* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
    + Considered Problem:
        - Strict TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndsneg(s(N),cons(X,Z)) -> 2ndsneg(s(N),cons2(X,activate(Z)))
            2ndsneg(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,activate(Z)))
            2ndspos(0(),Z) -> rnil()
            2ndspos(s(N),cons(X,Z)) -> 2ndspos(s(N),cons2(X,activate(Z)))
            2ndspos(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,activate(Z)))
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1
            ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,square
            ,times} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndsneg(s(N),cons(X,Z)) -> 2ndsneg(s(N),cons2(X,activate(Z)))
            2ndsneg(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,activate(Z)))
            2ndspos(0(),Z) -> rnil()
            2ndspos(s(N),cons(X,Z)) -> 2ndspos(s(N),cons2(X,activate(Z)))
            2ndspos(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,activate(Z)))
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1
            ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,square
            ,times} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          plus(x,y){x -> s(x)} =
            plus(s(x),y) ->^+ s(plus(x,y))
              = C[plus(x,y) = plus(x,y){}]

** Step 1.b:1: DependencyPairs WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndsneg(s(N),cons(X,Z)) -> 2ndsneg(s(N),cons2(X,activate(Z)))
            2ndsneg(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,activate(Z)))
            2ndspos(0(),Z) -> rnil()
            2ndspos(s(N),cons(X,Z)) -> 2ndspos(s(N),cons2(X,activate(Z)))
            2ndspos(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,activate(Z)))
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1
            ,negrecip/1,posrecip/1,rcons/2,rnil/0,s/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,square
            ,times} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        DependencyPairs {dpKind_ = DT}
    + Details:
        We add the following dependency tuples:
        
        Strict DPs
          2ndsneg#(0(),Z) -> c_1()
          2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z))
          2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z))
          2ndspos#(0(),Z) -> c_4()
          2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z))
          2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z))
          activate#(X) -> c_7()
          activate#(n__from(X)) -> c_8(from#(X))
          from#(X) -> c_9()
          from#(X) -> c_10()
          pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0()))
          plus#(0(),Y) -> c_12()
          plus#(s(X),Y) -> c_13(plus#(X,Y))
          square#(X) -> c_14(times#(X,X))
          times#(0(),Y) -> c_15()
          times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        Weak DPs
          
        
        and mark the set of starting terms.
** Step 1.b:2: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            2ndsneg#(0(),Z) -> c_1()
            2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z))
            2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z))
            2ndspos#(0(),Z) -> c_4()
            2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z))
            2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z))
            activate#(X) -> c_7()
            activate#(n__from(X)) -> c_8(from#(X))
            from#(X) -> c_9()
            from#(X) -> c_10()
            pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0()))
            plus#(0(),Y) -> c_12()
            plus#(s(X),Y) -> c_13(plus#(X,Y))
            square#(X) -> c_14(times#(X,X))
            times#(0(),Y) -> c_15()
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        - Weak TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndsneg(s(N),cons(X,Z)) -> 2ndsneg(s(N),cons2(X,activate(Z)))
            2ndsneg(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,activate(Z)))
            2ndspos(0(),Z) -> rnil()
            2ndspos(s(N),cons(X,Z)) -> 2ndspos(s(N),cons2(X,activate(Z)))
            2ndspos(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,activate(Z)))
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/2,c_6/2,c_7/0,c_8/1,c_9/0,c_10/0,c_11/2,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          activate(X) -> X
          activate(n__from(X)) -> from(X)
          from(X) -> cons(X,n__from(s(X)))
          from(X) -> n__from(X)
          plus(0(),Y) -> Y
          plus(s(X),Y) -> s(plus(X,Y))
          times(0(),Y) -> 0()
          times(s(X),Y) -> plus(Y,times(X,Y))
          2ndsneg#(0(),Z) -> c_1()
          2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z))
          2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z))
          2ndspos#(0(),Z) -> c_4()
          2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z))
          2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z))
          activate#(X) -> c_7()
          activate#(n__from(X)) -> c_8(from#(X))
          from#(X) -> c_9()
          from#(X) -> c_10()
          pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0()))
          plus#(0(),Y) -> c_12()
          plus#(s(X),Y) -> c_13(plus#(X,Y))
          square#(X) -> c_14(times#(X,X))
          times#(0(),Y) -> c_15()
          times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
** Step 1.b:3: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            2ndsneg#(0(),Z) -> c_1()
            2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z))
            2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z))
            2ndspos#(0(),Z) -> c_4()
            2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z))
            2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z))
            activate#(X) -> c_7()
            activate#(n__from(X)) -> c_8(from#(X))
            from#(X) -> c_9()
            from#(X) -> c_10()
            pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0()))
            plus#(0(),Y) -> c_12()
            plus#(s(X),Y) -> c_13(plus#(X,Y))
            square#(X) -> c_14(times#(X,X))
            times#(0(),Y) -> c_15()
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/2,c_6/2,c_7/0,c_8/1,c_9/0,c_10/0,c_11/2,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1,4,7,9,10,12,15}
        by application of
          Pre({1,4,7,9,10,12,15}) = {2,3,5,6,8,11,13,14,16}.
        Here rules are labelled as follows:
          1: 2ndsneg#(0(),Z) -> c_1()
          2: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z))
          3: 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z))
          4: 2ndspos#(0(),Z) -> c_4()
          5: 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z))
          6: 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z))
          7: activate#(X) -> c_7()
          8: activate#(n__from(X)) -> c_8(from#(X))
          9: from#(X) -> c_9()
          10: from#(X) -> c_10()
          11: pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0()))
          12: plus#(0(),Y) -> c_12()
          13: plus#(s(X),Y) -> c_13(plus#(X,Y))
          14: square#(X) -> c_14(times#(X,X))
          15: times#(0(),Y) -> c_15()
          16: times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
** Step 1.b:4: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z))
            2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z))
            2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z))
            2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z))
            activate#(n__from(X)) -> c_8(from#(X))
            pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0()))
            plus#(s(X),Y) -> c_13(plus#(X,Y))
            square#(X) -> c_14(times#(X,X))
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        - Weak DPs:
            2ndsneg#(0(),Z) -> c_1()
            2ndspos#(0(),Z) -> c_4()
            activate#(X) -> c_7()
            from#(X) -> c_9()
            from#(X) -> c_10()
            plus#(0(),Y) -> c_12()
            times#(0(),Y) -> c_15()
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/2,c_6/2,c_7/0,c_8/1,c_9/0,c_10/0,c_11/2,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {5}
        by application of
          Pre({5}) = {1,2,3,4}.
        Here rules are labelled as follows:
          1: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z))
          2: 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z))
          3: 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z))
          4: 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z))
          5: activate#(n__from(X)) -> c_8(from#(X))
          6: pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0()))
          7: plus#(s(X),Y) -> c_13(plus#(X,Y))
          8: square#(X) -> c_14(times#(X,X))
          9: times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
          10: 2ndsneg#(0(),Z) -> c_1()
          11: 2ndspos#(0(),Z) -> c_4()
          12: activate#(X) -> c_7()
          13: from#(X) -> c_9()
          14: from#(X) -> c_10()
          15: plus#(0(),Y) -> c_12()
          16: times#(0(),Y) -> c_15()
** Step 1.b:5: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z))
            2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z))
            2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z))
            2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z))
            pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0()))
            plus#(s(X),Y) -> c_13(plus#(X,Y))
            square#(X) -> c_14(times#(X,X))
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        - Weak DPs:
            2ndsneg#(0(),Z) -> c_1()
            2ndspos#(0(),Z) -> c_4()
            activate#(X) -> c_7()
            activate#(n__from(X)) -> c_8(from#(X))
            from#(X) -> c_9()
            from#(X) -> c_10()
            plus#(0(),Y) -> c_12()
            times#(0(),Y) -> c_15()
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/2,c_6/2,c_7/0,c_8/1,c_9/0,c_10/0,c_11/2,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z))
             -->_2 activate#(n__from(X)) -> c_8(from#(X)):12
             -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z)):2
             -->_2 activate#(X) -> c_7():11
          
          2:S:2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z))
             -->_2 activate#(n__from(X)) -> c_8(from#(X)):12
             -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)):4
             -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z)):3
             -->_2 activate#(X) -> c_7():11
             -->_1 2ndspos#(0(),Z) -> c_4():10
          
          3:S:2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z))
             -->_2 activate#(n__from(X)) -> c_8(from#(X)):12
             -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)):4
             -->_2 activate#(X) -> c_7():11
          
          4:S:2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z))
             -->_2 activate#(n__from(X)) -> c_8(from#(X)):12
             -->_2 activate#(X) -> c_7():11
             -->_1 2ndsneg#(0(),Z) -> c_1():9
             -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z)):2
             -->_1 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z)):1
          
          5:S:pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0()))
             -->_2 from#(X) -> c_10():14
             -->_2 from#(X) -> c_9():13
             -->_1 2ndspos#(0(),Z) -> c_4():10
             -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)):4
             -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z)):3
          
          6:S:plus#(s(X),Y) -> c_13(plus#(X,Y))
             -->_1 plus#(0(),Y) -> c_12():15
             -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6
          
          7:S:square#(X) -> c_14(times#(X,X))
             -->_1 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):8
             -->_1 times#(0(),Y) -> c_15():16
          
          8:S:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
             -->_2 times#(0(),Y) -> c_15():16
             -->_1 plus#(0(),Y) -> c_12():15
             -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):8
             -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6
          
          9:W:2ndsneg#(0(),Z) -> c_1()
             
          
          10:W:2ndspos#(0(),Z) -> c_4()
             
          
          11:W:activate#(X) -> c_7()
             
          
          12:W:activate#(n__from(X)) -> c_8(from#(X))
             -->_1 from#(X) -> c_10():14
             -->_1 from#(X) -> c_9():13
          
          13:W:from#(X) -> c_9()
             
          
          14:W:from#(X) -> c_10()
             
          
          15:W:plus#(0(),Y) -> c_12()
             
          
          16:W:times#(0(),Y) -> c_15()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          16: times#(0(),Y) -> c_15()
          15: plus#(0(),Y) -> c_12()
          10: 2ndspos#(0(),Z) -> c_4()
          9: 2ndsneg#(0(),Z) -> c_1()
          11: activate#(X) -> c_7()
          12: activate#(n__from(X)) -> c_8(from#(X))
          13: from#(X) -> c_9()
          14: from#(X) -> c_10()
** Step 1.b:6: SimplifyRHS WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z))
            2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z))
            2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z))
            2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z))
            pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0()))
            plus#(s(X),Y) -> c_13(plus#(X,Y))
            square#(X) -> c_14(times#(X,X))
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/2,c_3/2,c_4/0,c_5/2,c_6/2,c_7/0,c_8/1,c_9/0,c_10/0,c_11/2,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z))
             -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z)):2
          
          2:S:2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z))
             -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)):4
             -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z)):3
          
          3:S:2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z))
             -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)):4
          
          4:S:2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z))
             -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)),activate#(Z)):2
             -->_1 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))),activate#(Z)):1
          
          5:S:pi#(X) -> c_11(2ndspos#(X,from(0())),from#(0()))
             -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)),activate#(Z)):4
             -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))),activate#(Z)):3
          
          6:S:plus#(s(X),Y) -> c_13(plus#(X,Y))
             -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6
          
          7:S:square#(X) -> c_14(times#(X,X))
             -->_1 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):8
          
          8:S:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
             -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):8
             -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
          2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
          2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
          2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
          pi#(X) -> c_11(2ndspos#(X,from(0())))
** Step 1.b:7: RemoveHeads WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
            2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
            2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
            2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
            pi#(X) -> c_11(2ndspos#(X,from(0())))
            plus#(s(X),Y) -> c_13(plus#(X,Y))
            square#(X) -> c_14(times#(X,X))
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        RemoveHeads
    + Details:
        Consider the dependency graph
        
        1:S:2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
           -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):2
        
        2:S:2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
           -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4
           -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):3
        
        3:S:2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
           -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4
        
        4:S:2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
           -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):2
           -->_1 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))):1
        
        5:S:pi#(X) -> c_11(2ndspos#(X,from(0())))
           -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4
           -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):3
        
        6:S:plus#(s(X),Y) -> c_13(plus#(X,Y))
           -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6
        
        7:S:square#(X) -> c_14(times#(X,X))
           -->_1 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):8
        
        8:S:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
           -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):8
           -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6
        
        
        Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
        
        [(7,square#(X) -> c_14(times#(X,X)))]
** Step 1.b:8: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
            2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
            2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
            2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
            pi#(X) -> c_11(2ndspos#(X,from(0())))
            plus#(s(X),Y) -> c_13(plus#(X,Y))
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
              2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
              2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
              2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
          - Weak DPs:
              pi#(X) -> c_11(2ndspos#(X,from(0())))
              plus#(s(X),Y) -> c_13(plus#(X,Y))
              times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
          - Weak TRS:
              activate(X) -> X
              activate(n__from(X)) -> from(X)
              from(X) -> cons(X,n__from(s(X)))
              from(X) -> n__from(X)
              plus(0(),Y) -> Y
              plus(s(X),Y) -> s(plus(X,Y))
              times(0(),Y) -> 0()
              times(s(X),Y) -> plus(Y,times(X,Y))
          - Signature:
              {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
              ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
              ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1
              ,c_15/0,c_16/2}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
              ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
        
        Problem (S)
          - Strict DPs:
              pi#(X) -> c_11(2ndspos#(X,from(0())))
              plus#(s(X),Y) -> c_13(plus#(X,Y))
              times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
          - Weak DPs:
              2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
              2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
              2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
              2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
          - Weak TRS:
              activate(X) -> X
              activate(n__from(X)) -> from(X)
              from(X) -> cons(X,n__from(s(X)))
              from(X) -> n__from(X)
              plus(0(),Y) -> Y
              plus(s(X),Y) -> s(plus(X,Y))
              times(0(),Y) -> 0()
              times(s(X),Y) -> plus(Y,times(X,Y))
          - Signature:
              {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
              ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
              ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1
              ,c_15/0,c_16/2}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
              ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
*** Step 1.b:8.a:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
            2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
            2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
            2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
        - Weak DPs:
            pi#(X) -> c_11(2ndspos#(X,from(0())))
            plus#(s(X),Y) -> c_13(plus#(X,Y))
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
             -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):2
          
          2:S:2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
             -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4
             -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):3
          
          3:S:2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
             -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4
          
          4:S:2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
             -->_1 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))):1
             -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):2
          
          5:W:pi#(X) -> c_11(2ndspos#(X,from(0())))
             -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):3
             -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4
          
          6:W:plus#(s(X),Y) -> c_13(plus#(X,Y))
             -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6
          
          8:W:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
             -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):6
             -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):8
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          8: times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
          6: plus#(s(X),Y) -> c_13(plus#(X,Y))
*** Step 1.b:8.a:2: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
            2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
            2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
            2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
        - Weak DPs:
            pi#(X) -> c_11(2ndspos#(X,from(0())))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          activate(X) -> X
          activate(n__from(X)) -> from(X)
          from(X) -> cons(X,n__from(s(X)))
          from(X) -> n__from(X)
          2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
          2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
          2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
          2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
          pi#(X) -> c_11(2ndspos#(X,from(0())))
*** Step 1.b:8.a:3: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
            2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
            2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
            2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
        - Weak DPs:
            pi#(X) -> c_11(2ndspos#(X,from(0())))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          2: 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
          
        Consider the set of all dependency pairs
          1: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
          2: 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
          3: 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
          4: 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
          5: pi#(X) -> c_11(2ndspos#(X,from(0())))
        Processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}induces the complexity certificateTIME (?,O(n^1))
        SPACE(?,?)on application of the dependency pairs
          {2}
        These cover all (indirect) predecessors of dependency pairs
          {1,2,3,4,5}
        their number of applications is equally bounded.
        The dependency pairs are shifted into the weak component.
**** Step 1.b:8.a:3.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
            2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
            2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
            2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
        - Weak DPs:
            pi#(X) -> c_11(2ndspos#(X,from(0())))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_5) = {1},
          uargs(c_6) = {1},
          uargs(c_11) = {1}
        
        Following symbols are considered usable:
          {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}
        TcT has computed the following interpretation:
                  p(0) = [0]                  
            p(2ndsneg) = [1]                  
            p(2ndspos) = [1] x1 + [2] x2 + [1]
           p(activate) = [3]                  
               p(cons) = [1] x1 + [0]         
              p(cons2) = [1] x1 + [1] x2 + [0]
               p(from) = [9]                  
            p(n__from) = [3]                  
           p(negrecip) = [1] x1 + [1]         
                 p(pi) = [0]                  
               p(plus) = [1] x2 + [0]         
           p(posrecip) = [2]                  
              p(rcons) = [1] x2 + [2]         
               p(rnil) = [8]                  
                  p(s) = [1] x1 + [2]         
             p(square) = [2] x1 + [2]         
              p(times) = [2] x1 + [8]         
           p(2ndsneg#) = [4] x1 + [0]         
           p(2ndspos#) = [4] x1 + [0]         
          p(activate#) = [2] x1 + [0]         
              p(from#) = [1] x1 + [1]         
                p(pi#) = [4] x1 + [0]         
              p(plus#) = [1] x1 + [1]         
            p(square#) = [2] x1 + [0]         
             p(times#) = [1] x1 + [1] x2 + [4]
                p(c_1) = [1]                  
                p(c_2) = [1] x1 + [0]         
                p(c_3) = [1] x1 + [7]         
                p(c_4) = [1]                  
                p(c_5) = [1] x1 + [0]         
                p(c_6) = [1] x1 + [8]         
                p(c_7) = [1]                  
                p(c_8) = [1] x1 + [1]         
                p(c_9) = [1]                  
               p(c_10) = [0]                  
               p(c_11) = [1] x1 + [0]         
               p(c_12) = [0]                  
               p(c_13) = [0]                  
               p(c_14) = [1]                  
               p(c_15) = [0]                  
               p(c_16) = [1] x1 + [2]         
        
        Following rules are strictly oriented:
        2ndsneg#(s(N),cons2(X,cons(Y,Z))) = [4] N + [8]                 
                                          > [4] N + [7]                 
                                          = c_3(2ndspos#(N,activate(Z)))
        
        
        Following rules are (at-least) weakly oriented:
                 2ndsneg#(s(N),cons(X,Z)) =  [4] N + [8]                             
                                          >= [4] N + [8]                             
                                          =  c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
        
                 2ndspos#(s(N),cons(X,Z)) =  [4] N + [8]                             
                                          >= [4] N + [8]                             
                                          =  c_5(2ndspos#(s(N),cons2(X,activate(Z))))
        
        2ndspos#(s(N),cons2(X,cons(Y,Z))) =  [4] N + [8]                             
                                          >= [4] N + [8]                             
                                          =  c_6(2ndsneg#(N,activate(Z)))            
        
                                   pi#(X) =  [4] X + [0]                             
                                          >= [4] X + [0]                             
                                          =  c_11(2ndspos#(X,from(0())))             
        
**** Step 1.b:8.a:3.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
            2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
            2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
        - Weak DPs:
            2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
            pi#(X) -> c_11(2ndspos#(X,from(0())))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

**** Step 1.b:8.a:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
            2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
            2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
            2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
            pi#(X) -> c_11(2ndspos#(X,from(0())))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
             -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):2
          
          2:W:2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
             -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4
             -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):3
          
          3:W:2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
             -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4
          
          4:W:2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
             -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):2
             -->_1 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))):1
          
          5:W:pi#(X) -> c_11(2ndspos#(X,from(0())))
             -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):4
             -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          5: pi#(X) -> c_11(2ndspos#(X,from(0())))
          1: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
          4: 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
          3: 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
          2: 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
**** Step 1.b:8.a:3.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

*** Step 1.b:8.b:1: PredecessorEstimation WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            pi#(X) -> c_11(2ndspos#(X,from(0())))
            plus#(s(X),Y) -> c_13(plus#(X,Y))
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        - Weak DPs:
            2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
            2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
            2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
            2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1}
        by application of
          Pre({1}) = {}.
        Here rules are labelled as follows:
          1: pi#(X) -> c_11(2ndspos#(X,from(0())))
          2: plus#(s(X),Y) -> c_13(plus#(X,Y))
          3: times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
          4: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
          5: 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
          6: 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
          7: 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
*** Step 1.b:8.b:2: RemoveWeakSuffixes WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            plus#(s(X),Y) -> c_13(plus#(X,Y))
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        - Weak DPs:
            2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
            2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
            2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
            2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
            pi#(X) -> c_11(2ndspos#(X,from(0())))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:plus#(s(X),Y) -> c_13(plus#(X,Y))
             -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):1
          
          2:S:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
             -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):2
             -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):1
          
          3:W:2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
             -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):4
          
          4:W:2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
             -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):6
             -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):5
          
          5:W:2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
             -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):6
          
          6:W:2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
             -->_1 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z))):4
             -->_1 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z)))):3
          
          7:W:pi#(X) -> c_11(2ndspos#(X,from(0())))
             -->_1 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z))):6
             -->_1 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z)))):5
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          7: pi#(X) -> c_11(2ndspos#(X,from(0())))
          3: 2ndsneg#(s(N),cons(X,Z)) -> c_2(2ndsneg#(s(N),cons2(X,activate(Z))))
          6: 2ndspos#(s(N),cons2(X,cons(Y,Z))) -> c_6(2ndsneg#(N,activate(Z)))
          5: 2ndspos#(s(N),cons(X,Z)) -> c_5(2ndspos#(s(N),cons2(X,activate(Z))))
          4: 2ndsneg#(s(N),cons2(X,cons(Y,Z))) -> c_3(2ndspos#(N,activate(Z)))
*** Step 1.b:8.b:3: Decompose WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            plus#(s(X),Y) -> c_13(plus#(X,Y))
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    + Details:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          - Strict DPs:
              plus#(s(X),Y) -> c_13(plus#(X,Y))
          - Weak DPs:
              times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
          - Weak TRS:
              activate(X) -> X
              activate(n__from(X)) -> from(X)
              from(X) -> cons(X,n__from(s(X)))
              from(X) -> n__from(X)
              plus(0(),Y) -> Y
              plus(s(X),Y) -> s(plus(X,Y))
              times(0(),Y) -> 0()
              times(s(X),Y) -> plus(Y,times(X,Y))
          - Signature:
              {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
              ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
              ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1
              ,c_15/0,c_16/2}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
              ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
        
        Problem (S)
          - Strict DPs:
              times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
          - Weak DPs:
              plus#(s(X),Y) -> c_13(plus#(X,Y))
          - Weak TRS:
              activate(X) -> X
              activate(n__from(X)) -> from(X)
              from(X) -> cons(X,n__from(s(X)))
              from(X) -> n__from(X)
              plus(0(),Y) -> Y
              plus(s(X),Y) -> s(plus(X,Y))
              times(0(),Y) -> 0()
              times(s(X),Y) -> plus(Y,times(X,Y))
          - Signature:
              {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
              ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
              ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1
              ,c_15/0,c_16/2}
          - Obligation:
              innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
              ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
**** Step 1.b:8.b:3.a:1: UsableRules WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            plus#(s(X),Y) -> c_13(plus#(X,Y))
        - Weak DPs:
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          plus(0(),Y) -> Y
          plus(s(X),Y) -> s(plus(X,Y))
          times(0(),Y) -> 0()
          times(s(X),Y) -> plus(Y,times(X,Y))
          plus#(s(X),Y) -> c_13(plus#(X,Y))
          times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
**** Step 1.b:8.b:3.a:2: PredecessorEstimationCP WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            plus#(s(X),Y) -> c_13(plus#(X,Y))
        - Weak DPs:
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        - Weak TRS:
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: plus#(s(X),Y) -> c_13(plus#(X,Y))
          
        The strictly oriented rules are moved into the weak component.
***** Step 1.b:8.b:3.a:2.a:1: NaturalPI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict DPs:
            plus#(s(X),Y) -> c_13(plus#(X,Y))
        - Weak DPs:
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        - Weak TRS:
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a polynomial interpretation of kind constructor-based(mixed(2)):
        The following argument positions are considered usable:
          uargs(c_13) = {1},
          uargs(c_16) = {1,2}
        
        Following symbols are considered usable:
          {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}
        TcT has computed the following interpretation:
                  p(0) = 0                                          
            p(2ndsneg) = 4 + x2 + 4*x2^2                            
            p(2ndspos) = x1*x2 + x1^2 + x2^2                        
           p(activate) = 2                                          
               p(cons) = 1                                          
              p(cons2) = 1 + x1 + x2                                
               p(from) = 4*x1                                       
            p(n__from) = 0                                          
           p(negrecip) = 1 + x1                                     
                 p(pi) = 1 + x1 + x1^2                              
               p(plus) = 4 + 4*x1 + 2*x1*x2 + 4*x2 + 2*x2^2         
           p(posrecip) = 1                                          
              p(rcons) = 1 + x1                                     
               p(rnil) = 1                                          
                  p(s) = 1 + x1                                     
             p(square) = 1 + x1 + 4*x1^2                            
              p(times) = 2*x2                                       
           p(2ndsneg#) = 4*x1 + x2 + x2^2                           
           p(2ndspos#) = 1 + x1 + x1*x2 + x1^2 + 4*x2 + x2^2        
          p(activate#) = 1 + 4*x1 + 2*x1^2                          
              p(from#) = 2*x1                                       
                p(pi#) = 0                                          
              p(plus#) = 3 + 5*x1                                   
            p(square#) = 1 + 4*x1                                   
             p(times#) = 6 + 4*x1 + 6*x1*x2 + 3*x1^2 + 6*x2 + 4*x2^2
                p(c_1) = 0                                          
                p(c_2) = x1                                         
                p(c_3) = 1                                          
                p(c_4) = 0                                          
                p(c_5) = 0                                          
                p(c_6) = 0                                          
                p(c_7) = 1                                          
                p(c_8) = x1                                         
                p(c_9) = 1                                          
               p(c_10) = 0                                          
               p(c_11) = x1                                         
               p(c_12) = 1                                          
               p(c_13) = x1                                         
               p(c_14) = 1                                          
               p(c_15) = 0                                          
               p(c_16) = x1 + x2                                    
        
        Following rules are strictly oriented:
        plus#(s(X),Y) = 8 + 5*X         
                      > 3 + 5*X         
                      = c_13(plus#(X,Y))
        
        
        Following rules are (at-least) weakly oriented:
        times#(s(X),Y) =  13 + 10*X + 6*X*Y + 3*X^2 + 12*Y + 4*Y^2
                       >= 9 + 4*X + 6*X*Y + 3*X^2 + 11*Y + 4*Y^2  
                       =  c_16(plus#(Y,times(X,Y)),times#(X,Y))   
        
***** Step 1.b:8.b:3.a:2.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            plus#(s(X),Y) -> c_13(plus#(X,Y))
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        - Weak TRS:
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:8.b:3.a:2.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            plus#(s(X),Y) -> c_13(plus#(X,Y))
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        - Weak TRS:
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:plus#(s(X),Y) -> c_13(plus#(X,Y))
             -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):1
          
          2:W:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
             -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):2
             -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
          1: plus#(s(X),Y) -> c_13(plus#(X,Y))
***** Step 1.b:8.b:3.a:2.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

**** Step 1.b:8.b:3.b:1: RemoveWeakSuffixes WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        - Weak DPs:
            plus#(s(X),Y) -> c_13(plus#(X,Y))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
             -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):2
             -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):1
          
          2:W:plus#(s(X),Y) -> c_13(plus#(X,Y))
             -->_1 plus#(s(X),Y) -> c_13(plus#(X,Y)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: plus#(s(X),Y) -> c_13(plus#(X,Y))
**** Step 1.b:8.b:3.b:2: SimplifyRHS WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/2}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        SimplifyRHS
    + Details:
        Consider the dependency graph
          1:S:times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y))
             -->_2 times#(s(X),Y) -> c_16(plus#(Y,times(X,Y)),times#(X,Y)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          times#(s(X),Y) -> c_16(times#(X,Y))
**** Step 1.b:8.b:3.b:3: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            times#(s(X),Y) -> c_16(times#(X,Y))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          times#(s(X),Y) -> c_16(times#(X,Y))
**** Step 1.b:8.b:3.b:4: PredecessorEstimationCP WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            times#(s(X),Y) -> c_16(times#(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing}}
    + Details:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing} to orient following rules strictly:
          1: times#(s(X),Y) -> c_16(times#(X,Y))
          
        The strictly oriented rules are moved into the weak component.
***** Step 1.b:8.b:3.b:4.a:1: NaturalMI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            times#(s(X),Y) -> c_16(times#(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation on any intersect of rules of CDG leaf and strict-rules}
    + Details:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_16) = {1}
        
        Following symbols are considered usable:
          {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#,times#}
        TcT has computed the following interpretation:
                  p(0) = [2]                  
            p(2ndsneg) = [2] x1 + [1] x2 + [0]
            p(2ndspos) = [1] x1 + [1] x2 + [0]
           p(activate) = [2] x1 + [1]         
               p(cons) = [1] x1 + [1] x2 + [1]
              p(cons2) = [1] x1 + [1] x2 + [0]
               p(from) = [0]                  
            p(n__from) = [1] x1 + [0]         
           p(negrecip) = [1] x1 + [0]         
                 p(pi) = [0]                  
               p(plus) = [0]                  
           p(posrecip) = [1] x1 + [0]         
              p(rcons) = [1] x1 + [1] x2 + [0]
               p(rnil) = [0]                  
                  p(s) = [1] x1 + [1]         
             p(square) = [0]                  
              p(times) = [0]                  
           p(2ndsneg#) = [0]                  
           p(2ndspos#) = [0]                  
          p(activate#) = [1]                  
              p(from#) = [1]                  
                p(pi#) = [8] x1 + [0]         
              p(plus#) = [1]                  
            p(square#) = [2] x1 + [0]         
             p(times#) = [4] x1 + [4]         
                p(c_1) = [8]                  
                p(c_2) = [8] x1 + [8]         
                p(c_3) = [8]                  
                p(c_4) = [8]                  
                p(c_5) = [8]                  
                p(c_6) = [2]                  
                p(c_7) = [1]                  
                p(c_8) = [2] x1 + [0]         
                p(c_9) = [2]                  
               p(c_10) = [4]                  
               p(c_11) = [1] x1 + [1]         
               p(c_12) = [4]                  
               p(c_13) = [1]                  
               p(c_14) = [2] x1 + [1]         
               p(c_15) = [4]                  
               p(c_16) = [1] x1 + [2]         
        
        Following rules are strictly oriented:
        times#(s(X),Y) = [4] X + [8]      
                       > [4] X + [6]      
                       = c_16(times#(X,Y))
        
        
        Following rules are (at-least) weakly oriented:
        
***** Step 1.b:8.b:3.b:4.a:2: Assumption WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            times#(s(X),Y) -> c_16(times#(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        Assumption {assumed = Certificate {spaceUB = Unknown, spaceLB = Unknown, timeUB = Poly (Just 0), timeLB = Unknown}}
    + Details:
        ()

***** Step 1.b:8.b:3.b:4.b:1: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak DPs:
            times#(s(X),Y) -> c_16(times#(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:W:times#(s(X),Y) -> c_16(times#(X,Y))
             -->_1 times#(s(X),Y) -> c_16(times#(X,Y)):1
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          1: times#(s(X),Y) -> c_16(times#(X,Y))
***** Step 1.b:8.b:3.b:4.b:2: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,square/1,times/2,2ndsneg#/2,2ndspos#/2,activate#/1
            ,from#/1,pi#/1,plus#/2,square#/1,times#/2} / {0/0,cons/2,cons2/2,n__from/1,negrecip/1,posrecip/1,rcons/2
            ,rnil/0,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/0,c_8/1,c_9/0,c_10/0,c_11/1,c_12/0,c_13/1,c_14/1,c_15/0
            ,c_16/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg#,2ndspos#,activate#,from#,pi#,plus#,square#
            ,times#} and constructors {0,cons,cons2,n__from,negrecip,posrecip,rcons,rnil,s}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^2))