* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: active(adx(X)) -> adx(active(X)) active(adx(cons(X,L))) -> mark(incr(cons(X,adx(L)))) active(adx(nil())) -> mark(nil()) active(cons(X1,X2)) -> cons(active(X1),X2) active(head(X)) -> head(active(X)) active(head(cons(X,L))) -> mark(X) active(incr(X)) -> incr(active(X)) active(incr(cons(X,L))) -> mark(cons(s(X),incr(L))) active(incr(nil())) -> mark(nil()) active(nats()) -> mark(adx(zeros())) active(s(X)) -> s(active(X)) active(tail(X)) -> tail(active(X)) active(tail(cons(X,L))) -> mark(L) active(zeros()) -> mark(cons(0(),zeros())) adx(mark(X)) -> mark(adx(X)) adx(ok(X)) -> ok(adx(X)) cons(mark(X1),X2) -> mark(cons(X1,X2)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) head(mark(X)) -> mark(head(X)) head(ok(X)) -> ok(head(X)) incr(mark(X)) -> mark(incr(X)) incr(ok(X)) -> ok(incr(X)) proper(0()) -> ok(0()) proper(adx(X)) -> adx(proper(X)) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(head(X)) -> head(proper(X)) proper(incr(X)) -> incr(proper(X)) proper(nats()) -> ok(nats()) proper(nil()) -> ok(nil()) proper(s(X)) -> s(proper(X)) proper(tail(X)) -> tail(proper(X)) proper(zeros()) -> ok(zeros()) s(mark(X)) -> mark(s(X)) s(ok(X)) -> ok(s(X)) tail(mark(X)) -> mark(tail(X)) tail(ok(X)) -> ok(tail(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) - Signature: {active/1,adx/1,cons/2,head/1,incr/1,proper/1,s/1,tail/1,top/1} / {0/0,mark/1,nats/0,nil/0,ok/1,zeros/0} - Obligation: innermost runtime complexity wrt. defined symbols {active,adx,cons,head,incr,proper,s,tail ,top} and constructors {0,mark,nats,nil,ok,zeros} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: active(adx(X)) -> adx(active(X)) active(adx(cons(X,L))) -> mark(incr(cons(X,adx(L)))) active(adx(nil())) -> mark(nil()) active(cons(X1,X2)) -> cons(active(X1),X2) active(head(X)) -> head(active(X)) active(head(cons(X,L))) -> mark(X) active(incr(X)) -> incr(active(X)) active(incr(cons(X,L))) -> mark(cons(s(X),incr(L))) active(incr(nil())) -> mark(nil()) active(nats()) -> mark(adx(zeros())) active(s(X)) -> s(active(X)) active(tail(X)) -> tail(active(X)) active(tail(cons(X,L))) -> mark(L) active(zeros()) -> mark(cons(0(),zeros())) adx(mark(X)) -> mark(adx(X)) adx(ok(X)) -> ok(adx(X)) cons(mark(X1),X2) -> mark(cons(X1,X2)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) head(mark(X)) -> mark(head(X)) head(ok(X)) -> ok(head(X)) incr(mark(X)) -> mark(incr(X)) incr(ok(X)) -> ok(incr(X)) proper(0()) -> ok(0()) proper(adx(X)) -> adx(proper(X)) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(head(X)) -> head(proper(X)) proper(incr(X)) -> incr(proper(X)) proper(nats()) -> ok(nats()) proper(nil()) -> ok(nil()) proper(s(X)) -> s(proper(X)) proper(tail(X)) -> tail(proper(X)) proper(zeros()) -> ok(zeros()) s(mark(X)) -> mark(s(X)) s(ok(X)) -> ok(s(X)) tail(mark(X)) -> mark(tail(X)) tail(ok(X)) -> ok(tail(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) - Signature: {active/1,adx/1,cons/2,head/1,incr/1,proper/1,s/1,tail/1,top/1} / {0/0,mark/1,nats/0,nil/0,ok/1,zeros/0} - Obligation: innermost runtime complexity wrt. defined symbols {active,adx,cons,head,incr,proper,s,tail ,top} and constructors {0,mark,nats,nil,ok,zeros} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: adx(x){x -> mark(x)} = adx(mark(x)) ->^+ mark(adx(x)) = C[adx(x) = adx(x){}] ** Step 1.b:1: Bounds WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: active(adx(X)) -> adx(active(X)) active(adx(cons(X,L))) -> mark(incr(cons(X,adx(L)))) active(adx(nil())) -> mark(nil()) active(cons(X1,X2)) -> cons(active(X1),X2) active(head(X)) -> head(active(X)) active(head(cons(X,L))) -> mark(X) active(incr(X)) -> incr(active(X)) active(incr(cons(X,L))) -> mark(cons(s(X),incr(L))) active(incr(nil())) -> mark(nil()) active(nats()) -> mark(adx(zeros())) active(s(X)) -> s(active(X)) active(tail(X)) -> tail(active(X)) active(tail(cons(X,L))) -> mark(L) active(zeros()) -> mark(cons(0(),zeros())) adx(mark(X)) -> mark(adx(X)) adx(ok(X)) -> ok(adx(X)) cons(mark(X1),X2) -> mark(cons(X1,X2)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) head(mark(X)) -> mark(head(X)) head(ok(X)) -> ok(head(X)) incr(mark(X)) -> mark(incr(X)) incr(ok(X)) -> ok(incr(X)) proper(0()) -> ok(0()) proper(adx(X)) -> adx(proper(X)) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(head(X)) -> head(proper(X)) proper(incr(X)) -> incr(proper(X)) proper(nats()) -> ok(nats()) proper(nil()) -> ok(nil()) proper(s(X)) -> s(proper(X)) proper(tail(X)) -> tail(proper(X)) proper(zeros()) -> ok(zeros()) s(mark(X)) -> mark(s(X)) s(ok(X)) -> ok(s(X)) tail(mark(X)) -> mark(tail(X)) tail(ok(X)) -> ok(tail(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) - Signature: {active/1,adx/1,cons/2,head/1,incr/1,proper/1,s/1,tail/1,top/1} / {0/0,mark/1,nats/0,nil/0,ok/1,zeros/0} - Obligation: innermost runtime complexity wrt. defined symbols {active,adx,cons,head,incr,proper,s,tail ,top} and constructors {0,mark,nats,nil,ok,zeros} + Applied Processor: Bounds {initialAutomaton = perSymbol, enrichment = match} + Details: The problem is match-bounded by 10. The enriched problem is compatible with follwoing automaton. 0_0() -> 1 0_1() -> 18 0_2() -> 29 0_3() -> 42 0_4() -> 48 0_5() -> 64 0_6() -> 93 0_7() -> 132 0_8() -> 160 active_0(1) -> 2 active_0(7) -> 2 active_0(8) -> 2 active_0(9) -> 2 active_0(10) -> 2 active_0(15) -> 2 active_1(1) -> 25 active_1(7) -> 25 active_1(8) -> 25 active_1(9) -> 25 active_1(10) -> 25 active_1(15) -> 25 active_2(17) -> 26 active_2(18) -> 26 active_3(34) -> 33 active_4(28) -> 38 active_4(29) -> 39 active_4(32) -> 39 active_4(44) -> 45 active_5(37) -> 46 active_5(42) -> 56 active_5(61) -> 65 active_5(62) -> 55 active_5(66) -> 55 active_6(48) -> 72 active_6(49) -> 68 active_6(63) -> 57 active_6(75) -> 76 active_6(106) -> 111 active_6(107) -> 76 active_7(64) -> 81 active_7(67) -> 77 active_7(99) -> 121 active_7(100) -> 85 active_7(144) -> 149 active_7(148) -> 85 active_8(93) -> 123 active_8(98) -> 91 active_8(109) -> 110 active_8(142) -> 150 active_8(166) -> 168 active_8(167) -> 110 active_9(108) -> 112 active_9(119) -> 141 active_9(132) -> 147 active_9(139) -> 120 active_9(163) -> 169 active_10(137) -> 146 active_10(143) -> 145 active_10(160) -> 170 adx_0(1) -> 3 adx_0(7) -> 3 adx_0(8) -> 3 adx_0(9) -> 3 adx_0(10) -> 3 adx_0(15) -> 3 adx_1(1) -> 19 adx_1(7) -> 19 adx_1(8) -> 19 adx_1(9) -> 19 adx_1(10) -> 19 adx_1(15) -> 19 adx_1(17) -> 16 adx_2(28) -> 27 adx_2(30) -> 26 adx_3(28) -> 34 adx_3(35) -> 33 adx_3(37) -> 40 adx_4(37) -> 44 adx_4(38) -> 33 adx_4(41) -> 43 adx_4(52) -> 53 adx_5(46) -> 45 adx_5(47) -> 50 adx_5(49) -> 61 adx_6(49) -> 71 adx_6(57) -> 55 adx_6(60) -> 97 adx_6(63) -> 66 adx_6(68) -> 65 adx_6(73) -> 74 adx_7(60) -> 80 adx_7(67) -> 75 adx_7(77) -> 76 adx_7(86) -> 82 adx_7(92) -> 105 adx_7(94) -> 90 adx_7(121) -> 111 adx_7(124) -> 118 adx_8(99) -> 106 adx_8(101) -> 96 adx_8(133) -> 130 adx_8(133) -> 135 adx_8(136) -> 138 adx_9(161) -> 158 adx_9(162) -> 164 cons_0(1,1) -> 4 cons_0(1,7) -> 4 cons_0(1,8) -> 4 cons_0(1,9) -> 4 cons_0(1,10) -> 4 cons_0(1,15) -> 4 cons_0(7,1) -> 4 cons_0(7,7) -> 4 cons_0(7,8) -> 4 cons_0(7,9) -> 4 cons_0(7,10) -> 4 cons_0(7,15) -> 4 cons_0(8,1) -> 4 cons_0(8,7) -> 4 cons_0(8,8) -> 4 cons_0(8,9) -> 4 cons_0(8,10) -> 4 cons_0(8,15) -> 4 cons_0(9,1) -> 4 cons_0(9,7) -> 4 cons_0(9,8) -> 4 cons_0(9,9) -> 4 cons_0(9,10) -> 4 cons_0(9,15) -> 4 cons_0(10,1) -> 4 cons_0(10,7) -> 4 cons_0(10,8) -> 4 cons_0(10,9) -> 4 cons_0(10,10) -> 4 cons_0(10,15) -> 4 cons_0(15,1) -> 4 cons_0(15,7) -> 4 cons_0(15,8) -> 4 cons_0(15,9) -> 4 cons_0(15,10) -> 4 cons_0(15,15) -> 4 cons_1(1,1) -> 20 cons_1(1,7) -> 20 cons_1(1,8) -> 20 cons_1(1,9) -> 20 cons_1(1,10) -> 20 cons_1(1,15) -> 20 cons_1(7,1) -> 20 cons_1(7,7) -> 20 cons_1(7,8) -> 20 cons_1(7,9) -> 20 cons_1(7,10) -> 20 cons_1(7,15) -> 20 cons_1(8,1) -> 20 cons_1(8,7) -> 20 cons_1(8,8) -> 20 cons_1(8,9) -> 20 cons_1(8,10) -> 20 cons_1(8,15) -> 20 cons_1(9,1) -> 20 cons_1(9,7) -> 20 cons_1(9,8) -> 20 cons_1(9,9) -> 20 cons_1(9,10) -> 20 cons_1(9,15) -> 20 cons_1(10,1) -> 20 cons_1(10,7) -> 20 cons_1(10,8) -> 20 cons_1(10,9) -> 20 cons_1(10,10) -> 20 cons_1(10,15) -> 20 cons_1(15,1) -> 20 cons_1(15,7) -> 20 cons_1(15,8) -> 20 cons_1(15,9) -> 20 cons_1(15,10) -> 20 cons_1(15,15) -> 20 cons_1(18,17) -> 16 cons_2(29,28) -> 27 cons_2(31,30) -> 26 cons_3(29,28) -> 34 cons_3(32,28) -> 34 cons_3(36,35) -> 33 cons_3(42,37) -> 41 cons_4(39,28) -> 33 cons_4(40,28) -> 43 cons_4(42,37) -> 44 cons_4(48,49) -> 47 cons_4(51,52) -> 46 cons_4(61,37) -> 62 cons_5(48,49) -> 63 cons_5(53,54) -> 45 cons_5(56,37) -> 45 cons_5(58,59) -> 57 cons_5(64,60) -> 73 cons_5(65,37) -> 55 cons_5(106,49) -> 107 cons_6(48,71) -> 70 cons_6(64,60) -> 67 cons_6(64,97) -> 98 cons_6(72,49) -> 57 cons_6(74,37) -> 69 cons_6(87,88) -> 86 cons_6(111,49) -> 76 cons_6(144,60) -> 148 cons_7(64,80) -> 79 cons_7(81,60) -> 77 cons_7(81,97) -> 91 cons_7(82,83) -> 76 cons_7(89,90) -> 84 cons_7(93,92) -> 99 cons_7(93,105) -> 108 cons_7(103,104) -> 102 cons_7(122,49) -> 78 cons_7(149,60) -> 85 cons_7(166,92) -> 167 cons_8(95,96) -> 91 cons_8(114,115) -> 113 cons_8(116,117) -> 110 cons_8(119,115) -> 139 cons_8(123,92) -> 121 cons_8(123,105) -> 112 cons_8(125,126) -> 85 cons_8(132,138) -> 142 cons_8(134,135) -> 129 cons_8(137,152) -> 151 cons_8(151,60) -> 153 cons_8(168,92) -> 110 cons_9(127,128) -> 120 cons_9(137,140) -> 143 cons_9(141,115) -> 120 cons_9(147,138) -> 150 cons_9(154,155) -> 110 cons_9(156,157) -> 154 cons_9(169,165) -> 168 cons_10(146,140) -> 145 cons_10(163,165) -> 166 head_0(1) -> 5 head_0(7) -> 5 head_0(8) -> 5 head_0(9) -> 5 head_0(10) -> 5 head_0(15) -> 5 head_1(1) -> 21 head_1(7) -> 21 head_1(8) -> 21 head_1(9) -> 21 head_1(10) -> 21 head_1(15) -> 21 incr_0(1) -> 6 incr_0(7) -> 6 incr_0(8) -> 6 incr_0(9) -> 6 incr_0(10) -> 6 incr_0(15) -> 6 incr_1(1) -> 22 incr_1(7) -> 22 incr_1(8) -> 22 incr_1(9) -> 22 incr_1(10) -> 22 incr_1(15) -> 22 incr_6(70) -> 69 incr_7(79) -> 78 incr_7(84) -> 76 incr_7(97) -> 104 incr_7(98) -> 100 incr_7(108) -> 122 incr_8(91) -> 85 incr_8(105) -> 115 incr_8(108) -> 109 incr_8(118) -> 117 incr_8(129) -> 125 incr_8(138) -> 152 incr_8(150) -> 149 incr_9(112) -> 110 incr_9(130) -> 128 incr_9(138) -> 140 incr_9(142) -> 144 incr_9(158) -> 157 incr_10(164) -> 165 mark_0(1) -> 7 mark_0(7) -> 7 mark_0(8) -> 7 mark_0(9) -> 7 mark_0(10) -> 7 mark_0(15) -> 7 mark_1(16) -> 2 mark_1(16) -> 25 mark_1(19) -> 3 mark_1(19) -> 19 mark_1(20) -> 4 mark_1(20) -> 20 mark_1(21) -> 5 mark_1(21) -> 21 mark_1(22) -> 6 mark_1(22) -> 22 mark_1(23) -> 12 mark_1(23) -> 23 mark_1(24) -> 13 mark_1(24) -> 24 mark_2(27) -> 26 mark_3(40) -> 39 mark_3(41) -> 38 mark_4(43) -> 33 mark_4(47) -> 46 mark_5(50) -> 45 mark_5(73) -> 68 mark_6(69) -> 55 mark_6(74) -> 65 mark_7(78) -> 76 mark_7(102) -> 85 mark_7(122) -> 111 mark_8(113) -> 110 mark_8(151) -> 149 mark_8(153) -> 85 nats_0() -> 8 nats_1() -> 18 nats_2() -> 32 nil_0() -> 9 nil_1() -> 18 nil_2() -> 32 ok_0(1) -> 10 ok_0(7) -> 10 ok_0(8) -> 10 ok_0(9) -> 10 ok_0(10) -> 10 ok_0(15) -> 10 ok_1(17) -> 11 ok_1(17) -> 25 ok_1(18) -> 11 ok_1(18) -> 25 ok_1(19) -> 3 ok_1(19) -> 19 ok_1(20) -> 4 ok_1(20) -> 20 ok_1(21) -> 5 ok_1(21) -> 21 ok_1(22) -> 6 ok_1(22) -> 22 ok_1(23) -> 12 ok_1(23) -> 23 ok_1(24) -> 13 ok_1(24) -> 24 ok_2(28) -> 30 ok_2(29) -> 31 ok_2(32) -> 31 ok_3(34) -> 26 ok_3(37) -> 35 ok_3(37) -> 54 ok_3(42) -> 36 ok_4(44) -> 33 ok_4(48) -> 51 ok_4(49) -> 52 ok_4(49) -> 83 ok_4(62) -> 45 ok_5(60) -> 59 ok_5(60) -> 94 ok_5(60) -> 126 ok_5(61) -> 53 ok_5(63) -> 46 ok_5(64) -> 58 ok_5(64) -> 89 ok_5(107) -> 76 ok_6(66) -> 45 ok_6(67) -> 57 ok_6(92) -> 88 ok_6(92) -> 101 ok_6(92) -> 124 ok_6(92) -> 155 ok_6(93) -> 87 ok_6(93) -> 95 ok_6(97) -> 90 ok_6(98) -> 84 ok_6(148) -> 85 ok_7(75) -> 55 ok_7(99) -> 86 ok_7(100) -> 76 ok_7(105) -> 96 ok_7(105) -> 118 ok_7(108) -> 91 ok_7(119) -> 116 ok_7(132) -> 131 ok_7(132) -> 134 ok_7(136) -> 133 ok_7(167) -> 110 ok_8(106) -> 82 ok_8(109) -> 85 ok_8(115) -> 117 ok_8(137) -> 127 ok_8(138) -> 130 ok_8(138) -> 135 ok_8(139) -> 110 ok_8(142) -> 129 ok_8(160) -> 159 ok_8(162) -> 161 ok_9(140) -> 128 ok_9(143) -> 120 ok_9(144) -> 125 ok_9(163) -> 156 ok_9(164) -> 158 ok_10(165) -> 157 ok_10(166) -> 154 proper_0(1) -> 11 proper_0(7) -> 11 proper_0(8) -> 11 proper_0(9) -> 11 proper_0(10) -> 11 proper_0(15) -> 11 proper_1(1) -> 25 proper_1(7) -> 25 proper_1(8) -> 25 proper_1(9) -> 25 proper_1(10) -> 25 proper_1(15) -> 25 proper_2(16) -> 26 proper_2(17) -> 30 proper_2(18) -> 31 proper_3(27) -> 33 proper_3(28) -> 35 proper_3(29) -> 36 proper_4(37) -> 52 proper_4(42) -> 51 proper_4(43) -> 45 proper_5(28) -> 54 proper_5(40) -> 53 proper_5(41) -> 46 proper_5(48) -> 58 proper_5(49) -> 59 proper_5(50) -> 55 proper_6(47) -> 57 proper_6(60) -> 88 proper_6(64) -> 87 proper_6(69) -> 76 proper_7(37) -> 83 proper_7(48) -> 89 proper_7(49) -> 94 proper_7(60) -> 124 proper_7(70) -> 84 proper_7(71) -> 90 proper_7(73) -> 86 proper_7(74) -> 82 proper_7(78) -> 85 proper_8(49) -> 126 proper_8(60) -> 101 proper_8(64) -> 95 proper_8(79) -> 91 proper_8(80) -> 96 proper_8(92) -> 133 proper_8(93) -> 134 proper_8(97) -> 118 proper_8(102) -> 110 proper_8(103) -> 116 proper_8(104) -> 117 proper_8(105) -> 135 proper_8(108) -> 129 proper_8(122) -> 125 proper_8(153) -> 110 proper_9(60) -> 155 proper_9(93) -> 131 proper_9(105) -> 130 proper_9(113) -> 120 proper_9(114) -> 127 proper_9(115) -> 128 proper_9(132) -> 159 proper_9(136) -> 161 proper_9(137) -> 156 proper_9(138) -> 158 proper_9(151) -> 154 proper_9(152) -> 157 s_0(1) -> 12 s_0(7) -> 12 s_0(8) -> 12 s_0(9) -> 12 s_0(10) -> 12 s_0(15) -> 12 s_1(1) -> 23 s_1(7) -> 23 s_1(8) -> 23 s_1(9) -> 23 s_1(10) -> 23 s_1(15) -> 23 s_7(64) -> 103 s_7(93) -> 119 s_8(93) -> 114 s_8(95) -> 116 s_8(123) -> 141 s_8(132) -> 137 s_9(131) -> 127 s_9(147) -> 146 s_9(159) -> 156 s_9(160) -> 163 s_10(170) -> 169 tail_0(1) -> 13 tail_0(7) -> 13 tail_0(8) -> 13 tail_0(9) -> 13 tail_0(10) -> 13 tail_0(15) -> 13 tail_1(1) -> 24 tail_1(7) -> 24 tail_1(8) -> 24 tail_1(9) -> 24 tail_1(10) -> 24 tail_1(15) -> 24 top_0(1) -> 14 top_0(7) -> 14 top_0(8) -> 14 top_0(9) -> 14 top_0(10) -> 14 top_0(15) -> 14 top_1(25) -> 14 top_2(26) -> 14 top_3(33) -> 14 top_4(45) -> 14 top_5(55) -> 14 top_6(76) -> 14 top_7(85) -> 14 top_8(110) -> 14 top_9(120) -> 14 top_10(145) -> 14 zeros_0() -> 15 zeros_1() -> 17 zeros_2() -> 28 zeros_3() -> 37 zeros_4() -> 49 zeros_5() -> 60 zeros_6() -> 92 zeros_7() -> 136 zeros_8() -> 162 ** Step 1.b:2: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: active(adx(X)) -> adx(active(X)) active(adx(cons(X,L))) -> mark(incr(cons(X,adx(L)))) active(adx(nil())) -> mark(nil()) active(cons(X1,X2)) -> cons(active(X1),X2) active(head(X)) -> head(active(X)) active(head(cons(X,L))) -> mark(X) active(incr(X)) -> incr(active(X)) active(incr(cons(X,L))) -> mark(cons(s(X),incr(L))) active(incr(nil())) -> mark(nil()) active(nats()) -> mark(adx(zeros())) active(s(X)) -> s(active(X)) active(tail(X)) -> tail(active(X)) active(tail(cons(X,L))) -> mark(L) active(zeros()) -> mark(cons(0(),zeros())) adx(mark(X)) -> mark(adx(X)) adx(ok(X)) -> ok(adx(X)) cons(mark(X1),X2) -> mark(cons(X1,X2)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) head(mark(X)) -> mark(head(X)) head(ok(X)) -> ok(head(X)) incr(mark(X)) -> mark(incr(X)) incr(ok(X)) -> ok(incr(X)) proper(0()) -> ok(0()) proper(adx(X)) -> adx(proper(X)) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(head(X)) -> head(proper(X)) proper(incr(X)) -> incr(proper(X)) proper(nats()) -> ok(nats()) proper(nil()) -> ok(nil()) proper(s(X)) -> s(proper(X)) proper(tail(X)) -> tail(proper(X)) proper(zeros()) -> ok(zeros()) s(mark(X)) -> mark(s(X)) s(ok(X)) -> ok(s(X)) tail(mark(X)) -> mark(tail(X)) tail(ok(X)) -> ok(tail(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) - Signature: {active/1,adx/1,cons/2,head/1,incr/1,proper/1,s/1,tail/1,top/1} / {0/0,mark/1,nats/0,nil/0,ok/1,zeros/0} - Obligation: innermost runtime complexity wrt. defined symbols {active,adx,cons,head,incr,proper,s,tail ,top} and constructors {0,mark,nats,nil,ok,zeros} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))