* Step 1: Sum WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
activate(X) -> X
activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3))
activate(n__nats(X)) -> nats(activate(X))
activate(n__s(X)) -> s(activate(X))
activate(n__sieve(X)) -> sieve(activate(X))
filter(X1,X2,X3) -> n__filter(X1,X2,X3)
filter(cons(X,Y),0(),M) -> cons(0(),n__filter(activate(Y),M,M))
filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M))
nats(N) -> cons(N,n__nats(n__s(N)))
nats(X) -> n__nats(X)
s(X) -> n__s(X)
sieve(X) -> n__sieve(X)
sieve(cons(0(),Y)) -> cons(0(),n__sieve(activate(Y)))
sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N)))
zprimes() -> sieve(nats(s(s(0()))))
- Signature:
{activate/1,filter/3,nats/1,s/1,sieve/1,zprimes/0} / {0/0,cons/2,n__filter/3,n__nats/1,n__s/1,n__sieve/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,filter,nats,s,sieve,zprimes} and constructors {0
,cons,n__filter,n__nats,n__s,n__sieve}
+ Applied Processor:
Sum {left = someStrategy, right = someStrategy}
+ Details:
()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
+ Considered Problem:
- Strict TRS:
activate(X) -> X
activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3))
activate(n__nats(X)) -> nats(activate(X))
activate(n__s(X)) -> s(activate(X))
activate(n__sieve(X)) -> sieve(activate(X))
filter(X1,X2,X3) -> n__filter(X1,X2,X3)
filter(cons(X,Y),0(),M) -> cons(0(),n__filter(activate(Y),M,M))
filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M))
nats(N) -> cons(N,n__nats(n__s(N)))
nats(X) -> n__nats(X)
s(X) -> n__s(X)
sieve(X) -> n__sieve(X)
sieve(cons(0(),Y)) -> cons(0(),n__sieve(activate(Y)))
sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N)))
zprimes() -> sieve(nats(s(s(0()))))
- Signature:
{activate/1,filter/3,nats/1,s/1,sieve/1,zprimes/0} / {0/0,cons/2,n__filter/3,n__nats/1,n__s/1,n__sieve/1}
- Obligation:
innermost runtime complexity wrt. defined symbols {activate,filter,nats,s,sieve,zprimes} and constructors {0
,cons,n__filter,n__nats,n__s,n__sieve}
+ Applied Processor:
DecreasingLoops {bound = AnyLoop, narrow = 10}
+ Details:
The system has following decreasing Loops:
activate(x){x -> n__filter(x,y,z)} =
activate(n__filter(x,y,z)) ->^+ filter(activate(x),activate(y),activate(z))
= C[activate(x) = activate(x){}]
WORST_CASE(Omega(n^1),?)