* Step 1: Sum WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: active(cons(X1,X2)) -> cons(active(X1),X2) active(filter(X1,X2,X3)) -> filter(X1,X2,active(X3)) active(filter(X1,X2,X3)) -> filter(X1,active(X2),X3) active(filter(X1,X2,X3)) -> filter(active(X1),X2,X3) active(filter(cons(X,Y),0(),M)) -> mark(cons(0(),filter(Y,M,M))) active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) active(nats(N)) -> mark(cons(N,nats(s(N)))) active(nats(X)) -> nats(active(X)) active(s(X)) -> s(active(X)) active(sieve(X)) -> sieve(active(X)) active(sieve(cons(0(),Y))) -> mark(cons(0(),sieve(Y))) active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) active(zprimes()) -> mark(sieve(nats(s(s(0()))))) cons(mark(X1),X2) -> mark(cons(X1,X2)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) filter(X1,X2,mark(X3)) -> mark(filter(X1,X2,X3)) filter(X1,mark(X2),X3) -> mark(filter(X1,X2,X3)) filter(mark(X1),X2,X3) -> mark(filter(X1,X2,X3)) filter(ok(X1),ok(X2),ok(X3)) -> ok(filter(X1,X2,X3)) nats(mark(X)) -> mark(nats(X)) nats(ok(X)) -> ok(nats(X)) proper(0()) -> ok(0()) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(filter(X1,X2,X3)) -> filter(proper(X1),proper(X2),proper(X3)) proper(nats(X)) -> nats(proper(X)) proper(s(X)) -> s(proper(X)) proper(sieve(X)) -> sieve(proper(X)) proper(zprimes()) -> ok(zprimes()) s(mark(X)) -> mark(s(X)) s(ok(X)) -> ok(s(X)) sieve(mark(X)) -> mark(sieve(X)) sieve(ok(X)) -> ok(sieve(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) - Signature: {active/1,cons/2,filter/3,nats/1,proper/1,s/1,sieve/1,top/1} / {0/0,mark/1,ok/1,zprimes/0} - Obligation: innermost runtime complexity wrt. defined symbols {active,cons,filter,nats,proper,s,sieve ,top} and constructors {0,mark,ok,zprimes} + Applied Processor: Sum {left = someStrategy, right = someStrategy} + Details: () * Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?) + Considered Problem: - Strict TRS: active(cons(X1,X2)) -> cons(active(X1),X2) active(filter(X1,X2,X3)) -> filter(X1,X2,active(X3)) active(filter(X1,X2,X3)) -> filter(X1,active(X2),X3) active(filter(X1,X2,X3)) -> filter(active(X1),X2,X3) active(filter(cons(X,Y),0(),M)) -> mark(cons(0(),filter(Y,M,M))) active(filter(cons(X,Y),s(N),M)) -> mark(cons(X,filter(Y,N,M))) active(nats(N)) -> mark(cons(N,nats(s(N)))) active(nats(X)) -> nats(active(X)) active(s(X)) -> s(active(X)) active(sieve(X)) -> sieve(active(X)) active(sieve(cons(0(),Y))) -> mark(cons(0(),sieve(Y))) active(sieve(cons(s(N),Y))) -> mark(cons(s(N),sieve(filter(Y,N,N)))) active(zprimes()) -> mark(sieve(nats(s(s(0()))))) cons(mark(X1),X2) -> mark(cons(X1,X2)) cons(ok(X1),ok(X2)) -> ok(cons(X1,X2)) filter(X1,X2,mark(X3)) -> mark(filter(X1,X2,X3)) filter(X1,mark(X2),X3) -> mark(filter(X1,X2,X3)) filter(mark(X1),X2,X3) -> mark(filter(X1,X2,X3)) filter(ok(X1),ok(X2),ok(X3)) -> ok(filter(X1,X2,X3)) nats(mark(X)) -> mark(nats(X)) nats(ok(X)) -> ok(nats(X)) proper(0()) -> ok(0()) proper(cons(X1,X2)) -> cons(proper(X1),proper(X2)) proper(filter(X1,X2,X3)) -> filter(proper(X1),proper(X2),proper(X3)) proper(nats(X)) -> nats(proper(X)) proper(s(X)) -> s(proper(X)) proper(sieve(X)) -> sieve(proper(X)) proper(zprimes()) -> ok(zprimes()) s(mark(X)) -> mark(s(X)) s(ok(X)) -> ok(s(X)) sieve(mark(X)) -> mark(sieve(X)) sieve(ok(X)) -> ok(sieve(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) - Signature: {active/1,cons/2,filter/3,nats/1,proper/1,s/1,sieve/1,top/1} / {0/0,mark/1,ok/1,zprimes/0} - Obligation: innermost runtime complexity wrt. defined symbols {active,cons,filter,nats,proper,s,sieve ,top} and constructors {0,mark,ok,zprimes} + Applied Processor: DecreasingLoops {bound = AnyLoop, narrow = 10} + Details: The system has following decreasing Loops: cons(x,y){x -> mark(x)} = cons(mark(x),y) ->^+ mark(cons(x,y)) = C[cons(x,y) = cons(x,y){}] WORST_CASE(Omega(n^1),?)