* Step 1: Sum WORST_CASE(Omega(n^1),O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__filter(X1,X2,X3) -> filter(X1,X2,X3)
            a__filter(cons(X,Y),0(),M) -> cons(0(),filter(Y,M,M))
            a__filter(cons(X,Y),s(N),M) -> cons(mark(X),filter(Y,N,M))
            a__nats(N) -> cons(mark(N),nats(s(N)))
            a__nats(X) -> nats(X)
            a__sieve(X) -> sieve(X)
            a__sieve(cons(0(),Y)) -> cons(0(),sieve(Y))
            a__sieve(cons(s(N),Y)) -> cons(s(mark(N)),sieve(filter(Y,N,N)))
            a__zprimes() -> a__sieve(a__nats(s(s(0()))))
            a__zprimes() -> zprimes()
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(filter(X1,X2,X3)) -> a__filter(mark(X1),mark(X2),mark(X3))
            mark(nats(X)) -> a__nats(mark(X))
            mark(s(X)) -> s(mark(X))
            mark(sieve(X)) -> a__sieve(mark(X))
            mark(zprimes()) -> a__zprimes()
        - Signature:
            {a__filter/3,a__nats/1,a__sieve/1,a__zprimes/0,mark/1} / {0/0,cons/2,filter/3,nats/1,s/1,sieve/1,zprimes/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__filter,a__nats,a__sieve,a__zprimes
            ,mark} and constructors {0,cons,filter,nats,s,sieve,zprimes}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            a__filter(X1,X2,X3) -> filter(X1,X2,X3)
            a__filter(cons(X,Y),0(),M) -> cons(0(),filter(Y,M,M))
            a__filter(cons(X,Y),s(N),M) -> cons(mark(X),filter(Y,N,M))
            a__nats(N) -> cons(mark(N),nats(s(N)))
            a__nats(X) -> nats(X)
            a__sieve(X) -> sieve(X)
            a__sieve(cons(0(),Y)) -> cons(0(),sieve(Y))
            a__sieve(cons(s(N),Y)) -> cons(s(mark(N)),sieve(filter(Y,N,N)))
            a__zprimes() -> a__sieve(a__nats(s(s(0()))))
            a__zprimes() -> zprimes()
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(filter(X1,X2,X3)) -> a__filter(mark(X1),mark(X2),mark(X3))
            mark(nats(X)) -> a__nats(mark(X))
            mark(s(X)) -> s(mark(X))
            mark(sieve(X)) -> a__sieve(mark(X))
            mark(zprimes()) -> a__zprimes()
        - Signature:
            {a__filter/3,a__nats/1,a__sieve/1,a__zprimes/0,mark/1} / {0/0,cons/2,filter/3,nats/1,s/1,sieve/1,zprimes/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__filter,a__nats,a__sieve,a__zprimes
            ,mark} and constructors {0,cons,filter,nats,s,sieve,zprimes}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          mark(x){x -> cons(x,y)} =
            mark(cons(x,y)) ->^+ cons(mark(x),y)
              = C[mark(x) = mark(x){}]

** Step 1.b:1: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__filter(X1,X2,X3) -> filter(X1,X2,X3)
            a__filter(cons(X,Y),0(),M) -> cons(0(),filter(Y,M,M))
            a__filter(cons(X,Y),s(N),M) -> cons(mark(X),filter(Y,N,M))
            a__nats(N) -> cons(mark(N),nats(s(N)))
            a__nats(X) -> nats(X)
            a__sieve(X) -> sieve(X)
            a__sieve(cons(0(),Y)) -> cons(0(),sieve(Y))
            a__sieve(cons(s(N),Y)) -> cons(s(mark(N)),sieve(filter(Y,N,N)))
            a__zprimes() -> a__sieve(a__nats(s(s(0()))))
            a__zprimes() -> zprimes()
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(filter(X1,X2,X3)) -> a__filter(mark(X1),mark(X2),mark(X3))
            mark(nats(X)) -> a__nats(mark(X))
            mark(s(X)) -> s(mark(X))
            mark(sieve(X)) -> a__sieve(mark(X))
            mark(zprimes()) -> a__zprimes()
        - Signature:
            {a__filter/3,a__nats/1,a__sieve/1,a__zprimes/0,mark/1} / {0/0,cons/2,filter/3,nats/1,s/1,sieve/1,zprimes/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__filter,a__nats,a__sieve,a__zprimes
            ,mark} and constructors {0,cons,filter,nats,s,sieve,zprimes}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__filter) = {1,2,3},
            uargs(a__nats) = {1},
            uargs(a__sieve) = {1},
            uargs(cons) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                     p(0) = [0]                           
             p(a__filter) = [1] x1 + [1] x2 + [1] x3 + [0]
               p(a__nats) = [1] x1 + [0]                  
              p(a__sieve) = [1] x1 + [0]                  
            p(a__zprimes) = [0]                           
                  p(cons) = [1] x1 + [0]                  
                p(filter) = [1] x1 + [1] x2 + [1] x3 + [0]
                  p(mark) = [1] x1 + [1]                  
                  p(nats) = [1] x1 + [0]                  
                     p(s) = [1] x1 + [0]                  
                 p(sieve) = [1] x1 + [0]                  
               p(zprimes) = [0]                           
          
          Following rules are strictly oriented:
                mark(0()) = [1]         
                          > [0]         
                          = 0()         
          
          mark(zprimes()) = [1]         
                          > [0]         
                          = a__zprimes()
          
          
          Following rules are (at-least) weakly oriented:
                  a__filter(X1,X2,X3) =  [1] X1 + [1] X2 + [1] X3 + [0]       
                                      >= [1] X1 + [1] X2 + [1] X3 + [0]       
                                      =  filter(X1,X2,X3)                     
          
           a__filter(cons(X,Y),0(),M) =  [1] M + [1] X + [0]                  
                                      >= [0]                                  
                                      =  cons(0(),filter(Y,M,M))              
          
          a__filter(cons(X,Y),s(N),M) =  [1] M + [1] N + [1] X + [0]          
                                      >= [1] X + [1]                          
                                      =  cons(mark(X),filter(Y,N,M))          
          
                           a__nats(N) =  [1] N + [0]                          
                                      >= [1] N + [1]                          
                                      =  cons(mark(N),nats(s(N)))             
          
                           a__nats(X) =  [1] X + [0]                          
                                      >= [1] X + [0]                          
                                      =  nats(X)                              
          
                          a__sieve(X) =  [1] X + [0]                          
                                      >= [1] X + [0]                          
                                      =  sieve(X)                             
          
                a__sieve(cons(0(),Y)) =  [0]                                  
                                      >= [0]                                  
                                      =  cons(0(),sieve(Y))                   
          
               a__sieve(cons(s(N),Y)) =  [1] N + [0]                          
                                      >= [1] N + [1]                          
                                      =  cons(s(mark(N)),sieve(filter(Y,N,N)))
          
                         a__zprimes() =  [0]                                  
                                      >= [0]                                  
                                      =  a__sieve(a__nats(s(s(0()))))         
          
                         a__zprimes() =  [0]                                  
                                      >= [0]                                  
                                      =  zprimes()                            
          
                    mark(cons(X1,X2)) =  [1] X1 + [1]                         
                                      >= [1] X1 + [1]                         
                                      =  cons(mark(X1),X2)                    
          
               mark(filter(X1,X2,X3)) =  [1] X1 + [1] X2 + [1] X3 + [1]       
                                      >= [1] X1 + [1] X2 + [1] X3 + [3]       
                                      =  a__filter(mark(X1),mark(X2),mark(X3))
          
                        mark(nats(X)) =  [1] X + [1]                          
                                      >= [1] X + [1]                          
                                      =  a__nats(mark(X))                     
          
                           mark(s(X)) =  [1] X + [1]                          
                                      >= [1] X + [1]                          
                                      =  s(mark(X))                           
          
                       mark(sieve(X)) =  [1] X + [1]                          
                                      >= [1] X + [1]                          
                                      =  a__sieve(mark(X))                    
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:2: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__filter(X1,X2,X3) -> filter(X1,X2,X3)
            a__filter(cons(X,Y),0(),M) -> cons(0(),filter(Y,M,M))
            a__filter(cons(X,Y),s(N),M) -> cons(mark(X),filter(Y,N,M))
            a__nats(N) -> cons(mark(N),nats(s(N)))
            a__nats(X) -> nats(X)
            a__sieve(X) -> sieve(X)
            a__sieve(cons(0(),Y)) -> cons(0(),sieve(Y))
            a__sieve(cons(s(N),Y)) -> cons(s(mark(N)),sieve(filter(Y,N,N)))
            a__zprimes() -> a__sieve(a__nats(s(s(0()))))
            a__zprimes() -> zprimes()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(filter(X1,X2,X3)) -> a__filter(mark(X1),mark(X2),mark(X3))
            mark(nats(X)) -> a__nats(mark(X))
            mark(s(X)) -> s(mark(X))
            mark(sieve(X)) -> a__sieve(mark(X))
        - Weak TRS:
            mark(0()) -> 0()
            mark(zprimes()) -> a__zprimes()
        - Signature:
            {a__filter/3,a__nats/1,a__sieve/1,a__zprimes/0,mark/1} / {0/0,cons/2,filter/3,nats/1,s/1,sieve/1,zprimes/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__filter,a__nats,a__sieve,a__zprimes
            ,mark} and constructors {0,cons,filter,nats,s,sieve,zprimes}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__filter) = {1,2,3},
            uargs(a__nats) = {1},
            uargs(a__sieve) = {1},
            uargs(cons) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                     p(0) = [0]                           
             p(a__filter) = [1] x1 + [1] x2 + [1] x3 + [0]
               p(a__nats) = [1] x1 + [0]                  
              p(a__sieve) = [1] x1 + [0]                  
            p(a__zprimes) = [0]                           
                  p(cons) = [1] x1 + [0]                  
                p(filter) = [1] x1 + [1] x2 + [1] x3 + [0]
                  p(mark) = [1] x1 + [0]                  
                  p(nats) = [1] x1 + [0]                  
                     p(s) = [1] x1 + [0]                  
                 p(sieve) = [1] x1 + [7]                  
               p(zprimes) = [0]                           
          
          Following rules are strictly oriented:
          mark(sieve(X)) = [1] X + [7]      
                         > [1] X + [0]      
                         = a__sieve(mark(X))
          
          
          Following rules are (at-least) weakly oriented:
                  a__filter(X1,X2,X3) =  [1] X1 + [1] X2 + [1] X3 + [0]       
                                      >= [1] X1 + [1] X2 + [1] X3 + [0]       
                                      =  filter(X1,X2,X3)                     
          
           a__filter(cons(X,Y),0(),M) =  [1] M + [1] X + [0]                  
                                      >= [0]                                  
                                      =  cons(0(),filter(Y,M,M))              
          
          a__filter(cons(X,Y),s(N),M) =  [1] M + [1] N + [1] X + [0]          
                                      >= [1] X + [0]                          
                                      =  cons(mark(X),filter(Y,N,M))          
          
                           a__nats(N) =  [1] N + [0]                          
                                      >= [1] N + [0]                          
                                      =  cons(mark(N),nats(s(N)))             
          
                           a__nats(X) =  [1] X + [0]                          
                                      >= [1] X + [0]                          
                                      =  nats(X)                              
          
                          a__sieve(X) =  [1] X + [0]                          
                                      >= [1] X + [7]                          
                                      =  sieve(X)                             
          
                a__sieve(cons(0(),Y)) =  [0]                                  
                                      >= [0]                                  
                                      =  cons(0(),sieve(Y))                   
          
               a__sieve(cons(s(N),Y)) =  [1] N + [0]                          
                                      >= [1] N + [0]                          
                                      =  cons(s(mark(N)),sieve(filter(Y,N,N)))
          
                         a__zprimes() =  [0]                                  
                                      >= [0]                                  
                                      =  a__sieve(a__nats(s(s(0()))))         
          
                         a__zprimes() =  [0]                                  
                                      >= [0]                                  
                                      =  zprimes()                            
          
                            mark(0()) =  [0]                                  
                                      >= [0]                                  
                                      =  0()                                  
          
                    mark(cons(X1,X2)) =  [1] X1 + [0]                         
                                      >= [1] X1 + [0]                         
                                      =  cons(mark(X1),X2)                    
          
               mark(filter(X1,X2,X3)) =  [1] X1 + [1] X2 + [1] X3 + [0]       
                                      >= [1] X1 + [1] X2 + [1] X3 + [0]       
                                      =  a__filter(mark(X1),mark(X2),mark(X3))
          
                        mark(nats(X)) =  [1] X + [0]                          
                                      >= [1] X + [0]                          
                                      =  a__nats(mark(X))                     
          
                           mark(s(X)) =  [1] X + [0]                          
                                      >= [1] X + [0]                          
                                      =  s(mark(X))                           
          
                      mark(zprimes()) =  [0]                                  
                                      >= [0]                                  
                                      =  a__zprimes()                         
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:3: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__filter(X1,X2,X3) -> filter(X1,X2,X3)
            a__filter(cons(X,Y),0(),M) -> cons(0(),filter(Y,M,M))
            a__filter(cons(X,Y),s(N),M) -> cons(mark(X),filter(Y,N,M))
            a__nats(N) -> cons(mark(N),nats(s(N)))
            a__nats(X) -> nats(X)
            a__sieve(X) -> sieve(X)
            a__sieve(cons(0(),Y)) -> cons(0(),sieve(Y))
            a__sieve(cons(s(N),Y)) -> cons(s(mark(N)),sieve(filter(Y,N,N)))
            a__zprimes() -> a__sieve(a__nats(s(s(0()))))
            a__zprimes() -> zprimes()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(filter(X1,X2,X3)) -> a__filter(mark(X1),mark(X2),mark(X3))
            mark(nats(X)) -> a__nats(mark(X))
            mark(s(X)) -> s(mark(X))
        - Weak TRS:
            mark(0()) -> 0()
            mark(sieve(X)) -> a__sieve(mark(X))
            mark(zprimes()) -> a__zprimes()
        - Signature:
            {a__filter/3,a__nats/1,a__sieve/1,a__zprimes/0,mark/1} / {0/0,cons/2,filter/3,nats/1,s/1,sieve/1,zprimes/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__filter,a__nats,a__sieve,a__zprimes
            ,mark} and constructors {0,cons,filter,nats,s,sieve,zprimes}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__filter) = {1,2,3},
            uargs(a__nats) = {1},
            uargs(a__sieve) = {1},
            uargs(cons) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                     p(0) = [5]                           
             p(a__filter) = [1] x1 + [1] x2 + [1] x3 + [3]
               p(a__nats) = [1] x1 + [0]                  
              p(a__sieve) = [1] x1 + [0]                  
            p(a__zprimes) = [1]                           
                  p(cons) = [1] x1 + [0]                  
                p(filter) = [1] x1 + [1] x2 + [1] x3 + [7]
                  p(mark) = [1] x1 + [1]                  
                  p(nats) = [1] x1 + [0]                  
                     p(s) = [1] x1 + [0]                  
                 p(sieve) = [1] x1 + [0]                  
               p(zprimes) = [0]                           
          
          Following rules are strictly oriented:
           a__filter(cons(X,Y),0(),M) = [1] M + [1] X + [8]                  
                                      > [5]                                  
                                      = cons(0(),filter(Y,M,M))              
          
          a__filter(cons(X,Y),s(N),M) = [1] M + [1] N + [1] X + [3]          
                                      > [1] X + [1]                          
                                      = cons(mark(X),filter(Y,N,M))          
          
                         a__zprimes() = [1]                                  
                                      > [0]                                  
                                      = zprimes()                            
          
               mark(filter(X1,X2,X3)) = [1] X1 + [1] X2 + [1] X3 + [8]       
                                      > [1] X1 + [1] X2 + [1] X3 + [6]       
                                      = a__filter(mark(X1),mark(X2),mark(X3))
          
          
          Following rules are (at-least) weakly oriented:
             a__filter(X1,X2,X3) =  [1] X1 + [1] X2 + [1] X3 + [3]       
                                 >= [1] X1 + [1] X2 + [1] X3 + [7]       
                                 =  filter(X1,X2,X3)                     
          
                      a__nats(N) =  [1] N + [0]                          
                                 >= [1] N + [1]                          
                                 =  cons(mark(N),nats(s(N)))             
          
                      a__nats(X) =  [1] X + [0]                          
                                 >= [1] X + [0]                          
                                 =  nats(X)                              
          
                     a__sieve(X) =  [1] X + [0]                          
                                 >= [1] X + [0]                          
                                 =  sieve(X)                             
          
           a__sieve(cons(0(),Y)) =  [5]                                  
                                 >= [5]                                  
                                 =  cons(0(),sieve(Y))                   
          
          a__sieve(cons(s(N),Y)) =  [1] N + [0]                          
                                 >= [1] N + [1]                          
                                 =  cons(s(mark(N)),sieve(filter(Y,N,N)))
          
                    a__zprimes() =  [1]                                  
                                 >= [5]                                  
                                 =  a__sieve(a__nats(s(s(0()))))         
          
                       mark(0()) =  [6]                                  
                                 >= [5]                                  
                                 =  0()                                  
          
               mark(cons(X1,X2)) =  [1] X1 + [1]                         
                                 >= [1] X1 + [1]                         
                                 =  cons(mark(X1),X2)                    
          
                   mark(nats(X)) =  [1] X + [1]                          
                                 >= [1] X + [1]                          
                                 =  a__nats(mark(X))                     
          
                      mark(s(X)) =  [1] X + [1]                          
                                 >= [1] X + [1]                          
                                 =  s(mark(X))                           
          
                  mark(sieve(X)) =  [1] X + [1]                          
                                 >= [1] X + [1]                          
                                 =  a__sieve(mark(X))                    
          
                 mark(zprimes()) =  [1]                                  
                                 >= [1]                                  
                                 =  a__zprimes()                         
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:4: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__filter(X1,X2,X3) -> filter(X1,X2,X3)
            a__nats(N) -> cons(mark(N),nats(s(N)))
            a__nats(X) -> nats(X)
            a__sieve(X) -> sieve(X)
            a__sieve(cons(0(),Y)) -> cons(0(),sieve(Y))
            a__sieve(cons(s(N),Y)) -> cons(s(mark(N)),sieve(filter(Y,N,N)))
            a__zprimes() -> a__sieve(a__nats(s(s(0()))))
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(nats(X)) -> a__nats(mark(X))
            mark(s(X)) -> s(mark(X))
        - Weak TRS:
            a__filter(cons(X,Y),0(),M) -> cons(0(),filter(Y,M,M))
            a__filter(cons(X,Y),s(N),M) -> cons(mark(X),filter(Y,N,M))
            a__zprimes() -> zprimes()
            mark(0()) -> 0()
            mark(filter(X1,X2,X3)) -> a__filter(mark(X1),mark(X2),mark(X3))
            mark(sieve(X)) -> a__sieve(mark(X))
            mark(zprimes()) -> a__zprimes()
        - Signature:
            {a__filter/3,a__nats/1,a__sieve/1,a__zprimes/0,mark/1} / {0/0,cons/2,filter/3,nats/1,s/1,sieve/1,zprimes/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__filter,a__nats,a__sieve,a__zprimes
            ,mark} and constructors {0,cons,filter,nats,s,sieve,zprimes}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__filter) = {1,2,3},
            uargs(a__nats) = {1},
            uargs(a__sieve) = {1},
            uargs(cons) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                     p(0) = [1]                           
             p(a__filter) = [1] x1 + [1] x2 + [1] x3 + [0]
               p(a__nats) = [1] x1 + [0]                  
              p(a__sieve) = [1] x1 + [0]                  
            p(a__zprimes) = [3]                           
                  p(cons) = [1] x1 + [4]                  
                p(filter) = [1] x1 + [1] x2 + [1] x3 + [0]
                  p(mark) = [1] x1 + [0]                  
                  p(nats) = [1] x1 + [6]                  
                     p(s) = [1] x1 + [3]                  
                 p(sieve) = [1] x1 + [0]                  
               p(zprimes) = [3]                           
          
          Following rules are strictly oriented:
          mark(nats(X)) = [1] X + [6]     
                        > [1] X + [0]     
                        = a__nats(mark(X))
          
          
          Following rules are (at-least) weakly oriented:
                  a__filter(X1,X2,X3) =  [1] X1 + [1] X2 + [1] X3 + [0]       
                                      >= [1] X1 + [1] X2 + [1] X3 + [0]       
                                      =  filter(X1,X2,X3)                     
          
           a__filter(cons(X,Y),0(),M) =  [1] M + [1] X + [5]                  
                                      >= [5]                                  
                                      =  cons(0(),filter(Y,M,M))              
          
          a__filter(cons(X,Y),s(N),M) =  [1] M + [1] N + [1] X + [7]          
                                      >= [1] X + [4]                          
                                      =  cons(mark(X),filter(Y,N,M))          
          
                           a__nats(N) =  [1] N + [0]                          
                                      >= [1] N + [4]                          
                                      =  cons(mark(N),nats(s(N)))             
          
                           a__nats(X) =  [1] X + [0]                          
                                      >= [1] X + [6]                          
                                      =  nats(X)                              
          
                          a__sieve(X) =  [1] X + [0]                          
                                      >= [1] X + [0]                          
                                      =  sieve(X)                             
          
                a__sieve(cons(0(),Y)) =  [5]                                  
                                      >= [5]                                  
                                      =  cons(0(),sieve(Y))                   
          
               a__sieve(cons(s(N),Y)) =  [1] N + [7]                          
                                      >= [1] N + [7]                          
                                      =  cons(s(mark(N)),sieve(filter(Y,N,N)))
          
                         a__zprimes() =  [3]                                  
                                      >= [7]                                  
                                      =  a__sieve(a__nats(s(s(0()))))         
          
                         a__zprimes() =  [3]                                  
                                      >= [3]                                  
                                      =  zprimes()                            
          
                            mark(0()) =  [1]                                  
                                      >= [1]                                  
                                      =  0()                                  
          
                    mark(cons(X1,X2)) =  [1] X1 + [4]                         
                                      >= [1] X1 + [4]                         
                                      =  cons(mark(X1),X2)                    
          
               mark(filter(X1,X2,X3)) =  [1] X1 + [1] X2 + [1] X3 + [0]       
                                      >= [1] X1 + [1] X2 + [1] X3 + [0]       
                                      =  a__filter(mark(X1),mark(X2),mark(X3))
          
                           mark(s(X)) =  [1] X + [3]                          
                                      >= [1] X + [3]                          
                                      =  s(mark(X))                           
          
                       mark(sieve(X)) =  [1] X + [0]                          
                                      >= [1] X + [0]                          
                                      =  a__sieve(mark(X))                    
          
                      mark(zprimes()) =  [3]                                  
                                      >= [3]                                  
                                      =  a__zprimes()                         
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:5: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__filter(X1,X2,X3) -> filter(X1,X2,X3)
            a__nats(N) -> cons(mark(N),nats(s(N)))
            a__nats(X) -> nats(X)
            a__sieve(X) -> sieve(X)
            a__sieve(cons(0(),Y)) -> cons(0(),sieve(Y))
            a__sieve(cons(s(N),Y)) -> cons(s(mark(N)),sieve(filter(Y,N,N)))
            a__zprimes() -> a__sieve(a__nats(s(s(0()))))
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(s(X)) -> s(mark(X))
        - Weak TRS:
            a__filter(cons(X,Y),0(),M) -> cons(0(),filter(Y,M,M))
            a__filter(cons(X,Y),s(N),M) -> cons(mark(X),filter(Y,N,M))
            a__zprimes() -> zprimes()
            mark(0()) -> 0()
            mark(filter(X1,X2,X3)) -> a__filter(mark(X1),mark(X2),mark(X3))
            mark(nats(X)) -> a__nats(mark(X))
            mark(sieve(X)) -> a__sieve(mark(X))
            mark(zprimes()) -> a__zprimes()
        - Signature:
            {a__filter/3,a__nats/1,a__sieve/1,a__zprimes/0,mark/1} / {0/0,cons/2,filter/3,nats/1,s/1,sieve/1,zprimes/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__filter,a__nats,a__sieve,a__zprimes
            ,mark} and constructors {0,cons,filter,nats,s,sieve,zprimes}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__filter) = {1,2,3},
            uargs(a__nats) = {1},
            uargs(a__sieve) = {1},
            uargs(cons) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                     p(0) = [7]                           
             p(a__filter) = [1] x1 + [1] x2 + [1] x3 + [0]
               p(a__nats) = [1] x1 + [4]                  
              p(a__sieve) = [1] x1 + [0]                  
            p(a__zprimes) = [4]                           
                  p(cons) = [1] x1 + [1]                  
                p(filter) = [1] x1 + [1] x2 + [1] x3 + [7]
                  p(mark) = [1] x1 + [1]                  
                  p(nats) = [1] x1 + [4]                  
                     p(s) = [1] x1 + [2]                  
                 p(sieve) = [1] x1 + [0]                  
               p(zprimes) = [4]                           
          
          Following rules are strictly oriented:
          a__nats(N) = [1] N + [4]             
                     > [1] N + [2]             
                     = cons(mark(N),nats(s(N)))
          
          
          Following rules are (at-least) weakly oriented:
                  a__filter(X1,X2,X3) =  [1] X1 + [1] X2 + [1] X3 + [0]       
                                      >= [1] X1 + [1] X2 + [1] X3 + [7]       
                                      =  filter(X1,X2,X3)                     
          
           a__filter(cons(X,Y),0(),M) =  [1] M + [1] X + [8]                  
                                      >= [8]                                  
                                      =  cons(0(),filter(Y,M,M))              
          
          a__filter(cons(X,Y),s(N),M) =  [1] M + [1] N + [1] X + [3]          
                                      >= [1] X + [2]                          
                                      =  cons(mark(X),filter(Y,N,M))          
          
                           a__nats(X) =  [1] X + [4]                          
                                      >= [1] X + [4]                          
                                      =  nats(X)                              
          
                          a__sieve(X) =  [1] X + [0]                          
                                      >= [1] X + [0]                          
                                      =  sieve(X)                             
          
                a__sieve(cons(0(),Y)) =  [8]                                  
                                      >= [8]                                  
                                      =  cons(0(),sieve(Y))                   
          
               a__sieve(cons(s(N),Y)) =  [1] N + [3]                          
                                      >= [1] N + [4]                          
                                      =  cons(s(mark(N)),sieve(filter(Y,N,N)))
          
                         a__zprimes() =  [4]                                  
                                      >= [15]                                 
                                      =  a__sieve(a__nats(s(s(0()))))         
          
                         a__zprimes() =  [4]                                  
                                      >= [4]                                  
                                      =  zprimes()                            
          
                            mark(0()) =  [8]                                  
                                      >= [7]                                  
                                      =  0()                                  
          
                    mark(cons(X1,X2)) =  [1] X1 + [2]                         
                                      >= [1] X1 + [2]                         
                                      =  cons(mark(X1),X2)                    
          
               mark(filter(X1,X2,X3)) =  [1] X1 + [1] X2 + [1] X3 + [8]       
                                      >= [1] X1 + [1] X2 + [1] X3 + [3]       
                                      =  a__filter(mark(X1),mark(X2),mark(X3))
          
                        mark(nats(X)) =  [1] X + [5]                          
                                      >= [1] X + [5]                          
                                      =  a__nats(mark(X))                     
          
                           mark(s(X)) =  [1] X + [3]                          
                                      >= [1] X + [3]                          
                                      =  s(mark(X))                           
          
                       mark(sieve(X)) =  [1] X + [1]                          
                                      >= [1] X + [1]                          
                                      =  a__sieve(mark(X))                    
          
                      mark(zprimes()) =  [5]                                  
                                      >= [4]                                  
                                      =  a__zprimes()                         
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:6: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__filter(X1,X2,X3) -> filter(X1,X2,X3)
            a__nats(X) -> nats(X)
            a__sieve(X) -> sieve(X)
            a__sieve(cons(0(),Y)) -> cons(0(),sieve(Y))
            a__sieve(cons(s(N),Y)) -> cons(s(mark(N)),sieve(filter(Y,N,N)))
            a__zprimes() -> a__sieve(a__nats(s(s(0()))))
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(s(X)) -> s(mark(X))
        - Weak TRS:
            a__filter(cons(X,Y),0(),M) -> cons(0(),filter(Y,M,M))
            a__filter(cons(X,Y),s(N),M) -> cons(mark(X),filter(Y,N,M))
            a__nats(N) -> cons(mark(N),nats(s(N)))
            a__zprimes() -> zprimes()
            mark(0()) -> 0()
            mark(filter(X1,X2,X3)) -> a__filter(mark(X1),mark(X2),mark(X3))
            mark(nats(X)) -> a__nats(mark(X))
            mark(sieve(X)) -> a__sieve(mark(X))
            mark(zprimes()) -> a__zprimes()
        - Signature:
            {a__filter/3,a__nats/1,a__sieve/1,a__zprimes/0,mark/1} / {0/0,cons/2,filter/3,nats/1,s/1,sieve/1,zprimes/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__filter,a__nats,a__sieve,a__zprimes
            ,mark} and constructors {0,cons,filter,nats,s,sieve,zprimes}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__filter) = {1,2,3},
            uargs(a__nats) = {1},
            uargs(a__sieve) = {1},
            uargs(cons) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                     p(0) = [6]                           
             p(a__filter) = [1] x1 + [1] x2 + [1] x3 + [0]
               p(a__nats) = [1] x1 + [5]                  
              p(a__sieve) = [1] x1 + [1]                  
            p(a__zprimes) = [0]                           
                  p(cons) = [1] x1 + [0]                  
                p(filter) = [1] x1 + [1] x2 + [1] x3 + [0]
                  p(mark) = [1] x1 + [0]                  
                  p(nats) = [1] x1 + [5]                  
                     p(s) = [1] x1 + [1]                  
                 p(sieve) = [1] x1 + [6]                  
               p(zprimes) = [0]                           
          
          Following rules are strictly oriented:
           a__sieve(cons(0(),Y)) = [7]                                  
                                 > [6]                                  
                                 = cons(0(),sieve(Y))                   
          
          a__sieve(cons(s(N),Y)) = [1] N + [2]                          
                                 > [1] N + [1]                          
                                 = cons(s(mark(N)),sieve(filter(Y,N,N)))
          
          
          Following rules are (at-least) weakly oriented:
                  a__filter(X1,X2,X3) =  [1] X1 + [1] X2 + [1] X3 + [0]       
                                      >= [1] X1 + [1] X2 + [1] X3 + [0]       
                                      =  filter(X1,X2,X3)                     
          
           a__filter(cons(X,Y),0(),M) =  [1] M + [1] X + [6]                  
                                      >= [6]                                  
                                      =  cons(0(),filter(Y,M,M))              
          
          a__filter(cons(X,Y),s(N),M) =  [1] M + [1] N + [1] X + [1]          
                                      >= [1] X + [0]                          
                                      =  cons(mark(X),filter(Y,N,M))          
          
                           a__nats(N) =  [1] N + [5]                          
                                      >= [1] N + [0]                          
                                      =  cons(mark(N),nats(s(N)))             
          
                           a__nats(X) =  [1] X + [5]                          
                                      >= [1] X + [5]                          
                                      =  nats(X)                              
          
                          a__sieve(X) =  [1] X + [1]                          
                                      >= [1] X + [6]                          
                                      =  sieve(X)                             
          
                         a__zprimes() =  [0]                                  
                                      >= [14]                                 
                                      =  a__sieve(a__nats(s(s(0()))))         
          
                         a__zprimes() =  [0]                                  
                                      >= [0]                                  
                                      =  zprimes()                            
          
                            mark(0()) =  [6]                                  
                                      >= [6]                                  
                                      =  0()                                  
          
                    mark(cons(X1,X2)) =  [1] X1 + [0]                         
                                      >= [1] X1 + [0]                         
                                      =  cons(mark(X1),X2)                    
          
               mark(filter(X1,X2,X3)) =  [1] X1 + [1] X2 + [1] X3 + [0]       
                                      >= [1] X1 + [1] X2 + [1] X3 + [0]       
                                      =  a__filter(mark(X1),mark(X2),mark(X3))
          
                        mark(nats(X)) =  [1] X + [5]                          
                                      >= [1] X + [5]                          
                                      =  a__nats(mark(X))                     
          
                           mark(s(X)) =  [1] X + [1]                          
                                      >= [1] X + [1]                          
                                      =  s(mark(X))                           
          
                       mark(sieve(X)) =  [1] X + [6]                          
                                      >= [1] X + [1]                          
                                      =  a__sieve(mark(X))                    
          
                      mark(zprimes()) =  [0]                                  
                                      >= [0]                                  
                                      =  a__zprimes()                         
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:7: WeightGap WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__filter(X1,X2,X3) -> filter(X1,X2,X3)
            a__nats(X) -> nats(X)
            a__sieve(X) -> sieve(X)
            a__zprimes() -> a__sieve(a__nats(s(s(0()))))
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(s(X)) -> s(mark(X))
        - Weak TRS:
            a__filter(cons(X,Y),0(),M) -> cons(0(),filter(Y,M,M))
            a__filter(cons(X,Y),s(N),M) -> cons(mark(X),filter(Y,N,M))
            a__nats(N) -> cons(mark(N),nats(s(N)))
            a__sieve(cons(0(),Y)) -> cons(0(),sieve(Y))
            a__sieve(cons(s(N),Y)) -> cons(s(mark(N)),sieve(filter(Y,N,N)))
            a__zprimes() -> zprimes()
            mark(0()) -> 0()
            mark(filter(X1,X2,X3)) -> a__filter(mark(X1),mark(X2),mark(X3))
            mark(nats(X)) -> a__nats(mark(X))
            mark(sieve(X)) -> a__sieve(mark(X))
            mark(zprimes()) -> a__zprimes()
        - Signature:
            {a__filter/3,a__nats/1,a__sieve/1,a__zprimes/0,mark/1} / {0/0,cons/2,filter/3,nats/1,s/1,sieve/1,zprimes/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__filter,a__nats,a__sieve,a__zprimes
            ,mark} and constructors {0,cons,filter,nats,s,sieve,zprimes}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    + Details:
        The weightgap principle applies using the following nonconstant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(a__filter) = {1,2,3},
            uargs(a__nats) = {1},
            uargs(a__sieve) = {1},
            uargs(cons) = {1},
            uargs(s) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                     p(0) = [0]                           
             p(a__filter) = [1] x1 + [1] x2 + [1] x3 + [1]
               p(a__nats) = [1] x1 + [0]                  
              p(a__sieve) = [1] x1 + [0]                  
            p(a__zprimes) = [1]                           
                  p(cons) = [1] x1 + [0]                  
                p(filter) = [1] x1 + [1] x2 + [1] x3 + [2]
                  p(mark) = [1] x1 + [0]                  
                  p(nats) = [1] x1 + [4]                  
                     p(s) = [1] x1 + [0]                  
                 p(sieve) = [1] x1 + [1]                  
               p(zprimes) = [1]                           
          
          Following rules are strictly oriented:
          a__zprimes() = [1]                         
                       > [0]                         
                       = a__sieve(a__nats(s(s(0()))))
          
          
          Following rules are (at-least) weakly oriented:
                  a__filter(X1,X2,X3) =  [1] X1 + [1] X2 + [1] X3 + [1]       
                                      >= [1] X1 + [1] X2 + [1] X3 + [2]       
                                      =  filter(X1,X2,X3)                     
          
           a__filter(cons(X,Y),0(),M) =  [1] M + [1] X + [1]                  
                                      >= [0]                                  
                                      =  cons(0(),filter(Y,M,M))              
          
          a__filter(cons(X,Y),s(N),M) =  [1] M + [1] N + [1] X + [1]          
                                      >= [1] X + [0]                          
                                      =  cons(mark(X),filter(Y,N,M))          
          
                           a__nats(N) =  [1] N + [0]                          
                                      >= [1] N + [0]                          
                                      =  cons(mark(N),nats(s(N)))             
          
                           a__nats(X) =  [1] X + [0]                          
                                      >= [1] X + [4]                          
                                      =  nats(X)                              
          
                          a__sieve(X) =  [1] X + [0]                          
                                      >= [1] X + [1]                          
                                      =  sieve(X)                             
          
                a__sieve(cons(0(),Y)) =  [0]                                  
                                      >= [0]                                  
                                      =  cons(0(),sieve(Y))                   
          
               a__sieve(cons(s(N),Y)) =  [1] N + [0]                          
                                      >= [1] N + [0]                          
                                      =  cons(s(mark(N)),sieve(filter(Y,N,N)))
          
                         a__zprimes() =  [1]                                  
                                      >= [1]                                  
                                      =  zprimes()                            
          
                            mark(0()) =  [0]                                  
                                      >= [0]                                  
                                      =  0()                                  
          
                    mark(cons(X1,X2)) =  [1] X1 + [0]                         
                                      >= [1] X1 + [0]                         
                                      =  cons(mark(X1),X2)                    
          
               mark(filter(X1,X2,X3)) =  [1] X1 + [1] X2 + [1] X3 + [2]       
                                      >= [1] X1 + [1] X2 + [1] X3 + [1]       
                                      =  a__filter(mark(X1),mark(X2),mark(X3))
          
                        mark(nats(X)) =  [1] X + [4]                          
                                      >= [1] X + [0]                          
                                      =  a__nats(mark(X))                     
          
                           mark(s(X)) =  [1] X + [0]                          
                                      >= [1] X + [0]                          
                                      =  s(mark(X))                           
          
                       mark(sieve(X)) =  [1] X + [1]                          
                                      >= [1] X + [0]                          
                                      =  a__sieve(mark(X))                    
          
                      mark(zprimes()) =  [1]                                  
                                      >= [1]                                  
                                      =  a__zprimes()                         
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:8: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__filter(X1,X2,X3) -> filter(X1,X2,X3)
            a__nats(X) -> nats(X)
            a__sieve(X) -> sieve(X)
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(s(X)) -> s(mark(X))
        - Weak TRS:
            a__filter(cons(X,Y),0(),M) -> cons(0(),filter(Y,M,M))
            a__filter(cons(X,Y),s(N),M) -> cons(mark(X),filter(Y,N,M))
            a__nats(N) -> cons(mark(N),nats(s(N)))
            a__sieve(cons(0(),Y)) -> cons(0(),sieve(Y))
            a__sieve(cons(s(N),Y)) -> cons(s(mark(N)),sieve(filter(Y,N,N)))
            a__zprimes() -> a__sieve(a__nats(s(s(0()))))
            a__zprimes() -> zprimes()
            mark(0()) -> 0()
            mark(filter(X1,X2,X3)) -> a__filter(mark(X1),mark(X2),mark(X3))
            mark(nats(X)) -> a__nats(mark(X))
            mark(sieve(X)) -> a__sieve(mark(X))
            mark(zprimes()) -> a__zprimes()
        - Signature:
            {a__filter/3,a__nats/1,a__sieve/1,a__zprimes/0,mark/1} / {0/0,cons/2,filter/3,nats/1,s/1,sieve/1,zprimes/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__filter,a__nats,a__sieve,a__zprimes
            ,mark} and constructors {0,cons,filter,nats,s,sieve,zprimes}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(a__filter) = {1,2,3},
          uargs(a__nats) = {1},
          uargs(a__sieve) = {1},
          uargs(cons) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {a__filter,a__nats,a__sieve,a__zprimes,mark}
        TcT has computed the following interpretation:
                   p(0) = [3]                                    
                          [0]                                    
           p(a__filter) = [1 4] x_1 + [1 0] x_2 + [1 0] x_3 + [0]
                          [0 1]       [0 1]       [0 1]       [0]
             p(a__nats) = [1 6] x_1 + [2]                        
                          [0 1]       [0]                        
            p(a__sieve) = [1 4] x_1 + [2]                        
                          [0 1]       [1]                        
          p(a__zprimes) = [7]                                    
                          [2]                                    
                p(cons) = [1 2] x_1 + [2]                        
                          [0 1]       [0]                        
              p(filter) = [1 4] x_1 + [1 0] x_2 + [1 0] x_3 + [0]
                          [0 1]       [0 1]       [0 1]       [0]
                p(mark) = [1 4] x_1 + [0]                        
                          [0 1]       [0]                        
                p(nats) = [1 6] x_1 + [2]                        
                          [0 1]       [0]                        
                   p(s) = [1 4] x_1 + [0]                        
                          [0 1]       [0]                        
               p(sieve) = [1 4] x_1 + [0]                        
                          [0 1]       [1]                        
             p(zprimes) = [4]                                    
                          [2]                                    
        
        Following rules are strictly oriented:
        a__sieve(X) = [1 4] X + [2]
                      [0 1]     [1]
                    > [1 4] X + [0]
                      [0 1]     [1]
                    = sieve(X)     
        
        
        Following rules are (at-least) weakly oriented:
                a__filter(X1,X2,X3) =  [1 4] X1 + [1 0] X2 + [1 0] X3 + [0] 
                                       [0 1]      [0 1]      [0 1]      [0] 
                                    >= [1 4] X1 + [1 0] X2 + [1 0] X3 + [0] 
                                       [0 1]      [0 1]      [0 1]      [0] 
                                    =  filter(X1,X2,X3)                     
        
         a__filter(cons(X,Y),0(),M) =  [1 0] M + [1 6] X + [5]              
                                       [0 1]     [0 1]     [0]              
                                    >= [5]                                  
                                       [0]                                  
                                    =  cons(0(),filter(Y,M,M))              
        
        a__filter(cons(X,Y),s(N),M) =  [1 0] M + [1 4] N + [1 6] X + [2]    
                                       [0 1]     [0 1]     [0 1]     [0]    
                                    >= [1 6] X + [2]                        
                                       [0 1]     [0]                        
                                    =  cons(mark(X),filter(Y,N,M))          
        
                         a__nats(N) =  [1 6] N + [2]                        
                                       [0 1]     [0]                        
                                    >= [1 6] N + [2]                        
                                       [0 1]     [0]                        
                                    =  cons(mark(N),nats(s(N)))             
        
                         a__nats(X) =  [1 6] X + [2]                        
                                       [0 1]     [0]                        
                                    >= [1 6] X + [2]                        
                                       [0 1]     [0]                        
                                    =  nats(X)                              
        
              a__sieve(cons(0(),Y)) =  [7]                                  
                                       [1]                                  
                                    >= [5]                                  
                                       [0]                                  
                                    =  cons(0(),sieve(Y))                   
        
             a__sieve(cons(s(N),Y)) =  [1 10] N + [4]                       
                                       [0  1]     [1]                       
                                    >= [1 10] N + [2]                       
                                       [0  1]     [0]                       
                                    =  cons(s(mark(N)),sieve(filter(Y,N,N)))
        
                       a__zprimes() =  [7]                                  
                                       [2]                                  
                                    >= [7]                                  
                                       [1]                                  
                                    =  a__sieve(a__nats(s(s(0()))))         
        
                       a__zprimes() =  [7]                                  
                                       [2]                                  
                                    >= [4]                                  
                                       [2]                                  
                                    =  zprimes()                            
        
                          mark(0()) =  [3]                                  
                                       [0]                                  
                                    >= [3]                                  
                                       [0]                                  
                                    =  0()                                  
        
                  mark(cons(X1,X2)) =  [1 6] X1 + [2]                       
                                       [0 1]      [0]                       
                                    >= [1 6] X1 + [2]                       
                                       [0 1]      [0]                       
                                    =  cons(mark(X1),X2)                    
        
             mark(filter(X1,X2,X3)) =  [1 8] X1 + [1 4] X2 + [1 4] X3 + [0] 
                                       [0 1]      [0 1]      [0 1]      [0] 
                                    >= [1 8] X1 + [1 4] X2 + [1 4] X3 + [0] 
                                       [0 1]      [0 1]      [0 1]      [0] 
                                    =  a__filter(mark(X1),mark(X2),mark(X3))
        
                      mark(nats(X)) =  [1 10] X + [2]                       
                                       [0  1]     [0]                       
                                    >= [1 10] X + [2]                       
                                       [0  1]     [0]                       
                                    =  a__nats(mark(X))                     
        
                         mark(s(X)) =  [1 8] X + [0]                        
                                       [0 1]     [0]                        
                                    >= [1 8] X + [0]                        
                                       [0 1]     [0]                        
                                    =  s(mark(X))                           
        
                     mark(sieve(X)) =  [1 8] X + [4]                        
                                       [0 1]     [1]                        
                                    >= [1 8] X + [2]                        
                                       [0 1]     [1]                        
                                    =  a__sieve(mark(X))                    
        
                    mark(zprimes()) =  [12]                                 
                                       [2]                                  
                                    >= [7]                                  
                                       [2]                                  
                                    =  a__zprimes()                         
        
** Step 1.b:9: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__filter(X1,X2,X3) -> filter(X1,X2,X3)
            a__nats(X) -> nats(X)
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(s(X)) -> s(mark(X))
        - Weak TRS:
            a__filter(cons(X,Y),0(),M) -> cons(0(),filter(Y,M,M))
            a__filter(cons(X,Y),s(N),M) -> cons(mark(X),filter(Y,N,M))
            a__nats(N) -> cons(mark(N),nats(s(N)))
            a__sieve(X) -> sieve(X)
            a__sieve(cons(0(),Y)) -> cons(0(),sieve(Y))
            a__sieve(cons(s(N),Y)) -> cons(s(mark(N)),sieve(filter(Y,N,N)))
            a__zprimes() -> a__sieve(a__nats(s(s(0()))))
            a__zprimes() -> zprimes()
            mark(0()) -> 0()
            mark(filter(X1,X2,X3)) -> a__filter(mark(X1),mark(X2),mark(X3))
            mark(nats(X)) -> a__nats(mark(X))
            mark(sieve(X)) -> a__sieve(mark(X))
            mark(zprimes()) -> a__zprimes()
        - Signature:
            {a__filter/3,a__nats/1,a__sieve/1,a__zprimes/0,mark/1} / {0/0,cons/2,filter/3,nats/1,s/1,sieve/1,zprimes/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__filter,a__nats,a__sieve,a__zprimes
            ,mark} and constructors {0,cons,filter,nats,s,sieve,zprimes}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(a__filter) = {1,2,3},
          uargs(a__nats) = {1},
          uargs(a__sieve) = {1},
          uargs(cons) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {a__filter,a__nats,a__sieve,a__zprimes,mark}
        TcT has computed the following interpretation:
                   p(0) = [0]                                    
                          [0]                                    
           p(a__filter) = [1 4] x_1 + [1 0] x_2 + [1 0] x_3 + [0]
                          [0 1]       [0 1]       [0 1]       [0]
             p(a__nats) = [1 6] x_1 + [3]                        
                          [0 1]       [1]                        
            p(a__sieve) = [1 4] x_1 + [0]                        
                          [0 1]       [0]                        
          p(a__zprimes) = [7]                                    
                          [2]                                    
                p(cons) = [1 1] x_1 + [0]                        
                          [0 1]       [0]                        
              p(filter) = [1 4] x_1 + [1 0] x_2 + [1 0] x_3 + [0]
                          [0 1]       [0 1]       [0 1]       [0]
                p(mark) = [1 4] x_1 + [0]                        
                          [0 1]       [0]                        
                p(nats) = [1 6] x_1 + [0]                        
                          [0 1]       [1]                        
                   p(s) = [1 4] x_1 + [0]                        
                          [0 1]       [0]                        
               p(sieve) = [1 4] x_1 + [0]                        
                          [0 1]       [0]                        
             p(zprimes) = [4]                                    
                          [2]                                    
        
        Following rules are strictly oriented:
        a__nats(X) = [1 6] X + [3]
                     [0 1]     [1]
                   > [1 6] X + [0]
                     [0 1]     [1]
                   = nats(X)      
        
        
        Following rules are (at-least) weakly oriented:
                a__filter(X1,X2,X3) =  [1 4] X1 + [1 0] X2 + [1 0] X3 + [0] 
                                       [0 1]      [0 1]      [0 1]      [0] 
                                    >= [1 4] X1 + [1 0] X2 + [1 0] X3 + [0] 
                                       [0 1]      [0 1]      [0 1]      [0] 
                                    =  filter(X1,X2,X3)                     
        
         a__filter(cons(X,Y),0(),M) =  [1 0] M + [1 5] X + [0]              
                                       [0 1]     [0 1]     [0]              
                                    >= [0]                                  
                                       [0]                                  
                                    =  cons(0(),filter(Y,M,M))              
        
        a__filter(cons(X,Y),s(N),M) =  [1 0] M + [1 4] N + [1 5] X + [0]    
                                       [0 1]     [0 1]     [0 1]     [0]    
                                    >= [1 5] X + [0]                        
                                       [0 1]     [0]                        
                                    =  cons(mark(X),filter(Y,N,M))          
        
                         a__nats(N) =  [1 6] N + [3]                        
                                       [0 1]     [1]                        
                                    >= [1 5] N + [0]                        
                                       [0 1]     [0]                        
                                    =  cons(mark(N),nats(s(N)))             
        
                        a__sieve(X) =  [1 4] X + [0]                        
                                       [0 1]     [0]                        
                                    >= [1 4] X + [0]                        
                                       [0 1]     [0]                        
                                    =  sieve(X)                             
        
              a__sieve(cons(0(),Y)) =  [0]                                  
                                       [0]                                  
                                    >= [0]                                  
                                       [0]                                  
                                    =  cons(0(),sieve(Y))                   
        
             a__sieve(cons(s(N),Y)) =  [1 9] N + [0]                        
                                       [0 1]     [0]                        
                                    >= [1 9] N + [0]                        
                                       [0 1]     [0]                        
                                    =  cons(s(mark(N)),sieve(filter(Y,N,N)))
        
                       a__zprimes() =  [7]                                  
                                       [2]                                  
                                    >= [7]                                  
                                       [1]                                  
                                    =  a__sieve(a__nats(s(s(0()))))         
        
                       a__zprimes() =  [7]                                  
                                       [2]                                  
                                    >= [4]                                  
                                       [2]                                  
                                    =  zprimes()                            
        
                          mark(0()) =  [0]                                  
                                       [0]                                  
                                    >= [0]                                  
                                       [0]                                  
                                    =  0()                                  
        
                  mark(cons(X1,X2)) =  [1 5] X1 + [0]                       
                                       [0 1]      [0]                       
                                    >= [1 5] X1 + [0]                       
                                       [0 1]      [0]                       
                                    =  cons(mark(X1),X2)                    
        
             mark(filter(X1,X2,X3)) =  [1 8] X1 + [1 4] X2 + [1 4] X3 + [0] 
                                       [0 1]      [0 1]      [0 1]      [0] 
                                    >= [1 8] X1 + [1 4] X2 + [1 4] X3 + [0] 
                                       [0 1]      [0 1]      [0 1]      [0] 
                                    =  a__filter(mark(X1),mark(X2),mark(X3))
        
                      mark(nats(X)) =  [1 10] X + [4]                       
                                       [0  1]     [1]                       
                                    >= [1 10] X + [3]                       
                                       [0  1]     [1]                       
                                    =  a__nats(mark(X))                     
        
                         mark(s(X)) =  [1 8] X + [0]                        
                                       [0 1]     [0]                        
                                    >= [1 8] X + [0]                        
                                       [0 1]     [0]                        
                                    =  s(mark(X))                           
        
                     mark(sieve(X)) =  [1 8] X + [0]                        
                                       [0 1]     [0]                        
                                    >= [1 8] X + [0]                        
                                       [0 1]     [0]                        
                                    =  a__sieve(mark(X))                    
        
                    mark(zprimes()) =  [12]                                 
                                       [2]                                  
                                    >= [7]                                  
                                       [2]                                  
                                    =  a__zprimes()                         
        
** Step 1.b:10: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__filter(X1,X2,X3) -> filter(X1,X2,X3)
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(s(X)) -> s(mark(X))
        - Weak TRS:
            a__filter(cons(X,Y),0(),M) -> cons(0(),filter(Y,M,M))
            a__filter(cons(X,Y),s(N),M) -> cons(mark(X),filter(Y,N,M))
            a__nats(N) -> cons(mark(N),nats(s(N)))
            a__nats(X) -> nats(X)
            a__sieve(X) -> sieve(X)
            a__sieve(cons(0(),Y)) -> cons(0(),sieve(Y))
            a__sieve(cons(s(N),Y)) -> cons(s(mark(N)),sieve(filter(Y,N,N)))
            a__zprimes() -> a__sieve(a__nats(s(s(0()))))
            a__zprimes() -> zprimes()
            mark(0()) -> 0()
            mark(filter(X1,X2,X3)) -> a__filter(mark(X1),mark(X2),mark(X3))
            mark(nats(X)) -> a__nats(mark(X))
            mark(sieve(X)) -> a__sieve(mark(X))
            mark(zprimes()) -> a__zprimes()
        - Signature:
            {a__filter/3,a__nats/1,a__sieve/1,a__zprimes/0,mark/1} / {0/0,cons/2,filter/3,nats/1,s/1,sieve/1,zprimes/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__filter,a__nats,a__sieve,a__zprimes
            ,mark} and constructors {0,cons,filter,nats,s,sieve,zprimes}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(a__filter) = {1,2,3},
          uargs(a__nats) = {1},
          uargs(a__sieve) = {1},
          uargs(cons) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {a__filter,a__nats,a__sieve,a__zprimes,mark}
        TcT has computed the following interpretation:
                   p(0) = [0]                                    
                          [0]                                    
           p(a__filter) = [1 1] x_1 + [1 2] x_2 + [1 0] x_3 + [0]
                          [0 1]       [0 1]       [0 1]       [0]
             p(a__nats) = [1 2] x_1 + [3]                        
                          [0 1]       [4]                        
            p(a__sieve) = [1 1] x_1 + [0]                        
                          [0 1]       [3]                        
          p(a__zprimes) = [7]                                    
                          [7]                                    
                p(cons) = [1 1] x_1 + [3]                        
                          [0 1]       [4]                        
              p(filter) = [1 1] x_1 + [1 2] x_2 + [1 0] x_3 + [0]
                          [0 1]       [0 1]       [0 1]       [0]
                p(mark) = [1 1] x_1 + [0]                        
                          [0 1]       [0]                        
                p(nats) = [1 2] x_1 + [3]                        
                          [0 1]       [4]                        
                   p(s) = [1 0] x_1 + [0]                        
                          [0 1]       [0]                        
               p(sieve) = [1 1] x_1 + [0]                        
                          [0 1]       [3]                        
             p(zprimes) = [0]                                    
                          [7]                                    
        
        Following rules are strictly oriented:
        mark(cons(X1,X2)) = [1 2] X1 + [7]   
                            [0 1]      [4]   
                          > [1 2] X1 + [3]   
                            [0 1]      [4]   
                          = cons(mark(X1),X2)
        
        
        Following rules are (at-least) weakly oriented:
                a__filter(X1,X2,X3) =  [1 1] X1 + [1 2] X2 + [1 0] X3 + [0] 
                                       [0 1]      [0 1]      [0 1]      [0] 
                                    >= [1 1] X1 + [1 2] X2 + [1 0] X3 + [0] 
                                       [0 1]      [0 1]      [0 1]      [0] 
                                    =  filter(X1,X2,X3)                     
        
         a__filter(cons(X,Y),0(),M) =  [1 0] M + [1 2] X + [7]              
                                       [0 1]     [0 1]     [4]              
                                    >= [3]                                  
                                       [4]                                  
                                    =  cons(0(),filter(Y,M,M))              
        
        a__filter(cons(X,Y),s(N),M) =  [1 0] M + [1 2] N + [1 2] X + [7]    
                                       [0 1]     [0 1]     [0 1]     [4]    
                                    >= [1 2] X + [3]                        
                                       [0 1]     [4]                        
                                    =  cons(mark(X),filter(Y,N,M))          
        
                         a__nats(N) =  [1 2] N + [3]                        
                                       [0 1]     [4]                        
                                    >= [1 2] N + [3]                        
                                       [0 1]     [4]                        
                                    =  cons(mark(N),nats(s(N)))             
        
                         a__nats(X) =  [1 2] X + [3]                        
                                       [0 1]     [4]                        
                                    >= [1 2] X + [3]                        
                                       [0 1]     [4]                        
                                    =  nats(X)                              
        
                        a__sieve(X) =  [1 1] X + [0]                        
                                       [0 1]     [3]                        
                                    >= [1 1] X + [0]                        
                                       [0 1]     [3]                        
                                    =  sieve(X)                             
        
              a__sieve(cons(0(),Y)) =  [7]                                  
                                       [7]                                  
                                    >= [3]                                  
                                       [4]                                  
                                    =  cons(0(),sieve(Y))                   
        
             a__sieve(cons(s(N),Y)) =  [1 2] N + [7]                        
                                       [0 1]     [7]                        
                                    >= [1 2] N + [3]                        
                                       [0 1]     [4]                        
                                    =  cons(s(mark(N)),sieve(filter(Y,N,N)))
        
                       a__zprimes() =  [7]                                  
                                       [7]                                  
                                    >= [7]                                  
                                       [7]                                  
                                    =  a__sieve(a__nats(s(s(0()))))         
        
                       a__zprimes() =  [7]                                  
                                       [7]                                  
                                    >= [0]                                  
                                       [7]                                  
                                    =  zprimes()                            
        
                          mark(0()) =  [0]                                  
                                       [0]                                  
                                    >= [0]                                  
                                       [0]                                  
                                    =  0()                                  
        
             mark(filter(X1,X2,X3)) =  [1 2] X1 + [1 3] X2 + [1 1] X3 + [0] 
                                       [0 1]      [0 1]      [0 1]      [0] 
                                    >= [1 2] X1 + [1 3] X2 + [1 1] X3 + [0] 
                                       [0 1]      [0 1]      [0 1]      [0] 
                                    =  a__filter(mark(X1),mark(X2),mark(X3))
        
                      mark(nats(X)) =  [1 3] X + [7]                        
                                       [0 1]     [4]                        
                                    >= [1 3] X + [3]                        
                                       [0 1]     [4]                        
                                    =  a__nats(mark(X))                     
        
                         mark(s(X)) =  [1 1] X + [0]                        
                                       [0 1]     [0]                        
                                    >= [1 1] X + [0]                        
                                       [0 1]     [0]                        
                                    =  s(mark(X))                           
        
                     mark(sieve(X)) =  [1 2] X + [3]                        
                                       [0 1]     [3]                        
                                    >= [1 2] X + [0]                        
                                       [0 1]     [3]                        
                                    =  a__sieve(mark(X))                    
        
                    mark(zprimes()) =  [7]                                  
                                       [7]                                  
                                    >= [7]                                  
                                       [7]                                  
                                    =  a__zprimes()                         
        
** Step 1.b:11: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            a__filter(X1,X2,X3) -> filter(X1,X2,X3)
            mark(s(X)) -> s(mark(X))
        - Weak TRS:
            a__filter(cons(X,Y),0(),M) -> cons(0(),filter(Y,M,M))
            a__filter(cons(X,Y),s(N),M) -> cons(mark(X),filter(Y,N,M))
            a__nats(N) -> cons(mark(N),nats(s(N)))
            a__nats(X) -> nats(X)
            a__sieve(X) -> sieve(X)
            a__sieve(cons(0(),Y)) -> cons(0(),sieve(Y))
            a__sieve(cons(s(N),Y)) -> cons(s(mark(N)),sieve(filter(Y,N,N)))
            a__zprimes() -> a__sieve(a__nats(s(s(0()))))
            a__zprimes() -> zprimes()
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(filter(X1,X2,X3)) -> a__filter(mark(X1),mark(X2),mark(X3))
            mark(nats(X)) -> a__nats(mark(X))
            mark(sieve(X)) -> a__sieve(mark(X))
            mark(zprimes()) -> a__zprimes()
        - Signature:
            {a__filter/3,a__nats/1,a__sieve/1,a__zprimes/0,mark/1} / {0/0,cons/2,filter/3,nats/1,s/1,sieve/1,zprimes/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__filter,a__nats,a__sieve,a__zprimes
            ,mark} and constructors {0,cons,filter,nats,s,sieve,zprimes}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(a__filter) = {1,2,3},
          uargs(a__nats) = {1},
          uargs(a__sieve) = {1},
          uargs(cons) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {a__filter,a__nats,a__sieve,a__zprimes,mark}
        TcT has computed the following interpretation:
                   p(0) = [0]                                    
                          [0]                                    
           p(a__filter) = [1 1] x_1 + [1 0] x_2 + [1 0] x_3 + [1]
                          [0 1]       [0 1]       [0 1]       [1]
             p(a__nats) = [1 4] x_1 + [0]                        
                          [0 1]       [2]                        
            p(a__sieve) = [1 2] x_1 + [0]                        
                          [0 1]       [3]                        
          p(a__zprimes) = [4]                                    
                          [5]                                    
                p(cons) = [1 0] x_1 + [0]                        
                          [0 1]       [0]                        
              p(filter) = [1 1] x_1 + [1 0] x_2 + [1 0] x_3 + [0]
                          [0 1]       [0 1]       [0 1]       [1]
                p(mark) = [1 1] x_1 + [0]                        
                          [0 1]       [0]                        
                p(nats) = [1 4] x_1 + [0]                        
                          [0 1]       [2]                        
                   p(s) = [1 3] x_1 + [0]                        
                          [0 1]       [0]                        
               p(sieve) = [1 2] x_1 + [0]                        
                          [0 1]       [3]                        
             p(zprimes) = [3]                                    
                          [5]                                    
        
        Following rules are strictly oriented:
        a__filter(X1,X2,X3) = [1 1] X1 + [1 0] X2 + [1 0] X3 + [1]
                              [0 1]      [0 1]      [0 1]      [1]
                            > [1 1] X1 + [1 0] X2 + [1 0] X3 + [0]
                              [0 1]      [0 1]      [0 1]      [1]
                            = filter(X1,X2,X3)                    
        
        
        Following rules are (at-least) weakly oriented:
         a__filter(cons(X,Y),0(),M) =  [1 0] M + [1 1] X + [1]              
                                       [0 1]     [0 1]     [1]              
                                    >= [0]                                  
                                       [0]                                  
                                    =  cons(0(),filter(Y,M,M))              
        
        a__filter(cons(X,Y),s(N),M) =  [1 0] M + [1 3] N + [1 1] X + [1]    
                                       [0 1]     [0 1]     [0 1]     [1]    
                                    >= [1 1] X + [0]                        
                                       [0 1]     [0]                        
                                    =  cons(mark(X),filter(Y,N,M))          
        
                         a__nats(N) =  [1 4] N + [0]                        
                                       [0 1]     [2]                        
                                    >= [1 1] N + [0]                        
                                       [0 1]     [0]                        
                                    =  cons(mark(N),nats(s(N)))             
        
                         a__nats(X) =  [1 4] X + [0]                        
                                       [0 1]     [2]                        
                                    >= [1 4] X + [0]                        
                                       [0 1]     [2]                        
                                    =  nats(X)                              
        
                        a__sieve(X) =  [1 2] X + [0]                        
                                       [0 1]     [3]                        
                                    >= [1 2] X + [0]                        
                                       [0 1]     [3]                        
                                    =  sieve(X)                             
        
              a__sieve(cons(0(),Y)) =  [0]                                  
                                       [3]                                  
                                    >= [0]                                  
                                       [0]                                  
                                    =  cons(0(),sieve(Y))                   
        
             a__sieve(cons(s(N),Y)) =  [1 5] N + [0]                        
                                       [0 1]     [3]                        
                                    >= [1 4] N + [0]                        
                                       [0 1]     [0]                        
                                    =  cons(s(mark(N)),sieve(filter(Y,N,N)))
        
                       a__zprimes() =  [4]                                  
                                       [5]                                  
                                    >= [4]                                  
                                       [5]                                  
                                    =  a__sieve(a__nats(s(s(0()))))         
        
                       a__zprimes() =  [4]                                  
                                       [5]                                  
                                    >= [3]                                  
                                       [5]                                  
                                    =  zprimes()                            
        
                          mark(0()) =  [0]                                  
                                       [0]                                  
                                    >= [0]                                  
                                       [0]                                  
                                    =  0()                                  
        
                  mark(cons(X1,X2)) =  [1 1] X1 + [0]                       
                                       [0 1]      [0]                       
                                    >= [1 1] X1 + [0]                       
                                       [0 1]      [0]                       
                                    =  cons(mark(X1),X2)                    
        
             mark(filter(X1,X2,X3)) =  [1 2] X1 + [1 1] X2 + [1 1] X3 + [1] 
                                       [0 1]      [0 1]      [0 1]      [1] 
                                    >= [1 2] X1 + [1 1] X2 + [1 1] X3 + [1] 
                                       [0 1]      [0 1]      [0 1]      [1] 
                                    =  a__filter(mark(X1),mark(X2),mark(X3))
        
                      mark(nats(X)) =  [1 5] X + [2]                        
                                       [0 1]     [2]                        
                                    >= [1 5] X + [0]                        
                                       [0 1]     [2]                        
                                    =  a__nats(mark(X))                     
        
                         mark(s(X)) =  [1 4] X + [0]                        
                                       [0 1]     [0]                        
                                    >= [1 4] X + [0]                        
                                       [0 1]     [0]                        
                                    =  s(mark(X))                           
        
                     mark(sieve(X)) =  [1 3] X + [3]                        
                                       [0 1]     [3]                        
                                    >= [1 3] X + [0]                        
                                       [0 1]     [3]                        
                                    =  a__sieve(mark(X))                    
        
                    mark(zprimes()) =  [8]                                  
                                       [5]                                  
                                    >= [4]                                  
                                       [5]                                  
                                    =  a__zprimes()                         
        
** Step 1.b:12: MI WORST_CASE(?,O(n^2))
    + Considered Problem:
        - Strict TRS:
            mark(s(X)) -> s(mark(X))
        - Weak TRS:
            a__filter(X1,X2,X3) -> filter(X1,X2,X3)
            a__filter(cons(X,Y),0(),M) -> cons(0(),filter(Y,M,M))
            a__filter(cons(X,Y),s(N),M) -> cons(mark(X),filter(Y,N,M))
            a__nats(N) -> cons(mark(N),nats(s(N)))
            a__nats(X) -> nats(X)
            a__sieve(X) -> sieve(X)
            a__sieve(cons(0(),Y)) -> cons(0(),sieve(Y))
            a__sieve(cons(s(N),Y)) -> cons(s(mark(N)),sieve(filter(Y,N,N)))
            a__zprimes() -> a__sieve(a__nats(s(s(0()))))
            a__zprimes() -> zprimes()
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(filter(X1,X2,X3)) -> a__filter(mark(X1),mark(X2),mark(X3))
            mark(nats(X)) -> a__nats(mark(X))
            mark(sieve(X)) -> a__sieve(mark(X))
            mark(zprimes()) -> a__zprimes()
        - Signature:
            {a__filter/3,a__nats/1,a__sieve/1,a__zprimes/0,mark/1} / {0/0,cons/2,filter/3,nats/1,s/1,sieve/1,zprimes/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__filter,a__nats,a__sieve,a__zprimes
            ,mark} and constructors {0,cons,filter,nats,s,sieve,zprimes}
    + Applied Processor:
        MI {miKind = MaximalMatrix (UpperTriangular (Multiplicity Nothing)), miDimension = 2, miUArgs = UArgs, miURules = URules, miSelector = Just any strict-rules}
    + Details:
        We apply a matrix interpretation of kind MaximalMatrix (UpperTriangular (Multiplicity Nothing)):
        
        The following argument positions are considered usable:
          uargs(a__filter) = {1,2,3},
          uargs(a__nats) = {1},
          uargs(a__sieve) = {1},
          uargs(cons) = {1},
          uargs(s) = {1}
        
        Following symbols are considered usable:
          {a__filter,a__nats,a__sieve,a__zprimes,mark}
        TcT has computed the following interpretation:
                   p(0) = [0]                                    
                          [0]                                    
           p(a__filter) = [1 1] x_1 + [1 2] x_2 + [1 0] x_3 + [7]
                          [0 1]       [0 1]       [0 1]       [4]
             p(a__nats) = [1 1] x_1 + [0]                        
                          [0 1]       [0]                        
            p(a__sieve) = [1 2] x_1 + [0]                        
                          [0 1]       [4]                        
          p(a__zprimes) = [7]                                    
                          [7]                                    
                p(cons) = [1 0] x_1 + [0]                        
                          [0 1]       [0]                        
              p(filter) = [1 1] x_1 + [1 2] x_2 + [1 0] x_3 + [4]
                          [0 1]       [0 1]       [0 1]       [4]
                p(mark) = [1 1] x_1 + [0]                        
                          [0 1]       [0]                        
                p(nats) = [1 1] x_1 + [0]                        
                          [0 1]       [0]                        
                   p(s) = [1 0] x_1 + [0]                        
                          [0 1]       [1]                        
               p(sieve) = [1 2] x_1 + [0]                        
                          [0 1]       [4]                        
             p(zprimes) = [2]                                    
                          [7]                                    
        
        Following rules are strictly oriented:
        mark(s(X)) = [1 1] X + [1]
                     [0 1]     [1]
                   > [1 1] X + [0]
                     [0 1]     [1]
                   = s(mark(X))   
        
        
        Following rules are (at-least) weakly oriented:
                a__filter(X1,X2,X3) =  [1 1] X1 + [1 2] X2 + [1 0] X3 + [7] 
                                       [0 1]      [0 1]      [0 1]      [4] 
                                    >= [1 1] X1 + [1 2] X2 + [1 0] X3 + [4] 
                                       [0 1]      [0 1]      [0 1]      [4] 
                                    =  filter(X1,X2,X3)                     
        
         a__filter(cons(X,Y),0(),M) =  [1 0] M + [1 1] X + [7]              
                                       [0 1]     [0 1]     [4]              
                                    >= [0]                                  
                                       [0]                                  
                                    =  cons(0(),filter(Y,M,M))              
        
        a__filter(cons(X,Y),s(N),M) =  [1 0] M + [1 2] N + [1 1] X + [9]    
                                       [0 1]     [0 1]     [0 1]     [5]    
                                    >= [1 1] X + [0]                        
                                       [0 1]     [0]                        
                                    =  cons(mark(X),filter(Y,N,M))          
        
                         a__nats(N) =  [1 1] N + [0]                        
                                       [0 1]     [0]                        
                                    >= [1 1] N + [0]                        
                                       [0 1]     [0]                        
                                    =  cons(mark(N),nats(s(N)))             
        
                         a__nats(X) =  [1 1] X + [0]                        
                                       [0 1]     [0]                        
                                    >= [1 1] X + [0]                        
                                       [0 1]     [0]                        
                                    =  nats(X)                              
        
                        a__sieve(X) =  [1 2] X + [0]                        
                                       [0 1]     [4]                        
                                    >= [1 2] X + [0]                        
                                       [0 1]     [4]                        
                                    =  sieve(X)                             
        
              a__sieve(cons(0(),Y)) =  [0]                                  
                                       [4]                                  
                                    >= [0]                                  
                                       [0]                                  
                                    =  cons(0(),sieve(Y))                   
        
             a__sieve(cons(s(N),Y)) =  [1 2] N + [2]                        
                                       [0 1]     [5]                        
                                    >= [1 1] N + [0]                        
                                       [0 1]     [1]                        
                                    =  cons(s(mark(N)),sieve(filter(Y,N,N)))
        
                       a__zprimes() =  [7]                                  
                                       [7]                                  
                                    >= [6]                                  
                                       [6]                                  
                                    =  a__sieve(a__nats(s(s(0()))))         
        
                       a__zprimes() =  [7]                                  
                                       [7]                                  
                                    >= [2]                                  
                                       [7]                                  
                                    =  zprimes()                            
        
                          mark(0()) =  [0]                                  
                                       [0]                                  
                                    >= [0]                                  
                                       [0]                                  
                                    =  0()                                  
        
                  mark(cons(X1,X2)) =  [1 1] X1 + [0]                       
                                       [0 1]      [0]                       
                                    >= [1 1] X1 + [0]                       
                                       [0 1]      [0]                       
                                    =  cons(mark(X1),X2)                    
        
             mark(filter(X1,X2,X3)) =  [1 2] X1 + [1 3] X2 + [1 1] X3 + [8] 
                                       [0 1]      [0 1]      [0 1]      [4] 
                                    >= [1 2] X1 + [1 3] X2 + [1 1] X3 + [7] 
                                       [0 1]      [0 1]      [0 1]      [4] 
                                    =  a__filter(mark(X1),mark(X2),mark(X3))
        
                      mark(nats(X)) =  [1 2] X + [0]                        
                                       [0 1]     [0]                        
                                    >= [1 2] X + [0]                        
                                       [0 1]     [0]                        
                                    =  a__nats(mark(X))                     
        
                     mark(sieve(X)) =  [1 3] X + [4]                        
                                       [0 1]     [4]                        
                                    >= [1 3] X + [0]                        
                                       [0 1]     [4]                        
                                    =  a__sieve(mark(X))                    
        
                    mark(zprimes()) =  [9]                                  
                                       [7]                                  
                                    >= [7]                                  
                                       [7]                                  
                                    =  a__zprimes()                         
        
** Step 1.b:13: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            a__filter(X1,X2,X3) -> filter(X1,X2,X3)
            a__filter(cons(X,Y),0(),M) -> cons(0(),filter(Y,M,M))
            a__filter(cons(X,Y),s(N),M) -> cons(mark(X),filter(Y,N,M))
            a__nats(N) -> cons(mark(N),nats(s(N)))
            a__nats(X) -> nats(X)
            a__sieve(X) -> sieve(X)
            a__sieve(cons(0(),Y)) -> cons(0(),sieve(Y))
            a__sieve(cons(s(N),Y)) -> cons(s(mark(N)),sieve(filter(Y,N,N)))
            a__zprimes() -> a__sieve(a__nats(s(s(0()))))
            a__zprimes() -> zprimes()
            mark(0()) -> 0()
            mark(cons(X1,X2)) -> cons(mark(X1),X2)
            mark(filter(X1,X2,X3)) -> a__filter(mark(X1),mark(X2),mark(X3))
            mark(nats(X)) -> a__nats(mark(X))
            mark(s(X)) -> s(mark(X))
            mark(sieve(X)) -> a__sieve(mark(X))
            mark(zprimes()) -> a__zprimes()
        - Signature:
            {a__filter/3,a__nats/1,a__sieve/1,a__zprimes/0,mark/1} / {0/0,cons/2,filter/3,nats/1,s/1,sieve/1,zprimes/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {a__filter,a__nats,a__sieve,a__zprimes
            ,mark} and constructors {0,cons,filter,nats,s,sieve,zprimes}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^2))