->^+ mark(cons(x,y)) = C[cons(x,y) = cons(x,y){}] WORST_CASE(Omega(n^1),?)