* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            2ndsneg(X1,mark(X2)) -> mark(2ndsneg(X1,X2))
            2ndsneg(mark(X1),X2) -> mark(2ndsneg(X1,X2))
            2ndsneg(ok(X1),ok(X2)) -> ok(2ndsneg(X1,X2))
            2ndspos(X1,mark(X2)) -> mark(2ndspos(X1,X2))
            2ndspos(mark(X1),X2) -> mark(2ndspos(X1,X2))
            2ndspos(ok(X1),ok(X2)) -> ok(2ndspos(X1,X2))
            active(2ndsneg(X1,X2)) -> 2ndsneg(X1,active(X2))
            active(2ndsneg(X1,X2)) -> 2ndsneg(active(X1),X2)
            active(2ndsneg(0(),Z)) -> mark(rnil())
            active(2ndsneg(s(N),cons(X,Z))) -> mark(2ndsneg(s(N),cons2(X,Z)))
            active(2ndsneg(s(N),cons2(X,cons(Y,Z)))) -> mark(rcons(negrecip(Y),2ndspos(N,Z)))
            active(2ndspos(X1,X2)) -> 2ndspos(X1,active(X2))
            active(2ndspos(X1,X2)) -> 2ndspos(active(X1),X2)
            active(2ndspos(0(),Z)) -> mark(rnil())
            active(2ndspos(s(N),cons(X,Z))) -> mark(2ndspos(s(N),cons2(X,Z)))
            active(2ndspos(s(N),cons2(X,cons(Y,Z)))) -> mark(rcons(posrecip(Y),2ndsneg(N,Z)))
            active(cons(X1,X2)) -> cons(active(X1),X2)
            active(cons2(X1,X2)) -> cons2(X1,active(X2))
            active(from(X)) -> from(active(X))
            active(from(X)) -> mark(cons(X,from(s(X))))
            active(negrecip(X)) -> negrecip(active(X))
            active(pi(X)) -> mark(2ndspos(X,from(0())))
            active(pi(X)) -> pi(active(X))
            active(plus(X1,X2)) -> plus(X1,active(X2))
            active(plus(X1,X2)) -> plus(active(X1),X2)
            active(plus(0(),Y)) -> mark(Y)
            active(plus(s(X),Y)) -> mark(s(plus(X,Y)))
            active(posrecip(X)) -> posrecip(active(X))
            active(rcons(X1,X2)) -> rcons(X1,active(X2))
            active(rcons(X1,X2)) -> rcons(active(X1),X2)
            active(s(X)) -> s(active(X))
            active(square(X)) -> mark(times(X,X))
            active(square(X)) -> square(active(X))
            active(times(X1,X2)) -> times(X1,active(X2))
            active(times(X1,X2)) -> times(active(X1),X2)
            active(times(0(),Y)) -> mark(0())
            active(times(s(X),Y)) -> mark(plus(Y,times(X,Y)))
            cons(mark(X1),X2) -> mark(cons(X1,X2))
            cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
            cons2(X1,mark(X2)) -> mark(cons2(X1,X2))
            cons2(ok(X1),ok(X2)) -> ok(cons2(X1,X2))
            from(mark(X)) -> mark(from(X))
            from(ok(X)) -> ok(from(X))
            negrecip(mark(X)) -> mark(negrecip(X))
            negrecip(ok(X)) -> ok(negrecip(X))
            pi(mark(X)) -> mark(pi(X))
            pi(ok(X)) -> ok(pi(X))
            plus(X1,mark(X2)) -> mark(plus(X1,X2))
            plus(mark(X1),X2) -> mark(plus(X1,X2))
            plus(ok(X1),ok(X2)) -> ok(plus(X1,X2))
            posrecip(mark(X)) -> mark(posrecip(X))
            posrecip(ok(X)) -> ok(posrecip(X))
            proper(0()) -> ok(0())
            proper(2ndsneg(X1,X2)) -> 2ndsneg(proper(X1),proper(X2))
            proper(2ndspos(X1,X2)) -> 2ndspos(proper(X1),proper(X2))
            proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
            proper(cons2(X1,X2)) -> cons2(proper(X1),proper(X2))
            proper(from(X)) -> from(proper(X))
            proper(negrecip(X)) -> negrecip(proper(X))
            proper(nil()) -> ok(nil())
            proper(pi(X)) -> pi(proper(X))
            proper(plus(X1,X2)) -> plus(proper(X1),proper(X2))
            proper(posrecip(X)) -> posrecip(proper(X))
            proper(rcons(X1,X2)) -> rcons(proper(X1),proper(X2))
            proper(rnil()) -> ok(rnil())
            proper(s(X)) -> s(proper(X))
            proper(square(X)) -> square(proper(X))
            proper(times(X1,X2)) -> times(proper(X1),proper(X2))
            rcons(X1,mark(X2)) -> mark(rcons(X1,X2))
            rcons(mark(X1),X2) -> mark(rcons(X1,X2))
            rcons(ok(X1),ok(X2)) -> ok(rcons(X1,X2))
            s(mark(X)) -> mark(s(X))
            s(ok(X)) -> ok(s(X))
            square(mark(X)) -> mark(square(X))
            square(ok(X)) -> ok(square(X))
            times(X1,mark(X2)) -> mark(times(X1,X2))
            times(mark(X1),X2) -> mark(times(X1,X2))
            times(ok(X1),ok(X2)) -> ok(times(X1,X2))
            top(mark(X)) -> top(proper(X))
            top(ok(X)) -> top(active(X))
        - Signature:
            {2ndsneg/2,2ndspos/2,active/1,cons/2,cons2/2,from/1,negrecip/1,pi/1,plus/2,posrecip/1,proper/1,rcons/2,s/1
            ,square/1,times/2,top/1} / {0/0,mark/1,nil/0,ok/1,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,active,cons,cons2,from,negrecip,pi,plus
            ,posrecip,proper,rcons,s,square,times,top} and constructors {0,mark,nil,ok,rnil}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            2ndsneg(X1,mark(X2)) -> mark(2ndsneg(X1,X2))
            2ndsneg(mark(X1),X2) -> mark(2ndsneg(X1,X2))
            2ndsneg(ok(X1),ok(X2)) -> ok(2ndsneg(X1,X2))
            2ndspos(X1,mark(X2)) -> mark(2ndspos(X1,X2))
            2ndspos(mark(X1),X2) -> mark(2ndspos(X1,X2))
            2ndspos(ok(X1),ok(X2)) -> ok(2ndspos(X1,X2))
            active(2ndsneg(X1,X2)) -> 2ndsneg(X1,active(X2))
            active(2ndsneg(X1,X2)) -> 2ndsneg(active(X1),X2)
            active(2ndsneg(0(),Z)) -> mark(rnil())
            active(2ndsneg(s(N),cons(X,Z))) -> mark(2ndsneg(s(N),cons2(X,Z)))
            active(2ndsneg(s(N),cons2(X,cons(Y,Z)))) -> mark(rcons(negrecip(Y),2ndspos(N,Z)))
            active(2ndspos(X1,X2)) -> 2ndspos(X1,active(X2))
            active(2ndspos(X1,X2)) -> 2ndspos(active(X1),X2)
            active(2ndspos(0(),Z)) -> mark(rnil())
            active(2ndspos(s(N),cons(X,Z))) -> mark(2ndspos(s(N),cons2(X,Z)))
            active(2ndspos(s(N),cons2(X,cons(Y,Z)))) -> mark(rcons(posrecip(Y),2ndsneg(N,Z)))
            active(cons(X1,X2)) -> cons(active(X1),X2)
            active(cons2(X1,X2)) -> cons2(X1,active(X2))
            active(from(X)) -> from(active(X))
            active(from(X)) -> mark(cons(X,from(s(X))))
            active(negrecip(X)) -> negrecip(active(X))
            active(pi(X)) -> mark(2ndspos(X,from(0())))
            active(pi(X)) -> pi(active(X))
            active(plus(X1,X2)) -> plus(X1,active(X2))
            active(plus(X1,X2)) -> plus(active(X1),X2)
            active(plus(0(),Y)) -> mark(Y)
            active(plus(s(X),Y)) -> mark(s(plus(X,Y)))
            active(posrecip(X)) -> posrecip(active(X))
            active(rcons(X1,X2)) -> rcons(X1,active(X2))
            active(rcons(X1,X2)) -> rcons(active(X1),X2)
            active(s(X)) -> s(active(X))
            active(square(X)) -> mark(times(X,X))
            active(square(X)) -> square(active(X))
            active(times(X1,X2)) -> times(X1,active(X2))
            active(times(X1,X2)) -> times(active(X1),X2)
            active(times(0(),Y)) -> mark(0())
            active(times(s(X),Y)) -> mark(plus(Y,times(X,Y)))
            cons(mark(X1),X2) -> mark(cons(X1,X2))
            cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
            cons2(X1,mark(X2)) -> mark(cons2(X1,X2))
            cons2(ok(X1),ok(X2)) -> ok(cons2(X1,X2))
            from(mark(X)) -> mark(from(X))
            from(ok(X)) -> ok(from(X))
            negrecip(mark(X)) -> mark(negrecip(X))
            negrecip(ok(X)) -> ok(negrecip(X))
            pi(mark(X)) -> mark(pi(X))
            pi(ok(X)) -> ok(pi(X))
            plus(X1,mark(X2)) -> mark(plus(X1,X2))
            plus(mark(X1),X2) -> mark(plus(X1,X2))
            plus(ok(X1),ok(X2)) -> ok(plus(X1,X2))
            posrecip(mark(X)) -> mark(posrecip(X))
            posrecip(ok(X)) -> ok(posrecip(X))
            proper(0()) -> ok(0())
            proper(2ndsneg(X1,X2)) -> 2ndsneg(proper(X1),proper(X2))
            proper(2ndspos(X1,X2)) -> 2ndspos(proper(X1),proper(X2))
            proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
            proper(cons2(X1,X2)) -> cons2(proper(X1),proper(X2))
            proper(from(X)) -> from(proper(X))
            proper(negrecip(X)) -> negrecip(proper(X))
            proper(nil()) -> ok(nil())
            proper(pi(X)) -> pi(proper(X))
            proper(plus(X1,X2)) -> plus(proper(X1),proper(X2))
            proper(posrecip(X)) -> posrecip(proper(X))
            proper(rcons(X1,X2)) -> rcons(proper(X1),proper(X2))
            proper(rnil()) -> ok(rnil())
            proper(s(X)) -> s(proper(X))
            proper(square(X)) -> square(proper(X))
            proper(times(X1,X2)) -> times(proper(X1),proper(X2))
            rcons(X1,mark(X2)) -> mark(rcons(X1,X2))
            rcons(mark(X1),X2) -> mark(rcons(X1,X2))
            rcons(ok(X1),ok(X2)) -> ok(rcons(X1,X2))
            s(mark(X)) -> mark(s(X))
            s(ok(X)) -> ok(s(X))
            square(mark(X)) -> mark(square(X))
            square(ok(X)) -> ok(square(X))
            times(X1,mark(X2)) -> mark(times(X1,X2))
            times(mark(X1),X2) -> mark(times(X1,X2))
            times(ok(X1),ok(X2)) -> ok(times(X1,X2))
            top(mark(X)) -> top(proper(X))
            top(ok(X)) -> top(active(X))
        - Signature:
            {2ndsneg/2,2ndspos/2,active/1,cons/2,cons2/2,from/1,negrecip/1,pi/1,plus/2,posrecip/1,proper/1,rcons/2,s/1
            ,square/1,times/2,top/1} / {0/0,mark/1,nil/0,ok/1,rnil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2ndsneg,2ndspos,active,cons,cons2,from,negrecip,pi,plus
            ,posrecip,proper,rcons,s,square,times,top} and constructors {0,mark,nil,ok,rnil}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          2ndsneg(x,y){y -> mark(y)} =
            2ndsneg(x,mark(y)) ->^+ mark(2ndsneg(x,y))
              = C[2ndsneg(x,y) = 2ndsneg(x,y){}]

WORST_CASE(Omega(n^1),?)