* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: active(adx(X)) -> adx(active(X)) active(adx(cons(X,Y))) -> mark(incr(cons(X,adx(Y)))) active(hd(X)) -> hd(active(X)) active(hd(cons(X,Y))) -> mark(X) active(incr(X)) -> incr(active(X)) active(incr(cons(X,Y))) -> mark(cons(s(X),incr(Y))) active(nats()) -> mark(adx(zeros())) active(tl(X)) -> tl(active(X)) active(tl(cons(X,Y))) -> mark(Y) active(zeros()) -> mark(cons(0(),zeros())) adx(mark(X)) -> mark(adx(X)) adx(ok(X)) -> ok(adx(X)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) hd(mark(X)) -> mark(hd(X)) hd(ok(X)) -> ok(hd(X)) incr(mark(X)) -> mark(incr(X)) incr(ok(X)) -> ok(incr(X)) proper(0()) -> ok(0()) proper(adx(X)) -> adx(proper(X)) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(hd(X)) -> hd(proper(X)) proper(incr(X)) -> incr(proper(X)) proper(nats()) -> ok(nats()) proper(s(X)) -> s(proper(X)) proper(tl(X)) -> tl(proper(X)) proper(zeros()) -> ok(zeros()) s(ok(X)) -> ok(s(X)) tl(mark(X)) -> mark(tl(X)) tl(ok(X)) -> ok(tl(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) - Signature: {active/1,adx/1,cons/2,hd/1,incr/1,proper/1,s/1,tl/1,top/1} / {0/0,mark/1,nats/0,ok/1,zeros/0} - Obligation: innermost runtime complexity wrt. defined symbols {active,adx,cons,hd,incr,proper,s,tl ,top} and constructors {0,mark,nats,ok,zeros} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: active(adx(X)) -> adx(active(X)) active(adx(cons(X,Y))) -> mark(incr(cons(X,adx(Y)))) active(hd(X)) -> hd(active(X)) active(hd(cons(X,Y))) -> mark(X) active(incr(X)) -> incr(active(X)) active(incr(cons(X,Y))) -> mark(cons(s(X),incr(Y))) active(nats()) -> mark(adx(zeros())) active(tl(X)) -> tl(active(X)) active(tl(cons(X,Y))) -> mark(Y) active(zeros()) -> mark(cons(0(),zeros())) adx(mark(X)) -> mark(adx(X)) adx(ok(X)) -> ok(adx(X)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) hd(mark(X)) -> mark(hd(X)) hd(ok(X)) -> ok(hd(X)) incr(mark(X)) -> mark(incr(X)) incr(ok(X)) -> ok(incr(X)) proper(0()) -> ok(0()) proper(adx(X)) -> adx(proper(X)) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(hd(X)) -> hd(proper(X)) proper(incr(X)) -> incr(proper(X)) proper(nats()) -> ok(nats()) proper(s(X)) -> s(proper(X)) proper(tl(X)) -> tl(proper(X)) proper(zeros()) -> ok(zeros()) s(ok(X)) -> ok(s(X)) tl(mark(X)) -> mark(tl(X)) tl(ok(X)) -> ok(tl(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) - Signature: {active/1,adx/1,cons/2,hd/1,incr/1,proper/1,s/1,tl/1,top/1} / {0/0,mark/1,nats/0,ok/1,zeros/0} - Obligation: innermost runtime complexity wrt. defined symbols {active,adx,cons,hd,incr,proper,s,tl ,top} and constructors {0,mark,nats,ok,zeros} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: adx(x){x -> mark(x)} = adx(mark(x)) ->^+ mark(adx(x)) = C[adx(x) = adx(x){}] ** Step 1.b:1: Bounds WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: active(adx(X)) -> adx(active(X)) active(adx(cons(X,Y))) -> mark(incr(cons(X,adx(Y)))) active(hd(X)) -> hd(active(X)) active(hd(cons(X,Y))) -> mark(X) active(incr(X)) -> incr(active(X)) active(incr(cons(X,Y))) -> mark(cons(s(X),incr(Y))) active(nats()) -> mark(adx(zeros())) active(tl(X)) -> tl(active(X)) active(tl(cons(X,Y))) -> mark(Y) active(zeros()) -> mark(cons(0(),zeros())) adx(mark(X)) -> mark(adx(X)) adx(ok(X)) -> ok(adx(X)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) hd(mark(X)) -> mark(hd(X)) hd(ok(X)) -> ok(hd(X)) incr(mark(X)) -> mark(incr(X)) incr(ok(X)) -> ok(incr(X)) proper(0()) -> ok(0()) proper(adx(X)) -> adx(proper(X)) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(hd(X)) -> hd(proper(X)) proper(incr(X)) -> incr(proper(X)) proper(nats()) -> ok(nats()) proper(s(X)) -> s(proper(X)) proper(tl(X)) -> tl(proper(X)) proper(zeros()) -> ok(zeros()) s(ok(X)) -> ok(s(X)) tl(mark(X)) -> mark(tl(X)) tl(ok(X)) -> ok(tl(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) - Signature: {active/1,adx/1,cons/2,hd/1,incr/1,proper/1,s/1,tl/1,top/1} / {0/0,mark/1,nats/0,ok/1,zeros/0} - Obligation: innermost runtime complexity wrt. defined symbols {active,adx,cons,hd,incr,proper,s,tl ,top} and constructors {0,mark,nats,ok,zeros} + Applied Processor: Bounds {initialAutomaton = perSymbol, enrichment = match} + Details: The problem is match-bounded by 10. The enriched problem is compatible with follwoing automaton. 0_0() -> 1 0_1() -> 17 0_2() -> 28 0_3() -> 39 0_4() -> 45 0_5() -> 56 0_6() -> 79 0_7() -> 103 active_0(1) -> 2 active_0(7) -> 2 active_0(8) -> 2 active_0(9) -> 2 active_0(14) -> 2 active_1(1) -> 24 active_1(7) -> 24 active_1(8) -> 24 active_1(9) -> 24 active_1(14) -> 24 active_2(16) -> 25 active_2(17) -> 25 active_3(33) -> 32 active_4(27) -> 37 active_4(41) -> 42 active_5(36) -> 43 active_5(57) -> 50 active_6(55) -> 51 active_6(62) -> 63 active_7(58) -> 64 active_7(78) -> 69 active_8(77) -> 72 active_8(87) -> 88 active_9(86) -> 89 active_9(108) -> 97 active_10(110) -> 111 adx_0(1) -> 3 adx_0(7) -> 3 adx_0(8) -> 3 adx_0(9) -> 3 adx_0(14) -> 3 adx_1(1) -> 18 adx_1(7) -> 18 adx_1(8) -> 18 adx_1(9) -> 18 adx_1(14) -> 18 adx_1(16) -> 15 adx_2(27) -> 26 adx_2(29) -> 25 adx_3(27) -> 33 adx_3(34) -> 32 adx_4(36) -> 41 adx_4(37) -> 32 adx_4(38) -> 40 adx_5(43) -> 42 adx_5(44) -> 47 adx_6(46) -> 61 adx_6(51) -> 50 adx_6(54) -> 76 adx_6(55) -> 57 adx_7(54) -> 67 adx_7(58) -> 62 adx_7(64) -> 63 adx_7(73) -> 71 adx_7(81) -> 85 adx_7(98) -> 95 adx_8(80) -> 75 adx_8(104) -> 101 adx_8(105) -> 107 cons_0(1,1) -> 4 cons_0(1,7) -> 4 cons_0(1,8) -> 4 cons_0(1,9) -> 4 cons_0(1,14) -> 4 cons_0(7,1) -> 4 cons_0(7,7) -> 4 cons_0(7,8) -> 4 cons_0(7,9) -> 4 cons_0(7,14) -> 4 cons_0(8,1) -> 4 cons_0(8,7) -> 4 cons_0(8,8) -> 4 cons_0(8,9) -> 4 cons_0(8,14) -> 4 cons_0(9,1) -> 4 cons_0(9,7) -> 4 cons_0(9,8) -> 4 cons_0(9,9) -> 4 cons_0(9,14) -> 4 cons_0(14,1) -> 4 cons_0(14,7) -> 4 cons_0(14,8) -> 4 cons_0(14,9) -> 4 cons_0(14,14) -> 4 cons_1(1,1) -> 19 cons_1(1,7) -> 19 cons_1(1,8) -> 19 cons_1(1,9) -> 19 cons_1(1,14) -> 19 cons_1(7,1) -> 19 cons_1(7,7) -> 19 cons_1(7,8) -> 19 cons_1(7,9) -> 19 cons_1(7,14) -> 19 cons_1(8,1) -> 19 cons_1(8,7) -> 19 cons_1(8,8) -> 19 cons_1(8,9) -> 19 cons_1(8,14) -> 19 cons_1(9,1) -> 19 cons_1(9,7) -> 19 cons_1(9,8) -> 19 cons_1(9,9) -> 19 cons_1(9,14) -> 19 cons_1(14,1) -> 19 cons_1(14,7) -> 19 cons_1(14,8) -> 19 cons_1(14,9) -> 19 cons_1(14,14) -> 19 cons_1(17,16) -> 15 cons_2(28,27) -> 26 cons_2(30,29) -> 25 cons_3(28,27) -> 33 cons_3(31,27) -> 33 cons_3(35,34) -> 32 cons_3(39,36) -> 38 cons_4(39,36) -> 41 cons_4(45,46) -> 44 cons_4(48,49) -> 43 cons_5(45,46) -> 55 cons_5(52,53) -> 51 cons_6(45,61) -> 60 cons_6(56,54) -> 58 cons_6(56,76) -> 77 cons_7(56,67) -> 66 cons_7(70,71) -> 68 cons_7(79,85) -> 86 cons_7(83,84) -> 82 cons_8(74,75) -> 72 cons_8(91,92) -> 90 cons_8(93,94) -> 88 cons_8(96,92) -> 108 cons_9(99,100) -> 97 cons_9(106,109) -> 110 hd_0(1) -> 5 hd_0(7) -> 5 hd_0(8) -> 5 hd_0(9) -> 5 hd_0(14) -> 5 hd_1(1) -> 20 hd_1(7) -> 20 hd_1(8) -> 20 hd_1(9) -> 20 hd_1(14) -> 20 incr_0(1) -> 6 incr_0(7) -> 6 incr_0(8) -> 6 incr_0(9) -> 6 incr_0(14) -> 6 incr_1(1) -> 21 incr_1(7) -> 21 incr_1(8) -> 21 incr_1(9) -> 21 incr_1(14) -> 21 incr_6(60) -> 59 incr_7(66) -> 65 incr_7(68) -> 63 incr_7(76) -> 84 incr_7(77) -> 78 incr_8(72) -> 69 incr_8(85) -> 92 incr_8(86) -> 87 incr_8(95) -> 94 incr_9(89) -> 88 incr_9(101) -> 100 incr_9(107) -> 109 mark_0(1) -> 7 mark_0(7) -> 7 mark_0(8) -> 7 mark_0(9) -> 7 mark_0(14) -> 7 mark_1(15) -> 2 mark_1(15) -> 24 mark_1(18) -> 3 mark_1(18) -> 18 mark_1(20) -> 5 mark_1(20) -> 20 mark_1(21) -> 6 mark_1(21) -> 21 mark_1(23) -> 12 mark_1(23) -> 23 mark_2(26) -> 25 mark_3(38) -> 37 mark_4(40) -> 32 mark_4(44) -> 43 mark_5(47) -> 42 mark_6(59) -> 50 mark_7(65) -> 63 mark_7(82) -> 69 mark_8(90) -> 88 nats_0() -> 8 nats_1() -> 17 nats_2() -> 31 ok_0(1) -> 9 ok_0(7) -> 9 ok_0(8) -> 9 ok_0(9) -> 9 ok_0(14) -> 9 ok_1(16) -> 10 ok_1(16) -> 24 ok_1(17) -> 10 ok_1(17) -> 24 ok_1(18) -> 3 ok_1(18) -> 18 ok_1(19) -> 4 ok_1(19) -> 19 ok_1(20) -> 5 ok_1(20) -> 20 ok_1(21) -> 6 ok_1(21) -> 21 ok_1(22) -> 11 ok_1(22) -> 22 ok_1(23) -> 12 ok_1(23) -> 23 ok_2(27) -> 29 ok_2(28) -> 30 ok_2(31) -> 30 ok_3(33) -> 25 ok_3(36) -> 34 ok_3(39) -> 35 ok_4(41) -> 32 ok_4(45) -> 48 ok_4(46) -> 49 ok_5(54) -> 53 ok_5(54) -> 73 ok_5(55) -> 43 ok_5(56) -> 52 ok_5(56) -> 70 ok_6(57) -> 42 ok_6(58) -> 51 ok_6(76) -> 71 ok_6(77) -> 68 ok_6(79) -> 74 ok_6(81) -> 80 ok_6(81) -> 98 ok_7(62) -> 50 ok_7(78) -> 63 ok_7(85) -> 75 ok_7(85) -> 95 ok_7(86) -> 72 ok_7(96) -> 93 ok_7(103) -> 102 ok_7(105) -> 104 ok_8(87) -> 69 ok_8(92) -> 94 ok_8(106) -> 99 ok_8(107) -> 101 ok_8(108) -> 88 ok_9(109) -> 100 ok_9(110) -> 97 proper_0(1) -> 10 proper_0(7) -> 10 proper_0(8) -> 10 proper_0(9) -> 10 proper_0(14) -> 10 proper_1(1) -> 24 proper_1(7) -> 24 proper_1(8) -> 24 proper_1(9) -> 24 proper_1(14) -> 24 proper_2(15) -> 25 proper_2(16) -> 29 proper_2(17) -> 30 proper_3(26) -> 32 proper_3(27) -> 34 proper_3(28) -> 35 proper_4(36) -> 49 proper_4(39) -> 48 proper_4(40) -> 42 proper_5(38) -> 43 proper_5(45) -> 52 proper_5(46) -> 53 proper_5(47) -> 50 proper_6(44) -> 51 proper_6(59) -> 63 proper_7(45) -> 70 proper_7(46) -> 73 proper_7(54) -> 98 proper_7(60) -> 68 proper_7(61) -> 71 proper_7(65) -> 69 proper_8(54) -> 80 proper_8(56) -> 74 proper_8(66) -> 72 proper_8(67) -> 75 proper_8(76) -> 95 proper_8(81) -> 104 proper_8(82) -> 88 proper_8(83) -> 93 proper_8(84) -> 94 proper_9(79) -> 102 proper_9(85) -> 101 proper_9(90) -> 97 proper_9(91) -> 99 proper_9(92) -> 100 s_0(1) -> 11 s_0(7) -> 11 s_0(8) -> 11 s_0(9) -> 11 s_0(14) -> 11 s_1(1) -> 22 s_1(7) -> 22 s_1(8) -> 22 s_1(9) -> 22 s_1(14) -> 22 s_7(56) -> 83 s_7(79) -> 96 s_8(74) -> 93 s_8(79) -> 91 s_8(103) -> 106 s_9(102) -> 99 tl_0(1) -> 12 tl_0(7) -> 12 tl_0(8) -> 12 tl_0(9) -> 12 tl_0(14) -> 12 tl_1(1) -> 23 tl_1(7) -> 23 tl_1(8) -> 23 tl_1(9) -> 23 tl_1(14) -> 23 top_0(1) -> 13 top_0(7) -> 13 top_0(8) -> 13 top_0(9) -> 13 top_0(14) -> 13 top_1(24) -> 13 top_2(25) -> 13 top_3(32) -> 13 top_4(42) -> 13 top_5(50) -> 13 top_6(63) -> 13 top_7(69) -> 13 top_8(88) -> 13 top_9(97) -> 13 top_10(111) -> 13 zeros_0() -> 14 zeros_1() -> 16 zeros_2() -> 27 zeros_3() -> 36 zeros_4() -> 46 zeros_5() -> 54 zeros_6() -> 81 zeros_7() -> 105 ** Step 1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: active(adx(X)) -> adx(active(X)) active(adx(cons(X,Y))) -> mark(incr(cons(X,adx(Y)))) active(hd(X)) -> hd(active(X)) active(hd(cons(X,Y))) -> mark(X) active(incr(X)) -> incr(active(X)) active(incr(cons(X,Y))) -> mark(cons(s(X),incr(Y))) active(nats()) -> mark(adx(zeros())) active(tl(X)) -> tl(active(X)) active(tl(cons(X,Y))) -> mark(Y) active(zeros()) -> mark(cons(0(),zeros())) adx(mark(X)) -> mark(adx(X)) adx(ok(X)) -> ok(adx(X)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) hd(mark(X)) -> mark(hd(X)) hd(ok(X)) -> ok(hd(X)) incr(mark(X)) -> mark(incr(X)) incr(ok(X)) -> ok(incr(X)) proper(0()) -> ok(0()) proper(adx(X)) -> adx(proper(X)) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(hd(X)) -> hd(proper(X)) proper(incr(X)) -> incr(proper(X)) proper(nats()) -> ok(nats()) proper(s(X)) -> s(proper(X)) proper(tl(X)) -> tl(proper(X)) proper(zeros()) -> ok(zeros()) s(ok(X)) -> ok(s(X)) tl(mark(X)) -> mark(tl(X)) tl(ok(X)) -> ok(tl(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) - Signature: {active/1,adx/1,cons/2,hd/1,incr/1,proper/1,s/1,tl/1,top/1} / {0/0,mark/1,nats/0,ok/1,zeros/0} - Obligation: innermost runtime complexity wrt. defined symbols {active,adx,cons,hd,incr,proper,s,tl ,top} and constructors {0,mark,nats,ok,zeros} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))