0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 InliningProof (UPPER BOUND(ID), 80 ms)
↳12 CpxRNTS
↳13 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 123 ms)
↳18 CpxRNTS
↳19 IntTrsBoundProof (UPPER BOUND(ID), 9 ms)
↳20 CpxRNTS
↳21 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 472 ms)
↳24 CpxRNTS
↳25 IntTrsBoundProof (UPPER BOUND(ID), 114 ms)
↳26 CpxRNTS
↳27 FinalProof (⇔, 0 ms)
↳28 BOUNDS(1, n^1)
a__f(X) → g(h(f(X)))
mark(f(X)) → a__f(mark(X))
mark(g(X)) → g(X)
mark(h(X)) → h(mark(X))
a__f(X) → f(X)
a__f(X) → g(h(f(X))) [1]
mark(f(X)) → a__f(mark(X)) [1]
mark(g(X)) → g(X) [1]
mark(h(X)) → h(mark(X)) [1]
a__f(X) → f(X) [1]
a__f(X) → g(h(f(X))) [1]
mark(f(X)) → a__f(mark(X)) [1]
mark(g(X)) → g(X) [1]
mark(h(X)) → h(mark(X)) [1]
a__f(X) → f(X) [1]
a__f :: f:h:g → f:h:g g :: f:h:g → f:h:g h :: f:h:g → f:h:g f :: f:h:g → f:h:g mark :: f:h:g → f:h:g |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
none
(c) The following functions are completely defined:
mark
a__f
mark(v0) → const [0]
const
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
const => 0
a__f(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
a__f(z) -{ 1 }→ 1 + (1 + (1 + X)) :|: X >= 0, z = X
mark(z) -{ 2 }→ a__f(a__f(mark(X'))) :|: X' >= 0, z = 1 + (1 + X')
mark(z) -{ 1 }→ a__f(0) :|: z = 1 + X, X >= 0
mark(z) -{ 2 }→ a__f(1 + X'') :|: z = 1 + (1 + X''), X'' >= 0
mark(z) -{ 2 }→ a__f(1 + mark(X1)) :|: X1 >= 0, z = 1 + (1 + X1)
mark(z) -{ 0 }→ 0 :|: v0 >= 0, z = v0
mark(z) -{ 1 }→ 1 + X :|: z = 1 + X, X >= 0
mark(z) -{ 1 }→ 1 + mark(X) :|: z = 1 + X, X >= 0
a__f(z) -{ 1 }→ 1 + (1 + (1 + X)) :|: X >= 0, z = X
a__f(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
a__f(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
a__f(z) -{ 1 }→ 1 + (1 + (1 + X)) :|: X >= 0, z = X
mark(z) -{ 2 }→ a__f(a__f(mark(X'))) :|: X' >= 0, z = 1 + (1 + X')
mark(z) -{ 2 }→ a__f(1 + mark(X1)) :|: X1 >= 0, z = 1 + (1 + X1)
mark(z) -{ 0 }→ 0 :|: v0 >= 0, z = v0
mark(z) -{ 1 }→ 1 + X :|: z = 1 + X, X >= 0
mark(z) -{ 3 }→ 1 + X :|: z = 1 + (1 + X''), X'' >= 0, X >= 0, 1 + X'' = X
mark(z) -{ 2 }→ 1 + X' :|: z = 1 + X, X >= 0, X' >= 0, 0 = X'
mark(z) -{ 1 }→ 1 + mark(X) :|: z = 1 + X, X >= 0
mark(z) -{ 3 }→ 1 + (1 + (1 + X)) :|: z = 1 + (1 + X''), X'' >= 0, X >= 0, 1 + X'' = X
mark(z) -{ 2 }→ 1 + (1 + (1 + X')) :|: z = 1 + X, X >= 0, X' >= 0, 0 = X'
a__f(z) -{ 1 }→ 1 + z :|: z >= 0
a__f(z) -{ 1 }→ 1 + (1 + (1 + z)) :|: z >= 0
mark(z) -{ 2 }→ a__f(a__f(mark(z - 2))) :|: z - 2 >= 0
mark(z) -{ 2 }→ a__f(1 + mark(z - 2)) :|: z - 2 >= 0
mark(z) -{ 0 }→ 0 :|: z >= 0
mark(z) -{ 3 }→ 1 + X :|: z - 2 >= 0, X >= 0, 1 + (z - 2) = X
mark(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, 0 = X'
mark(z) -{ 1 }→ 1 + mark(z - 1) :|: z - 1 >= 0
mark(z) -{ 1 }→ 1 + (z - 1) :|: z - 1 >= 0
mark(z) -{ 3 }→ 1 + (1 + (1 + X)) :|: z - 2 >= 0, X >= 0, 1 + (z - 2) = X
mark(z) -{ 2 }→ 1 + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, 0 = X'
{ a__f } { mark } |
a__f(z) -{ 1 }→ 1 + z :|: z >= 0
a__f(z) -{ 1 }→ 1 + (1 + (1 + z)) :|: z >= 0
mark(z) -{ 2 }→ a__f(a__f(mark(z - 2))) :|: z - 2 >= 0
mark(z) -{ 2 }→ a__f(1 + mark(z - 2)) :|: z - 2 >= 0
mark(z) -{ 0 }→ 0 :|: z >= 0
mark(z) -{ 3 }→ 1 + X :|: z - 2 >= 0, X >= 0, 1 + (z - 2) = X
mark(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, 0 = X'
mark(z) -{ 1 }→ 1 + mark(z - 1) :|: z - 1 >= 0
mark(z) -{ 1 }→ 1 + (z - 1) :|: z - 1 >= 0
mark(z) -{ 3 }→ 1 + (1 + (1 + X)) :|: z - 2 >= 0, X >= 0, 1 + (z - 2) = X
mark(z) -{ 2 }→ 1 + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, 0 = X'
a__f(z) -{ 1 }→ 1 + z :|: z >= 0
a__f(z) -{ 1 }→ 1 + (1 + (1 + z)) :|: z >= 0
mark(z) -{ 2 }→ a__f(a__f(mark(z - 2))) :|: z - 2 >= 0
mark(z) -{ 2 }→ a__f(1 + mark(z - 2)) :|: z - 2 >= 0
mark(z) -{ 0 }→ 0 :|: z >= 0
mark(z) -{ 3 }→ 1 + X :|: z - 2 >= 0, X >= 0, 1 + (z - 2) = X
mark(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, 0 = X'
mark(z) -{ 1 }→ 1 + mark(z - 1) :|: z - 1 >= 0
mark(z) -{ 1 }→ 1 + (z - 1) :|: z - 1 >= 0
mark(z) -{ 3 }→ 1 + (1 + (1 + X)) :|: z - 2 >= 0, X >= 0, 1 + (z - 2) = X
mark(z) -{ 2 }→ 1 + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, 0 = X'
a__f: runtime: ?, size: O(n1) [3 + z] |
a__f(z) -{ 1 }→ 1 + z :|: z >= 0
a__f(z) -{ 1 }→ 1 + (1 + (1 + z)) :|: z >= 0
mark(z) -{ 2 }→ a__f(a__f(mark(z - 2))) :|: z - 2 >= 0
mark(z) -{ 2 }→ a__f(1 + mark(z - 2)) :|: z - 2 >= 0
mark(z) -{ 0 }→ 0 :|: z >= 0
mark(z) -{ 3 }→ 1 + X :|: z - 2 >= 0, X >= 0, 1 + (z - 2) = X
mark(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, 0 = X'
mark(z) -{ 1 }→ 1 + mark(z - 1) :|: z - 1 >= 0
mark(z) -{ 1 }→ 1 + (z - 1) :|: z - 1 >= 0
mark(z) -{ 3 }→ 1 + (1 + (1 + X)) :|: z - 2 >= 0, X >= 0, 1 + (z - 2) = X
mark(z) -{ 2 }→ 1 + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, 0 = X'
a__f: runtime: O(1) [1], size: O(n1) [3 + z] |
a__f(z) -{ 1 }→ 1 + z :|: z >= 0
a__f(z) -{ 1 }→ 1 + (1 + (1 + z)) :|: z >= 0
mark(z) -{ 2 }→ a__f(a__f(mark(z - 2))) :|: z - 2 >= 0
mark(z) -{ 2 }→ a__f(1 + mark(z - 2)) :|: z - 2 >= 0
mark(z) -{ 0 }→ 0 :|: z >= 0
mark(z) -{ 3 }→ 1 + X :|: z - 2 >= 0, X >= 0, 1 + (z - 2) = X
mark(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, 0 = X'
mark(z) -{ 1 }→ 1 + mark(z - 1) :|: z - 1 >= 0
mark(z) -{ 1 }→ 1 + (z - 1) :|: z - 1 >= 0
mark(z) -{ 3 }→ 1 + (1 + (1 + X)) :|: z - 2 >= 0, X >= 0, 1 + (z - 2) = X
mark(z) -{ 2 }→ 1 + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, 0 = X'
a__f: runtime: O(1) [1], size: O(n1) [3 + z] |
a__f(z) -{ 1 }→ 1 + z :|: z >= 0
a__f(z) -{ 1 }→ 1 + (1 + (1 + z)) :|: z >= 0
mark(z) -{ 2 }→ a__f(a__f(mark(z - 2))) :|: z - 2 >= 0
mark(z) -{ 2 }→ a__f(1 + mark(z - 2)) :|: z - 2 >= 0
mark(z) -{ 0 }→ 0 :|: z >= 0
mark(z) -{ 3 }→ 1 + X :|: z - 2 >= 0, X >= 0, 1 + (z - 2) = X
mark(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, 0 = X'
mark(z) -{ 1 }→ 1 + mark(z - 1) :|: z - 1 >= 0
mark(z) -{ 1 }→ 1 + (z - 1) :|: z - 1 >= 0
mark(z) -{ 3 }→ 1 + (1 + (1 + X)) :|: z - 2 >= 0, X >= 0, 1 + (z - 2) = X
mark(z) -{ 2 }→ 1 + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, 0 = X'
a__f: runtime: O(1) [1], size: O(n1) [3 + z] mark: runtime: ?, size: O(n1) [3·z] |
a__f(z) -{ 1 }→ 1 + z :|: z >= 0
a__f(z) -{ 1 }→ 1 + (1 + (1 + z)) :|: z >= 0
mark(z) -{ 2 }→ a__f(a__f(mark(z - 2))) :|: z - 2 >= 0
mark(z) -{ 2 }→ a__f(1 + mark(z - 2)) :|: z - 2 >= 0
mark(z) -{ 0 }→ 0 :|: z >= 0
mark(z) -{ 3 }→ 1 + X :|: z - 2 >= 0, X >= 0, 1 + (z - 2) = X
mark(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, 0 = X'
mark(z) -{ 1 }→ 1 + mark(z - 1) :|: z - 1 >= 0
mark(z) -{ 1 }→ 1 + (z - 1) :|: z - 1 >= 0
mark(z) -{ 3 }→ 1 + (1 + (1 + X)) :|: z - 2 >= 0, X >= 0, 1 + (z - 2) = X
mark(z) -{ 2 }→ 1 + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, 0 = X'
a__f: runtime: O(1) [1], size: O(n1) [3 + z] mark: runtime: O(n1) [6 + 8·z], size: O(n1) [3·z] |