* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3))
            activate(n__nats(X)) -> nats(activate(X))
            activate(n__s(X)) -> s(activate(X))
            activate(n__sieve(X)) -> sieve(activate(X))
            filter(X1,X2,X3) -> n__filter(X1,X2,X3)
            filter(cons(X,Y),0(),M) -> cons(0(),n__filter(activate(Y),M,M))
            filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M))
            nats(N) -> cons(N,n__nats(n__s(N)))
            nats(X) -> n__nats(X)
            s(X) -> n__s(X)
            sieve(X) -> n__sieve(X)
            sieve(cons(0(),Y)) -> cons(0(),n__sieve(activate(Y)))
            sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N)))
            zprimes() -> sieve(nats(s(s(0()))))
        - Signature:
            {activate/1,filter/3,nats/1,s/1,sieve/1,zprimes/0} / {0/0,cons/2,n__filter/3,n__nats/1,n__s/1,n__sieve/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,filter,nats,s,sieve,zprimes} and constructors {0
            ,cons,n__filter,n__nats,n__s,n__sieve}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            activate(X) -> X
            activate(n__filter(X1,X2,X3)) -> filter(activate(X1),activate(X2),activate(X3))
            activate(n__nats(X)) -> nats(activate(X))
            activate(n__s(X)) -> s(activate(X))
            activate(n__sieve(X)) -> sieve(activate(X))
            filter(X1,X2,X3) -> n__filter(X1,X2,X3)
            filter(cons(X,Y),0(),M) -> cons(0(),n__filter(activate(Y),M,M))
            filter(cons(X,Y),s(N),M) -> cons(X,n__filter(activate(Y),N,M))
            nats(N) -> cons(N,n__nats(n__s(N)))
            nats(X) -> n__nats(X)
            s(X) -> n__s(X)
            sieve(X) -> n__sieve(X)
            sieve(cons(0(),Y)) -> cons(0(),n__sieve(activate(Y)))
            sieve(cons(s(N),Y)) -> cons(s(N),n__sieve(n__filter(activate(Y),N,N)))
            zprimes() -> sieve(nats(s(s(0()))))
        - Signature:
            {activate/1,filter/3,nats/1,s/1,sieve/1,zprimes/0} / {0/0,cons/2,n__filter/3,n__nats/1,n__s/1,n__sieve/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {activate,filter,nats,s,sieve,zprimes} and constructors {0
            ,cons,n__filter,n__nats,n__s,n__sieve}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          activate(x){x -> n__filter(x,y,z)} =
            activate(n__filter(x,y,z)) ->^+ filter(activate(x),activate(y),activate(z))
              = C[activate(x) = activate(x){}]

WORST_CASE(Omega(n^1),?)