0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳10 CpxRNTS
↳11 InliningProof (UPPER BOUND(ID), 50 ms)
↳12 CpxRNTS
↳13 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 114 ms)
↳18 CpxRNTS
↳19 IntTrsBoundProof (UPPER BOUND(ID), 10 ms)
↳20 CpxRNTS
↳21 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 125 ms)
↳24 CpxRNTS
↳25 IntTrsBoundProof (UPPER BOUND(ID), 5 ms)
↳26 CpxRNTS
↳27 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳28 CpxRNTS
↳29 IntTrsBoundProof (UPPER BOUND(ID), 446 ms)
↳30 CpxRNTS
↳31 IntTrsBoundProof (UPPER BOUND(ID), 73 ms)
↳32 CpxRNTS
↳33 FinalProof (⇔, 0 ms)
↳34 BOUNDS(1, n^1)
f(X) → g(n__h(n__f(X)))
h(X) → n__h(X)
f(X) → n__f(X)
activate(n__h(X)) → h(activate(X))
activate(n__f(X)) → f(activate(X))
activate(X) → X
f(X) → g(n__h(n__f(X))) [1]
h(X) → n__h(X) [1]
f(X) → n__f(X) [1]
activate(n__h(X)) → h(activate(X)) [1]
activate(n__f(X)) → f(activate(X)) [1]
activate(X) → X [1]
f(X) → g(n__h(n__f(X))) [1]
h(X) → n__h(X) [1]
f(X) → n__f(X) [1]
activate(n__h(X)) → h(activate(X)) [1]
activate(n__f(X)) → f(activate(X)) [1]
activate(X) → X [1]
f :: n__f:n__h:g → n__f:n__h:g g :: n__f:n__h:g → n__f:n__h:g n__h :: n__f:n__h:g → n__f:n__h:g n__f :: n__f:n__h:g → n__f:n__h:g h :: n__f:n__h:g → n__f:n__h:g activate :: n__f:n__h:g → n__f:n__h:g |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
none
(c) The following functions are completely defined:
activate
h
f
const
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
const => 0
activate(z) -{ 1 }→ X :|: X >= 0, z = X
activate(z) -{ 2 }→ h(X) :|: z = 1 + X, X >= 0
activate(z) -{ 2 }→ h(h(activate(X'))) :|: X' >= 0, z = 1 + (1 + X')
activate(z) -{ 2 }→ h(f(activate(X''))) :|: z = 1 + (1 + X''), X'' >= 0
activate(z) -{ 2 }→ f(X) :|: z = 1 + X, X >= 0
activate(z) -{ 2 }→ f(h(activate(X1))) :|: X1 >= 0, z = 1 + (1 + X1)
activate(z) -{ 2 }→ f(f(activate(X2))) :|: z = 1 + (1 + X2), X2 >= 0
f(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
f(z) -{ 1 }→ 1 + (1 + (1 + X)) :|: X >= 0, z = X
h(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
f(z) -{ 1 }→ 1 + (1 + (1 + X)) :|: X >= 0, z = X
f(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
h(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
activate(z) -{ 1 }→ X :|: X >= 0, z = X
activate(z) -{ 2 }→ h(h(activate(X'))) :|: X' >= 0, z = 1 + (1 + X')
activate(z) -{ 2 }→ h(f(activate(X''))) :|: z = 1 + (1 + X''), X'' >= 0
activate(z) -{ 2 }→ f(h(activate(X1))) :|: X1 >= 0, z = 1 + (1 + X1)
activate(z) -{ 2 }→ f(f(activate(X2))) :|: z = 1 + (1 + X2), X2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z = 1 + X, X >= 0, X' >= 0, X = X'
activate(z) -{ 3 }→ 1 + (1 + (1 + X')) :|: z = 1 + X, X >= 0, X' >= 0, X = X'
f(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
f(z) -{ 1 }→ 1 + (1 + (1 + X)) :|: X >= 0, z = X
h(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ h(h(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ h(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(h(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
f(z) -{ 1 }→ 1 + (1 + (1 + z)) :|: z >= 0
h(z) -{ 1 }→ 1 + z :|: z >= 0
{ h } { f } { activate } |
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ h(h(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ h(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(h(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
f(z) -{ 1 }→ 1 + (1 + (1 + z)) :|: z >= 0
h(z) -{ 1 }→ 1 + z :|: z >= 0
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ h(h(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ h(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(h(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
f(z) -{ 1 }→ 1 + (1 + (1 + z)) :|: z >= 0
h(z) -{ 1 }→ 1 + z :|: z >= 0
h: runtime: ?, size: O(n1) [1 + z] |
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ h(h(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ h(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(h(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
f(z) -{ 1 }→ 1 + (1 + (1 + z)) :|: z >= 0
h(z) -{ 1 }→ 1 + z :|: z >= 0
h: runtime: O(1) [1], size: O(n1) [1 + z] |
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ h(h(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ h(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(h(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
f(z) -{ 1 }→ 1 + (1 + (1 + z)) :|: z >= 0
h(z) -{ 1 }→ 1 + z :|: z >= 0
h: runtime: O(1) [1], size: O(n1) [1 + z] |
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ h(h(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ h(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(h(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
f(z) -{ 1 }→ 1 + (1 + (1 + z)) :|: z >= 0
h(z) -{ 1 }→ 1 + z :|: z >= 0
h: runtime: O(1) [1], size: O(n1) [1 + z] f: runtime: ?, size: O(n1) [3 + z] |
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ h(h(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ h(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(h(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
f(z) -{ 1 }→ 1 + (1 + (1 + z)) :|: z >= 0
h(z) -{ 1 }→ 1 + z :|: z >= 0
h: runtime: O(1) [1], size: O(n1) [1 + z] f: runtime: O(1) [1], size: O(n1) [3 + z] |
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ h(h(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ h(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(h(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
f(z) -{ 1 }→ 1 + (1 + (1 + z)) :|: z >= 0
h(z) -{ 1 }→ 1 + z :|: z >= 0
h: runtime: O(1) [1], size: O(n1) [1 + z] f: runtime: O(1) [1], size: O(n1) [3 + z] |
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ h(h(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ h(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(h(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
f(z) -{ 1 }→ 1 + (1 + (1 + z)) :|: z >= 0
h(z) -{ 1 }→ 1 + z :|: z >= 0
h: runtime: O(1) [1], size: O(n1) [1 + z] f: runtime: O(1) [1], size: O(n1) [3 + z] activate: runtime: ?, size: O(n1) [3·z] |
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 2 }→ h(h(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ h(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(h(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 2 }→ f(f(activate(z - 2))) :|: z - 2 >= 0
activate(z) -{ 3 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 3 }→ 1 + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
f(z) -{ 1 }→ 1 + z :|: z >= 0
f(z) -{ 1 }→ 1 + (1 + (1 + z)) :|: z >= 0
h(z) -{ 1 }→ 1 + z :|: z >= 0
h: runtime: O(1) [1], size: O(n1) [1 + z] f: runtime: O(1) [1], size: O(n1) [3 + z] activate: runtime: O(n1) [4 + 4·z], size: O(n1) [3·z] |