* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndsneg(s(N),cons(X,Z)) -> 2ndsneg(s(N),cons2(X,activate(Z)))
            2ndsneg(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,activate(Z)))
            2ndspos(0(),Z) -> rnil()
            2ndspos(s(N),cons(X,Z)) -> 2ndspos(s(N),cons2(X,activate(Z)))
            2ndspos(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,activate(Z)))
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            s(X) -> n__s(X)
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1
            ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square
            ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndsneg(s(N),cons(X,Z)) -> 2ndsneg(s(N),cons2(X,activate(Z)))
            2ndsneg(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,activate(Z)))
            2ndspos(0(),Z) -> rnil()
            2ndspos(s(N),cons(X,Z)) -> 2ndspos(s(N),cons2(X,activate(Z)))
            2ndspos(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,activate(Z)))
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            s(X) -> n__s(X)
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1
            ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square
            ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          activate(x){x -> n__from(x)} =
            activate(n__from(x)) ->^+ from(activate(x))
              = C[activate(x) = activate(x){}]

** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndsneg(s(N),cons(X,Z)) -> 2ndsneg(s(N),cons2(X,activate(Z)))
            2ndsneg(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,activate(Z)))
            2ndspos(0(),Z) -> rnil()
            2ndspos(s(N),cons(X,Z)) -> 2ndspos(s(N),cons2(X,activate(Z)))
            2ndspos(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,activate(Z)))
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            plus(s(X),Y) -> s(plus(X,Y))
            s(X) -> n__s(X)
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
            times(s(X),Y) -> plus(Y,times(X,Y))
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1
            ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square
            ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          2ndsneg(s(N),cons(X,Z)) -> 2ndsneg(s(N),cons2(X,activate(Z)))
          2ndsneg(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,activate(Z)))
          2ndspos(s(N),cons(X,Z)) -> 2ndspos(s(N),cons2(X,activate(Z)))
          2ndspos(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,activate(Z)))
          plus(s(X),Y) -> s(plus(X,Y))
          times(s(X),Y) -> plus(Y,times(X,Y))
        All above mentioned rules can be savely removed.
** Step 1.b:2: MI WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndspos(0(),Z) -> rnil()
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            s(X) -> n__s(X)
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1
            ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square
            ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(2ndspos) = {2},
          uargs(from) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {2ndsneg,2ndspos,activate,from,pi,plus,s,square,times}
        TcT has computed the following interpretation:
                 p(0) = [0]                    
           p(2ndsneg) = [1] x_2 + [11]         
           p(2ndspos) = [8] x_2 + [2]          
          p(activate) = [1] x_1 + [0]          
              p(cons) = [0]                    
             p(cons2) = [1] x_1 + [1] x_2 + [1]
              p(from) = [1] x_1 + [0]          
           p(n__from) = [1] x_1 + [0]          
              p(n__s) = [1] x_1 + [2]          
          p(negrecip) = [1] x_1 + [1]          
                p(pi) = [1] x_1 + [2]          
              p(plus) = [4] x_2 + [11]         
          p(posrecip) = [1]                    
             p(rcons) = [1] x_2 + [2]          
              p(rnil) = [2]                    
                 p(s) = [1] x_1 + [2]          
            p(square) = [12] x_1 + [14]        
             p(times) = [7] x_1 + [1] x_2 + [9]
        
        Following rules are strictly oriented:
        2ndsneg(0(),Z) = [1] Z + [11] 
                       > [2]          
                       = rnil()       
        
           plus(0(),Y) = [4] Y + [11] 
                       > [1] Y + [0]  
                       = Y            
        
             square(X) = [12] X + [14]
                       > [8] X + [9]  
                       = times(X,X)   
        
          times(0(),Y) = [1] Y + [9]  
                       > [0]          
                       = 0()          
        
        
        Following rules are (at-least) weakly oriented:
              2ndspos(0(),Z) =  [8] Z + [2]             
                             >= [2]                     
                             =  rnil()                  
        
                 activate(X) =  [1] X + [0]             
                             >= [1] X + [0]             
                             =  X                       
        
        activate(n__from(X)) =  [1] X + [0]             
                             >= [1] X + [0]             
                             =  from(activate(X))       
        
           activate(n__s(X)) =  [1] X + [2]             
                             >= [1] X + [2]             
                             =  s(activate(X))          
        
                     from(X) =  [1] X + [0]             
                             >= [0]                     
                             =  cons(X,n__from(n__s(X)))
        
                     from(X) =  [1] X + [0]             
                             >= [1] X + [0]             
                             =  n__from(X)              
        
                       pi(X) =  [1] X + [2]             
                             >= [2]                     
                             =  2ndspos(X,from(0()))    
        
                        s(X) =  [1] X + [2]             
                             >= [1] X + [2]             
                             =  n__s(X)                 
        
** Step 1.b:3: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            2ndspos(0(),Z) -> rnil()
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            s(X) -> n__s(X)
        - Weak TRS:
            2ndsneg(0(),Z) -> rnil()
            plus(0(),Y) -> Y
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1
            ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square
            ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(2ndspos) = {2},
            uargs(from) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [1]                  
             p(2ndsneg) = [0]                  
             p(2ndspos) = [1] x2 + [0]         
            p(activate) = [8] x1 + [1]         
                p(cons) = [1] x2 + [0]         
               p(cons2) = [1] x1 + [1] x2 + [0]
                p(from) = [1] x1 + [0]         
             p(n__from) = [1] x1 + [0]         
                p(n__s) = [1] x1 + [0]         
            p(negrecip) = [1] x1 + [0]         
                  p(pi) = [0]                  
                p(plus) = [1] x1 + [1] x2 + [0]
            p(posrecip) = [1] x1 + [0]         
               p(rcons) = [1] x1 + [1] x2 + [0]
                p(rnil) = [0]                  
                   p(s) = [1] x1 + [0]         
              p(square) = [9] x1 + [1]         
               p(times) = [8] x1 + [0]         
          
          Following rules are strictly oriented:
          activate(X) = [8] X + [1]
                      > [1] X + [0]
                      = X          
          
          
          Following rules are (at-least) weakly oriented:
                2ndsneg(0(),Z) =  [0]                     
                               >= [0]                     
                               =  rnil()                  
          
                2ndspos(0(),Z) =  [1] Z + [0]             
                               >= [0]                     
                               =  rnil()                  
          
          activate(n__from(X)) =  [8] X + [1]             
                               >= [8] X + [1]             
                               =  from(activate(X))       
          
             activate(n__s(X)) =  [8] X + [1]             
                               >= [8] X + [1]             
                               =  s(activate(X))          
          
                       from(X) =  [1] X + [0]             
                               >= [1] X + [0]             
                               =  cons(X,n__from(n__s(X)))
          
                       from(X) =  [1] X + [0]             
                               >= [1] X + [0]             
                               =  n__from(X)              
          
                         pi(X) =  [0]                     
                               >= [1]                     
                               =  2ndspos(X,from(0()))    
          
                   plus(0(),Y) =  [1] Y + [1]             
                               >= [1] Y + [0]             
                               =  Y                       
          
                          s(X) =  [1] X + [0]             
                               >= [1] X + [0]             
                               =  n__s(X)                 
          
                     square(X) =  [9] X + [1]             
                               >= [8] X + [0]             
                               =  times(X,X)              
          
                  times(0(),Y) =  [8]                     
                               >= [1]                     
                               =  0()                     
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:4: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            2ndspos(0(),Z) -> rnil()
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            s(X) -> n__s(X)
        - Weak TRS:
            2ndsneg(0(),Z) -> rnil()
            activate(X) -> X
            plus(0(),Y) -> Y
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1
            ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square
            ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(2ndspos) = {2},
            uargs(from) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [1]                   
             p(2ndsneg) = [5] x1 + [1] x2 + [14]
             p(2ndspos) = [1] x2 + [12]         
            p(activate) = [8] x1 + [2]          
                p(cons) = [1] x2 + [0]          
               p(cons2) = [1] x1 + [1] x2 + [2] 
                p(from) = [1] x1 + [0]          
             p(n__from) = [1] x1 + [0]          
                p(n__s) = [1] x1 + [0]          
            p(negrecip) = [1] x1 + [0]          
                  p(pi) = [0]                   
                p(plus) = [1] x1 + [1] x2 + [0] 
            p(posrecip) = [1] x1 + [0]          
               p(rcons) = [1] x2 + [0]          
                p(rnil) = [0]                   
                   p(s) = [1] x1 + [0]          
              p(square) = [9] x1 + [3]          
               p(times) = [8] x1 + [2]          
          
          Following rules are strictly oriented:
          2ndspos(0(),Z) = [1] Z + [12]
                         > [0]         
                         = rnil()      
          
          
          Following rules are (at-least) weakly oriented:
                2ndsneg(0(),Z) =  [1] Z + [19]            
                               >= [0]                     
                               =  rnil()                  
          
                   activate(X) =  [8] X + [2]             
                               >= [1] X + [0]             
                               =  X                       
          
          activate(n__from(X)) =  [8] X + [2]             
                               >= [8] X + [2]             
                               =  from(activate(X))       
          
             activate(n__s(X)) =  [8] X + [2]             
                               >= [8] X + [2]             
                               =  s(activate(X))          
          
                       from(X) =  [1] X + [0]             
                               >= [1] X + [0]             
                               =  cons(X,n__from(n__s(X)))
          
                       from(X) =  [1] X + [0]             
                               >= [1] X + [0]             
                               =  n__from(X)              
          
                         pi(X) =  [0]                     
                               >= [13]                    
                               =  2ndspos(X,from(0()))    
          
                   plus(0(),Y) =  [1] Y + [1]             
                               >= [1] Y + [0]             
                               =  Y                       
          
                          s(X) =  [1] X + [0]             
                               >= [1] X + [0]             
                               =  n__s(X)                 
          
                     square(X) =  [9] X + [3]             
                               >= [8] X + [2]             
                               =  times(X,X)              
          
                  times(0(),Y) =  [10]                    
                               >= [1]                     
                               =  0()                     
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:5: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            s(X) -> n__s(X)
        - Weak TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndspos(0(),Z) -> rnil()
            activate(X) -> X
            plus(0(),Y) -> Y
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1
            ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square
            ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(2ndspos) = {2},
            uargs(from) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
             p(2ndsneg) = [8] x1 + [1]         
             p(2ndspos) = [1] x2 + [1]         
            p(activate) = [2] x1 + [0]         
                p(cons) = [1] x2 + [0]         
               p(cons2) = [1] x1 + [1]         
                p(from) = [1] x1 + [0]         
             p(n__from) = [1] x1 + [4]         
                p(n__s) = [1] x1 + [0]         
            p(negrecip) = [1] x1 + [0]         
                  p(pi) = [0]                  
                p(plus) = [2] x2 + [0]         
            p(posrecip) = [1] x1 + [0]         
               p(rcons) = [1] x1 + [1] x2 + [0]
                p(rnil) = [0]                  
                   p(s) = [1] x1 + [5]         
              p(square) = [11] x1 + [0]        
               p(times) = [10] x1 + [0]        
          
          Following rules are strictly oriented:
          activate(n__from(X)) = [2] X + [8]      
                               > [2] X + [0]      
                               = from(activate(X))
          
                          s(X) = [1] X + [5]      
                               > [1] X + [0]      
                               = n__s(X)          
          
          
          Following rules are (at-least) weakly oriented:
             2ndsneg(0(),Z) =  [1]                     
                            >= [0]                     
                            =  rnil()                  
          
             2ndspos(0(),Z) =  [1] Z + [1]             
                            >= [0]                     
                            =  rnil()                  
          
                activate(X) =  [2] X + [0]             
                            >= [1] X + [0]             
                            =  X                       
          
          activate(n__s(X)) =  [2] X + [0]             
                            >= [2] X + [5]             
                            =  s(activate(X))          
          
                    from(X) =  [1] X + [0]             
                            >= [1] X + [4]             
                            =  cons(X,n__from(n__s(X)))
          
                    from(X) =  [1] X + [0]             
                            >= [1] X + [4]             
                            =  n__from(X)              
          
                      pi(X) =  [0]                     
                            >= [1]                     
                            =  2ndspos(X,from(0()))    
          
                plus(0(),Y) =  [2] Y + [0]             
                            >= [1] Y + [0]             
                            =  Y                       
          
                  square(X) =  [11] X + [0]            
                            >= [10] X + [0]            
                            =  times(X,X)              
          
               times(0(),Y) =  [0]                     
                            >= [0]                     
                            =  0()                     
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:6: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(n__s(X)) -> s(activate(X))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
        - Weak TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndspos(0(),Z) -> rnil()
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            plus(0(),Y) -> Y
            s(X) -> n__s(X)
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1
            ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square
            ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(2ndspos) = {2},
            uargs(from) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [1]                  
             p(2ndsneg) = [4] x1 + [0]         
             p(2ndspos) = [1] x2 + [0]         
            p(activate) = [2] x1 + [4]         
                p(cons) = [0]                  
               p(cons2) = [1] x1 + [1] x2 + [0]
                p(from) = [1] x1 + [5]         
             p(n__from) = [1] x1 + [4]         
                p(n__s) = [1] x1 + [0]         
            p(negrecip) = [0]                  
                  p(pi) = [0]                  
                p(plus) = [2] x2 + [0]         
            p(posrecip) = [1] x1 + [0]         
               p(rcons) = [1] x1 + [1] x2 + [0]
                p(rnil) = [0]                  
                   p(s) = [1] x1 + [0]         
              p(square) = [2] x1 + [0]         
               p(times) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
          from(X) = [1] X + [5]             
                  > [0]                     
                  = cons(X,n__from(n__s(X)))
          
          from(X) = [1] X + [5]             
                  > [1] X + [4]             
                  = n__from(X)              
          
          
          Following rules are (at-least) weakly oriented:
                2ndsneg(0(),Z) =  [4]                 
                               >= [0]                 
                               =  rnil()              
          
                2ndspos(0(),Z) =  [1] Z + [0]         
                               >= [0]                 
                               =  rnil()              
          
                   activate(X) =  [2] X + [4]         
                               >= [1] X + [0]         
                               =  X                   
          
          activate(n__from(X)) =  [2] X + [12]        
                               >= [2] X + [9]         
                               =  from(activate(X))   
          
             activate(n__s(X)) =  [2] X + [4]         
                               >= [2] X + [4]         
                               =  s(activate(X))      
          
                         pi(X) =  [0]                 
                               >= [6]                 
                               =  2ndspos(X,from(0()))
          
                   plus(0(),Y) =  [2] Y + [0]         
                               >= [1] Y + [0]         
                               =  Y                   
          
                          s(X) =  [1] X + [0]         
                               >= [1] X + [0]         
                               =  n__s(X)             
          
                     square(X) =  [2] X + [0]         
                               >= [1] X + [0]         
                               =  times(X,X)          
          
                  times(0(),Y) =  [1]                 
                               >= [1]                 
                               =  0()                 
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:7: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            activate(n__s(X)) -> s(activate(X))
            pi(X) -> 2ndspos(X,from(0()))
        - Weak TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndspos(0(),Z) -> rnil()
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            s(X) -> n__s(X)
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1
            ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square
            ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(2ndspos) = {2},
            uargs(from) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [0]                  
             p(2ndsneg) = [0]                  
             p(2ndspos) = [1] x2 + [13]        
            p(activate) = [4] x1 + [7]         
                p(cons) = [1] x1 + [0]         
               p(cons2) = [1] x1 + [1] x2 + [0]
                p(from) = [1] x1 + [0]         
             p(n__from) = [1] x1 + [0]         
                p(n__s) = [1] x1 + [4]         
            p(negrecip) = [1] x1 + [0]         
                  p(pi) = [0]                  
                p(plus) = [2] x2 + [0]         
            p(posrecip) = [1] x1 + [0]         
               p(rcons) = [2]                  
                p(rnil) = [0]                  
                   p(s) = [1] x1 + [4]         
              p(square) = [9] x1 + [2]         
               p(times) = [8] x1 + [2]         
          
          Following rules are strictly oriented:
          activate(n__s(X)) = [4] X + [23]  
                            > [4] X + [11]  
                            = s(activate(X))
          
          
          Following rules are (at-least) weakly oriented:
                2ndsneg(0(),Z) =  [0]                     
                               >= [0]                     
                               =  rnil()                  
          
                2ndspos(0(),Z) =  [1] Z + [13]            
                               >= [0]                     
                               =  rnil()                  
          
                   activate(X) =  [4] X + [7]             
                               >= [1] X + [0]             
                               =  X                       
          
          activate(n__from(X)) =  [4] X + [7]             
                               >= [4] X + [7]             
                               =  from(activate(X))       
          
                       from(X) =  [1] X + [0]             
                               >= [1] X + [0]             
                               =  cons(X,n__from(n__s(X)))
          
                       from(X) =  [1] X + [0]             
                               >= [1] X + [0]             
                               =  n__from(X)              
          
                         pi(X) =  [0]                     
                               >= [13]                    
                               =  2ndspos(X,from(0()))    
          
                   plus(0(),Y) =  [2] Y + [0]             
                               >= [1] Y + [0]             
                               =  Y                       
          
                          s(X) =  [1] X + [4]             
                               >= [1] X + [4]             
                               =  n__s(X)                 
          
                     square(X) =  [9] X + [2]             
                               >= [8] X + [2]             
                               =  times(X,X)              
          
                  times(0(),Y) =  [2]                     
                               >= [0]                     
                               =  0()                     
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:8: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            pi(X) -> 2ndspos(X,from(0()))
        - Weak TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndspos(0(),Z) -> rnil()
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            plus(0(),Y) -> Y
            s(X) -> n__s(X)
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1
            ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square
            ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(2ndspos) = {2},
            uargs(from) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                   p(0) = [2]                   
             p(2ndsneg) = [12] x1 + [1]         
             p(2ndspos) = [10] x1 + [1] x2 + [0]
            p(activate) = [1] x1 + [0]          
                p(cons) = [0]                   
               p(cons2) = [1] x1 + [0]          
                p(from) = [1] x1 + [0]          
             p(n__from) = [1] x1 + [0]          
                p(n__s) = [1] x1 + [0]          
            p(negrecip) = [0]                   
                  p(pi) = [12] x1 + [3]         
                p(plus) = [1] x1 + [8] x2 + [8] 
            p(posrecip) = [1] x1 + [8]          
               p(rcons) = [1] x1 + [1] x2 + [0] 
                p(rnil) = [8]                   
                   p(s) = [1] x1 + [0]          
              p(square) = [3] x1 + [0]          
               p(times) = [1] x1 + [2] x2 + [0] 
          
          Following rules are strictly oriented:
          pi(X) = [12] X + [3]        
                > [10] X + [2]        
                = 2ndspos(X,from(0()))
          
          
          Following rules are (at-least) weakly oriented:
                2ndsneg(0(),Z) =  [25]                    
                               >= [8]                     
                               =  rnil()                  
          
                2ndspos(0(),Z) =  [1] Z + [20]            
                               >= [8]                     
                               =  rnil()                  
          
                   activate(X) =  [1] X + [0]             
                               >= [1] X + [0]             
                               =  X                       
          
          activate(n__from(X)) =  [1] X + [0]             
                               >= [1] X + [0]             
                               =  from(activate(X))       
          
             activate(n__s(X)) =  [1] X + [0]             
                               >= [1] X + [0]             
                               =  s(activate(X))          
          
                       from(X) =  [1] X + [0]             
                               >= [0]                     
                               =  cons(X,n__from(n__s(X)))
          
                       from(X) =  [1] X + [0]             
                               >= [1] X + [0]             
                               =  n__from(X)              
          
                   plus(0(),Y) =  [8] Y + [10]            
                               >= [1] Y + [0]             
                               =  Y                       
          
                          s(X) =  [1] X + [0]             
                               >= [1] X + [0]             
                               =  n__s(X)                 
          
                     square(X) =  [3] X + [0]             
                               >= [3] X + [0]             
                               =  times(X,X)              
          
                  times(0(),Y) =  [2] Y + [2]             
                               >= [2]                     
                               =  0()                     
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:9: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            2ndsneg(0(),Z) -> rnil()
            2ndspos(0(),Z) -> rnil()
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            pi(X) -> 2ndspos(X,from(0()))
            plus(0(),Y) -> Y
            s(X) -> n__s(X)
            square(X) -> times(X,X)
            times(0(),Y) -> 0()
        - Signature:
            {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1
            ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square
            ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))