* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__f(X)) -> f(activate(X))
            activate(n__h(X)) -> h(activate(X))
            f(X) -> g(n__h(n__f(X)))
            f(X) -> n__f(X)
            h(X) -> n__h(X)
        - Signature:
            {activate/1,f/1,h/1} / {g/1,n__f/1,n__h/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,f,h} and constructors {g,n__f,n__h}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__f(X)) -> f(activate(X))
            activate(n__h(X)) -> h(activate(X))
            f(X) -> g(n__h(n__f(X)))
            f(X) -> n__f(X)
            h(X) -> n__h(X)
        - Signature:
            {activate/1,f/1,h/1} / {g/1,n__f/1,n__h/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,f,h} and constructors {g,n__f,n__h}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          activate(x){x -> n__f(x)} =
            activate(n__f(x)) ->^+ f(activate(x))
              = C[activate(x) = activate(x){}]

** Step 1.b:1: Bounds WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__f(X)) -> f(activate(X))
            activate(n__h(X)) -> h(activate(X))
            f(X) -> g(n__h(n__f(X)))
            f(X) -> n__f(X)
            h(X) -> n__h(X)
        - Signature:
            {activate/1,f/1,h/1} / {g/1,n__f/1,n__h/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,f,h} and constructors {g,n__f,n__h}
    + Applied Processor:
        Bounds {initialAutomaton = minimal, enrichment = match}
    + Details:
        The problem is match-bounded by 2.
        The enriched problem is compatible with follwoing automaton.
          activate_0(2) -> 1
          activate_1(2) -> 3
          f_0(2) -> 1
          f_1(3) -> 1
          f_1(3) -> 3
          g_0(2) -> 1
          g_0(2) -> 2
          g_0(2) -> 3
          g_1(4) -> 1
          g_2(6) -> 1
          g_2(6) -> 3
          h_0(2) -> 1
          h_1(3) -> 1
          h_1(3) -> 3
          n__f_0(2) -> 1
          n__f_0(2) -> 2
          n__f_0(2) -> 3
          n__f_1(2) -> 1
          n__f_1(2) -> 5
          n__f_2(3) -> 1
          n__f_2(3) -> 3
          n__f_2(3) -> 7
          n__h_0(2) -> 1
          n__h_0(2) -> 2
          n__h_0(2) -> 3
          n__h_1(2) -> 1
          n__h_1(5) -> 4
          n__h_2(3) -> 1
          n__h_2(3) -> 3
          n__h_2(7) -> 6
          2 -> 1
          2 -> 3
** Step 1.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            activate(X) -> X
            activate(n__f(X)) -> f(activate(X))
            activate(n__h(X)) -> h(activate(X))
            f(X) -> g(n__h(n__f(X)))
            f(X) -> n__f(X)
            h(X) -> n__h(X)
        - Signature:
            {activate/1,f/1,h/1} / {g/1,n__f/1,n__h/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,f,h} and constructors {g,n__f,n__h}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))