* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3)) activate(n__nats(X)) -> nats(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__sieve(X)) -> sieve(activate(X)) filter(X1,X2,X3) -> n__filter(X1,X2,X3) filter(cons(X,Y),0(),M) -> cons(0(),n__filter(activate(Y),M,M)) filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M)) nats(N) -> cons(N,n__nats(n__s(N))) nats(X) -> n__nats(X) s(X) -> n__s(X) sieve(X) -> n__sieve(X) sieve(cons(0(),Y)) -> cons(0(),n__sieve(activate(Y))) sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N))) zprimes() -> sieve(nats(s(s(0())))) - Signature: {activate/1,filter/3,nats/1,s/1,sieve/1,zprimes/0} / {0/0,cons/2,n__filter/3,n__nats/1,n__s/1,n__sieve/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,filter,nats,s,sieve,zprimes} and constructors {0 ,cons,n__filter,n__nats,n__s,n__sieve} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: activate(X) -> X activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3)) activate(n__nats(X)) -> nats(activate(X)) activate(n__s(X)) -> s(activate(X)) activate(n__sieve(X)) -> sieve(activate(X)) filter(X1,X2,X3) -> n__filter(X1,X2,X3) filter(cons(X,Y),0(),M) -> cons(0(),n__filter(activate(Y),M,M)) filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M)) nats(N) -> cons(N,n__nats(n__s(N))) nats(X) -> n__nats(X) s(X) -> n__s(X) sieve(X) -> n__sieve(X) sieve(cons(0(),Y)) -> cons(0(),n__sieve(activate(Y))) sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N))) zprimes() -> sieve(nats(s(s(0())))) - Signature: {activate/1,filter/3,nats/1,s/1,sieve/1,zprimes/0} / {0/0,cons/2,n__filter/3,n__nats/1,n__s/1,n__sieve/1} - Obligation: innermost runtime complexity wrt. defined symbols {activate,filter,nats,s,sieve,zprimes} and constructors {0 ,cons,n__filter,n__nats,n__s,n__sieve} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: activate(x){x -> n__filter(x,y,z)} = activate(n__filter(x,y,z)) ->^+ filter(activate(x),activate(y),activate(z)) = C[activate(x) = activate(x){}] WORST_CASE(Omega(n^1),?)