* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1)) + Considered Problem: - Strict TRS: 2ndsneg(0(),Z) -> rnil() 2ndsneg(s(N),cons(X,Z)) -> 2ndsneg(s(N),cons2(X,activate(Z))) 2ndsneg(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,activate(Z))) 2ndspos(0(),Z) -> rnil() 2ndspos(s(N),cons(X,Z)) -> 2ndspos(s(N),cons2(X,activate(Z))) 2ndspos(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,activate(Z))) activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) s(X) -> n__s(X) square(X) -> times(X,X) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1 ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () ** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: 2ndsneg(0(),Z) -> rnil() 2ndsneg(s(N),cons(X,Z)) -> 2ndsneg(s(N),cons2(X,activate(Z))) 2ndsneg(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,activate(Z))) 2ndspos(0(),Z) -> rnil() 2ndspos(s(N),cons(X,Z)) -> 2ndspos(s(N),cons2(X,activate(Z))) 2ndspos(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,activate(Z))) activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) s(X) -> n__s(X) square(X) -> times(X,X) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1 ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: activate(x){x -> n__from(x)} = activate(n__from(x)) ->^+ from(activate(x)) = C[activate(x) = activate(x){}] ** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: 2ndsneg(0(),Z) -> rnil() 2ndsneg(s(N),cons(X,Z)) -> 2ndsneg(s(N),cons2(X,activate(Z))) 2ndsneg(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,activate(Z))) 2ndspos(0(),Z) -> rnil() 2ndspos(s(N),cons(X,Z)) -> 2ndspos(s(N),cons2(X,activate(Z))) 2ndspos(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,activate(Z))) activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) plus(0(),Y) -> Y plus(s(X),Y) -> s(plus(X,Y)) s(X) -> n__s(X) square(X) -> times(X,X) times(0(),Y) -> 0() times(s(X),Y) -> plus(Y,times(X,Y)) - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1 ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: InnermostRuleRemoval + Details: Arguments of following rules are not normal-forms. 2ndsneg(s(N),cons(X,Z)) -> 2ndsneg(s(N),cons2(X,activate(Z))) 2ndsneg(s(N),cons2(X,cons(Y,Z))) -> rcons(negrecip(Y),2ndspos(N,activate(Z))) 2ndspos(s(N),cons(X,Z)) -> 2ndspos(s(N),cons2(X,activate(Z))) 2ndspos(s(N),cons2(X,cons(Y,Z))) -> rcons(posrecip(Y),2ndsneg(N,activate(Z))) plus(s(X),Y) -> s(plus(X,Y)) times(s(X),Y) -> plus(Y,times(X,Y)) All above mentioned rules can be savely removed. ** Step 1.b:2: MI WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: 2ndsneg(0(),Z) -> rnil() 2ndspos(0(),Z) -> rnil() activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) plus(0(),Y) -> Y s(X) -> n__s(X) square(X) -> times(X,X) times(0(),Y) -> 0() - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1 ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 1, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules} + Details: We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)): The following argument positions are considered usable: uargs(2ndspos) = {2}, uargs(from) = {1}, uargs(s) = {1} Following symbols are considered usable: {2ndsneg,2ndspos,activate,from,pi,plus,s,square,times} TcT has computed the following interpretation: p(0) = [0] p(2ndsneg) = [1] x_2 + [11] p(2ndspos) = [8] x_2 + [2] p(activate) = [1] x_1 + [0] p(cons) = [0] p(cons2) = [1] x_1 + [1] x_2 + [1] p(from) = [1] x_1 + [0] p(n__from) = [1] x_1 + [0] p(n__s) = [1] x_1 + [2] p(negrecip) = [1] x_1 + [1] p(pi) = [1] x_1 + [2] p(plus) = [4] x_2 + [11] p(posrecip) = [1] p(rcons) = [1] x_2 + [2] p(rnil) = [2] p(s) = [1] x_1 + [2] p(square) = [12] x_1 + [14] p(times) = [7] x_1 + [1] x_2 + [9] Following rules are strictly oriented: 2ndsneg(0(),Z) = [1] Z + [11] > [2] = rnil() plus(0(),Y) = [4] Y + [11] > [1] Y + [0] = Y square(X) = [12] X + [14] > [8] X + [9] = times(X,X) times(0(),Y) = [1] Y + [9] > [0] = 0() Following rules are (at-least) weakly oriented: 2ndspos(0(),Z) = [8] Z + [2] >= [2] = rnil() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__from(X)) = [1] X + [0] >= [1] X + [0] = from(activate(X)) activate(n__s(X)) = [1] X + [2] >= [1] X + [2] = s(activate(X)) from(X) = [1] X + [0] >= [0] = cons(X,n__from(n__s(X))) from(X) = [1] X + [0] >= [1] X + [0] = n__from(X) pi(X) = [1] X + [2] >= [2] = 2ndspos(X,from(0())) s(X) = [1] X + [2] >= [1] X + [2] = n__s(X) ** Step 1.b:3: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: 2ndspos(0(),Z) -> rnil() activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) s(X) -> n__s(X) - Weak TRS: 2ndsneg(0(),Z) -> rnil() plus(0(),Y) -> Y square(X) -> times(X,X) times(0(),Y) -> 0() - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1 ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(2ndspos) = {2}, uargs(from) = {1}, uargs(s) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [1] p(2ndsneg) = [0] p(2ndspos) = [1] x2 + [0] p(activate) = [8] x1 + [1] p(cons) = [1] x2 + [0] p(cons2) = [1] x1 + [1] x2 + [0] p(from) = [1] x1 + [0] p(n__from) = [1] x1 + [0] p(n__s) = [1] x1 + [0] p(negrecip) = [1] x1 + [0] p(pi) = [0] p(plus) = [1] x1 + [1] x2 + [0] p(posrecip) = [1] x1 + [0] p(rcons) = [1] x1 + [1] x2 + [0] p(rnil) = [0] p(s) = [1] x1 + [0] p(square) = [9] x1 + [1] p(times) = [8] x1 + [0] Following rules are strictly oriented: activate(X) = [8] X + [1] > [1] X + [0] = X Following rules are (at-least) weakly oriented: 2ndsneg(0(),Z) = [0] >= [0] = rnil() 2ndspos(0(),Z) = [1] Z + [0] >= [0] = rnil() activate(n__from(X)) = [8] X + [1] >= [8] X + [1] = from(activate(X)) activate(n__s(X)) = [8] X + [1] >= [8] X + [1] = s(activate(X)) from(X) = [1] X + [0] >= [1] X + [0] = cons(X,n__from(n__s(X))) from(X) = [1] X + [0] >= [1] X + [0] = n__from(X) pi(X) = [0] >= [1] = 2ndspos(X,from(0())) plus(0(),Y) = [1] Y + [1] >= [1] Y + [0] = Y s(X) = [1] X + [0] >= [1] X + [0] = n__s(X) square(X) = [9] X + [1] >= [8] X + [0] = times(X,X) times(0(),Y) = [8] >= [1] = 0() Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:4: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: 2ndspos(0(),Z) -> rnil() activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) s(X) -> n__s(X) - Weak TRS: 2ndsneg(0(),Z) -> rnil() activate(X) -> X plus(0(),Y) -> Y square(X) -> times(X,X) times(0(),Y) -> 0() - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1 ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(2ndspos) = {2}, uargs(from) = {1}, uargs(s) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [1] p(2ndsneg) = [5] x1 + [1] x2 + [14] p(2ndspos) = [1] x2 + [12] p(activate) = [8] x1 + [2] p(cons) = [1] x2 + [0] p(cons2) = [1] x1 + [1] x2 + [2] p(from) = [1] x1 + [0] p(n__from) = [1] x1 + [0] p(n__s) = [1] x1 + [0] p(negrecip) = [1] x1 + [0] p(pi) = [0] p(plus) = [1] x1 + [1] x2 + [0] p(posrecip) = [1] x1 + [0] p(rcons) = [1] x2 + [0] p(rnil) = [0] p(s) = [1] x1 + [0] p(square) = [9] x1 + [3] p(times) = [8] x1 + [2] Following rules are strictly oriented: 2ndspos(0(),Z) = [1] Z + [12] > [0] = rnil() Following rules are (at-least) weakly oriented: 2ndsneg(0(),Z) = [1] Z + [19] >= [0] = rnil() activate(X) = [8] X + [2] >= [1] X + [0] = X activate(n__from(X)) = [8] X + [2] >= [8] X + [2] = from(activate(X)) activate(n__s(X)) = [8] X + [2] >= [8] X + [2] = s(activate(X)) from(X) = [1] X + [0] >= [1] X + [0] = cons(X,n__from(n__s(X))) from(X) = [1] X + [0] >= [1] X + [0] = n__from(X) pi(X) = [0] >= [13] = 2ndspos(X,from(0())) plus(0(),Y) = [1] Y + [1] >= [1] Y + [0] = Y s(X) = [1] X + [0] >= [1] X + [0] = n__s(X) square(X) = [9] X + [3] >= [8] X + [2] = times(X,X) times(0(),Y) = [10] >= [1] = 0() Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:5: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) s(X) -> n__s(X) - Weak TRS: 2ndsneg(0(),Z) -> rnil() 2ndspos(0(),Z) -> rnil() activate(X) -> X plus(0(),Y) -> Y square(X) -> times(X,X) times(0(),Y) -> 0() - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1 ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(2ndspos) = {2}, uargs(from) = {1}, uargs(s) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(2ndsneg) = [8] x1 + [1] p(2ndspos) = [1] x2 + [1] p(activate) = [2] x1 + [0] p(cons) = [1] x2 + [0] p(cons2) = [1] x1 + [1] p(from) = [1] x1 + [0] p(n__from) = [1] x1 + [4] p(n__s) = [1] x1 + [0] p(negrecip) = [1] x1 + [0] p(pi) = [0] p(plus) = [2] x2 + [0] p(posrecip) = [1] x1 + [0] p(rcons) = [1] x1 + [1] x2 + [0] p(rnil) = [0] p(s) = [1] x1 + [5] p(square) = [11] x1 + [0] p(times) = [10] x1 + [0] Following rules are strictly oriented: activate(n__from(X)) = [2] X + [8] > [2] X + [0] = from(activate(X)) s(X) = [1] X + [5] > [1] X + [0] = n__s(X) Following rules are (at-least) weakly oriented: 2ndsneg(0(),Z) = [1] >= [0] = rnil() 2ndspos(0(),Z) = [1] Z + [1] >= [0] = rnil() activate(X) = [2] X + [0] >= [1] X + [0] = X activate(n__s(X)) = [2] X + [0] >= [2] X + [5] = s(activate(X)) from(X) = [1] X + [0] >= [1] X + [4] = cons(X,n__from(n__s(X))) from(X) = [1] X + [0] >= [1] X + [4] = n__from(X) pi(X) = [0] >= [1] = 2ndspos(X,from(0())) plus(0(),Y) = [2] Y + [0] >= [1] Y + [0] = Y square(X) = [11] X + [0] >= [10] X + [0] = times(X,X) times(0(),Y) = [0] >= [0] = 0() Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:6: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) - Weak TRS: 2ndsneg(0(),Z) -> rnil() 2ndspos(0(),Z) -> rnil() activate(X) -> X activate(n__from(X)) -> from(activate(X)) plus(0(),Y) -> Y s(X) -> n__s(X) square(X) -> times(X,X) times(0(),Y) -> 0() - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1 ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(2ndspos) = {2}, uargs(from) = {1}, uargs(s) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [1] p(2ndsneg) = [4] x1 + [0] p(2ndspos) = [1] x2 + [0] p(activate) = [2] x1 + [4] p(cons) = [0] p(cons2) = [1] x1 + [1] x2 + [0] p(from) = [1] x1 + [5] p(n__from) = [1] x1 + [4] p(n__s) = [1] x1 + [0] p(negrecip) = [0] p(pi) = [0] p(plus) = [2] x2 + [0] p(posrecip) = [1] x1 + [0] p(rcons) = [1] x1 + [1] x2 + [0] p(rnil) = [0] p(s) = [1] x1 + [0] p(square) = [2] x1 + [0] p(times) = [1] x1 + [0] Following rules are strictly oriented: from(X) = [1] X + [5] > [0] = cons(X,n__from(n__s(X))) from(X) = [1] X + [5] > [1] X + [4] = n__from(X) Following rules are (at-least) weakly oriented: 2ndsneg(0(),Z) = [4] >= [0] = rnil() 2ndspos(0(),Z) = [1] Z + [0] >= [0] = rnil() activate(X) = [2] X + [4] >= [1] X + [0] = X activate(n__from(X)) = [2] X + [12] >= [2] X + [9] = from(activate(X)) activate(n__s(X)) = [2] X + [4] >= [2] X + [4] = s(activate(X)) pi(X) = [0] >= [6] = 2ndspos(X,from(0())) plus(0(),Y) = [2] Y + [0] >= [1] Y + [0] = Y s(X) = [1] X + [0] >= [1] X + [0] = n__s(X) square(X) = [2] X + [0] >= [1] X + [0] = times(X,X) times(0(),Y) = [1] >= [1] = 0() Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:7: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: activate(n__s(X)) -> s(activate(X)) pi(X) -> 2ndspos(X,from(0())) - Weak TRS: 2ndsneg(0(),Z) -> rnil() 2ndspos(0(),Z) -> rnil() activate(X) -> X activate(n__from(X)) -> from(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y s(X) -> n__s(X) square(X) -> times(X,X) times(0(),Y) -> 0() - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1 ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(2ndspos) = {2}, uargs(from) = {1}, uargs(s) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [0] p(2ndsneg) = [0] p(2ndspos) = [1] x2 + [13] p(activate) = [4] x1 + [7] p(cons) = [1] x1 + [0] p(cons2) = [1] x1 + [1] x2 + [0] p(from) = [1] x1 + [0] p(n__from) = [1] x1 + [0] p(n__s) = [1] x1 + [4] p(negrecip) = [1] x1 + [0] p(pi) = [0] p(plus) = [2] x2 + [0] p(posrecip) = [1] x1 + [0] p(rcons) = [2] p(rnil) = [0] p(s) = [1] x1 + [4] p(square) = [9] x1 + [2] p(times) = [8] x1 + [2] Following rules are strictly oriented: activate(n__s(X)) = [4] X + [23] > [4] X + [11] = s(activate(X)) Following rules are (at-least) weakly oriented: 2ndsneg(0(),Z) = [0] >= [0] = rnil() 2ndspos(0(),Z) = [1] Z + [13] >= [0] = rnil() activate(X) = [4] X + [7] >= [1] X + [0] = X activate(n__from(X)) = [4] X + [7] >= [4] X + [7] = from(activate(X)) from(X) = [1] X + [0] >= [1] X + [0] = cons(X,n__from(n__s(X))) from(X) = [1] X + [0] >= [1] X + [0] = n__from(X) pi(X) = [0] >= [13] = 2ndspos(X,from(0())) plus(0(),Y) = [2] Y + [0] >= [1] Y + [0] = Y s(X) = [1] X + [4] >= [1] X + [4] = n__s(X) square(X) = [9] X + [2] >= [8] X + [2] = times(X,X) times(0(),Y) = [2] >= [0] = 0() Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:8: WeightGap WORST_CASE(?,O(n^1)) + Considered Problem: - Strict TRS: pi(X) -> 2ndspos(X,from(0())) - Weak TRS: 2ndsneg(0(),Z) -> rnil() 2ndspos(0(),Z) -> rnil() activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) plus(0(),Y) -> Y s(X) -> n__s(X) square(X) -> times(X,X) times(0(),Y) -> 0() - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1 ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} + Details: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(2ndspos) = {2}, uargs(from) = {1}, uargs(s) = {1} Following symbols are considered usable: all TcT has computed the following interpretation: p(0) = [2] p(2ndsneg) = [12] x1 + [1] p(2ndspos) = [10] x1 + [1] x2 + [0] p(activate) = [1] x1 + [0] p(cons) = [0] p(cons2) = [1] x1 + [0] p(from) = [1] x1 + [0] p(n__from) = [1] x1 + [0] p(n__s) = [1] x1 + [0] p(negrecip) = [0] p(pi) = [12] x1 + [3] p(plus) = [1] x1 + [8] x2 + [8] p(posrecip) = [1] x1 + [8] p(rcons) = [1] x1 + [1] x2 + [0] p(rnil) = [8] p(s) = [1] x1 + [0] p(square) = [3] x1 + [0] p(times) = [1] x1 + [2] x2 + [0] Following rules are strictly oriented: pi(X) = [12] X + [3] > [10] X + [2] = 2ndspos(X,from(0())) Following rules are (at-least) weakly oriented: 2ndsneg(0(),Z) = [25] >= [8] = rnil() 2ndspos(0(),Z) = [1] Z + [20] >= [8] = rnil() activate(X) = [1] X + [0] >= [1] X + [0] = X activate(n__from(X)) = [1] X + [0] >= [1] X + [0] = from(activate(X)) activate(n__s(X)) = [1] X + [0] >= [1] X + [0] = s(activate(X)) from(X) = [1] X + [0] >= [0] = cons(X,n__from(n__s(X))) from(X) = [1] X + [0] >= [1] X + [0] = n__from(X) plus(0(),Y) = [8] Y + [10] >= [1] Y + [0] = Y s(X) = [1] X + [0] >= [1] X + [0] = n__s(X) square(X) = [3] X + [0] >= [3] X + [0] = times(X,X) times(0(),Y) = [2] Y + [2] >= [2] = 0() Further, it can be verified that all rules not oriented are covered by the weightgap condition. ** Step 1.b:9: EmptyProcessor WORST_CASE(?,O(1)) + Considered Problem: - Weak TRS: 2ndsneg(0(),Z) -> rnil() 2ndspos(0(),Z) -> rnil() activate(X) -> X activate(n__from(X)) -> from(activate(X)) activate(n__s(X)) -> s(activate(X)) from(X) -> cons(X,n__from(n__s(X))) from(X) -> n__from(X) pi(X) -> 2ndspos(X,from(0())) plus(0(),Y) -> Y s(X) -> n__s(X) square(X) -> times(X,X) times(0(),Y) -> 0() - Signature: {2ndsneg/2,2ndspos/2,activate/1,from/1,pi/1,plus/2,s/1,square/1,times/2} / {0/0,cons/2,cons2/2,n__from/1 ,n__s/1,negrecip/1,posrecip/1,rcons/2,rnil/0} - Obligation: innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,activate,from,pi,plus,s,square ,times} and constructors {0,cons,cons2,n__from,n__s,negrecip,posrecip,rcons,rnil} + Applied Processor: EmptyProcessor + Details: The problem is already closed. The intended complexity is O(1). WORST_CASE(Omega(n^1),O(n^1))