(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

active(fib(N)) → mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
fib(mark(X)) → mark(fib(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
fib1(mark(X1), X2) → mark(fib1(X1, X2))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
s(mark(X)) → mark(s(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
add(mark(X1), X2) → mark(add(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(0) → ok(0)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))
fib(ok(X)) → ok(fib(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Rewrite Strategy: INNERMOST

(1) NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID) transformation)

The following defined symbols can occur below the 0th argument of top: proper, active
The following defined symbols can occur below the 0th argument of proper: proper, active
The following defined symbols can occur below the 0th argument of active: proper, active

Hence, the left-hand sides of the following rules are not basic-reachable and can be removed:
active(fib(N)) → mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
active(fib(X)) → fib(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(fib1(X1, X2)) → fib1(active(X1), X2)
active(fib1(X1, X2)) → fib1(X1, active(X2))
active(s(X)) → s(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(add(X1, X2)) → add(active(X1), X2)
active(add(X1, X2)) → add(X1, active(X2))
proper(fib(X)) → fib(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(fib1(X1, X2)) → fib1(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(add(X1, X2)) → add(proper(X1), proper(X2))

(2) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1).


The TRS R consists of the following rules:

fib1(mark(X1), X2) → mark(fib1(X1, X2))
add(ok(X1), ok(X2)) → ok(add(X1, X2))
top(ok(X)) → top(active(X))
fib(ok(X)) → ok(fib(X))
fib1(X1, mark(X2)) → mark(fib1(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
add(X1, mark(X2)) → mark(add(X1, X2))
fib1(ok(X1), ok(X2)) → ok(fib1(X1, X2))
s(ok(X)) → ok(s(X))
s(mark(X)) → mark(s(X))
proper(0) → ok(0)
add(mark(X1), X2) → mark(add(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
fib(mark(X)) → mark(fib(X))
sel(X1, mark(X2)) → mark(sel(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
top(mark(X)) → top(proper(X))

Rewrite Strategy: INNERMOST

(3) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)

A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2.

The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3, 4, 5, 6, 7, 8]
transitions:
mark0(0) → 0
ok0(0) → 0
active0(0) → 0
00() → 0
fib10(0, 0) → 1
add0(0, 0) → 2
top0(0) → 3
fib0(0) → 4
cons0(0, 0) → 5
sel0(0, 0) → 6
s0(0) → 7
proper0(0) → 8
fib11(0, 0) → 9
mark1(9) → 1
add1(0, 0) → 10
ok1(10) → 2
active1(0) → 11
top1(11) → 3
fib1(0) → 12
ok1(12) → 4
cons1(0, 0) → 13
ok1(13) → 5
sel1(0, 0) → 14
mark1(14) → 6
add1(0, 0) → 15
mark1(15) → 2
fib11(0, 0) → 16
ok1(16) → 1
s1(0) → 17
ok1(17) → 7
s1(0) → 18
mark1(18) → 7
01() → 19
ok1(19) → 8
sel1(0, 0) → 20
ok1(20) → 6
fib1(0) → 21
mark1(21) → 4
cons1(0, 0) → 22
mark1(22) → 5
proper1(0) → 23
top1(23) → 3
mark1(9) → 9
mark1(9) → 16
ok1(10) → 10
ok1(10) → 15
ok1(12) → 12
ok1(12) → 21
ok1(13) → 13
ok1(13) → 22
mark1(14) → 14
mark1(14) → 20
mark1(15) → 10
mark1(15) → 15
ok1(16) → 9
ok1(16) → 16
ok1(17) → 17
ok1(17) → 18
mark1(18) → 17
mark1(18) → 18
ok1(19) → 23
ok1(20) → 14
ok1(20) → 20
mark1(21) → 12
mark1(21) → 21
mark1(22) → 13
mark1(22) → 22
active2(19) → 24
top2(24) → 3

(4) BOUNDS(1, n^1)

(5) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)

Converted Cpx (relative) TRS to CDT

(6) Obligation:

Complexity Dependency Tuples Problem
Rules:

fib1(mark(z0), z1) → mark(fib1(z0, z1))
fib1(z0, mark(z1)) → mark(fib1(z0, z1))
fib1(ok(z0), ok(z1)) → ok(fib1(z0, z1))
add(ok(z0), ok(z1)) → ok(add(z0, z1))
add(z0, mark(z1)) → mark(add(z0, z1))
add(mark(z0), z1) → mark(add(z0, z1))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
fib(ok(z0)) → ok(fib(z0))
fib(mark(z0)) → mark(fib(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
cons(mark(z0), z1) → mark(cons(z0, z1))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
s(ok(z0)) → ok(s(z0))
s(mark(z0)) → mark(s(z0))
proper(0) → ok(0)
Tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
TOP(ok(z0)) → c6(TOP(active(z0)))
TOP(mark(z0)) → c7(TOP(proper(z0)), PROPER(z0))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
PROPER(0) → c17
S tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
TOP(ok(z0)) → c6(TOP(active(z0)))
TOP(mark(z0)) → c7(TOP(proper(z0)), PROPER(z0))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
PROPER(0) → c17
K tuples:none
Defined Rule Symbols:

fib1, add, top, fib, cons, sel, s, proper

Defined Pair Symbols:

FIB1, ADD, TOP, FIB, CONS, SEL, S, PROPER

Compound Symbols:

c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16, c17

(7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)

Removed 2 trailing nodes:

TOP(ok(z0)) → c6(TOP(active(z0)))
PROPER(0) → c17

(8) Obligation:

Complexity Dependency Tuples Problem
Rules:

fib1(mark(z0), z1) → mark(fib1(z0, z1))
fib1(z0, mark(z1)) → mark(fib1(z0, z1))
fib1(ok(z0), ok(z1)) → ok(fib1(z0, z1))
add(ok(z0), ok(z1)) → ok(add(z0, z1))
add(z0, mark(z1)) → mark(add(z0, z1))
add(mark(z0), z1) → mark(add(z0, z1))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
fib(ok(z0)) → ok(fib(z0))
fib(mark(z0)) → mark(fib(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
cons(mark(z0), z1) → mark(cons(z0, z1))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
s(ok(z0)) → ok(s(z0))
s(mark(z0)) → mark(s(z0))
proper(0) → ok(0)
Tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
TOP(mark(z0)) → c7(TOP(proper(z0)), PROPER(z0))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
S tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
TOP(mark(z0)) → c7(TOP(proper(z0)), PROPER(z0))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
K tuples:none
Defined Rule Symbols:

fib1, add, top, fib, cons, sel, s, proper

Defined Pair Symbols:

FIB1, ADD, TOP, FIB, CONS, SEL, S

Compound Symbols:

c, c1, c2, c3, c4, c5, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16

(9) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)

Removed 1 trailing tuple parts

(10) Obligation:

Complexity Dependency Tuples Problem
Rules:

fib1(mark(z0), z1) → mark(fib1(z0, z1))
fib1(z0, mark(z1)) → mark(fib1(z0, z1))
fib1(ok(z0), ok(z1)) → ok(fib1(z0, z1))
add(ok(z0), ok(z1)) → ok(add(z0, z1))
add(z0, mark(z1)) → mark(add(z0, z1))
add(mark(z0), z1) → mark(add(z0, z1))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
fib(ok(z0)) → ok(fib(z0))
fib(mark(z0)) → mark(fib(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
cons(mark(z0), z1) → mark(cons(z0, z1))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
s(ok(z0)) → ok(s(z0))
s(mark(z0)) → mark(s(z0))
proper(0) → ok(0)
Tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
TOP(mark(z0)) → c7(TOP(proper(z0)))
S tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
TOP(mark(z0)) → c7(TOP(proper(z0)))
K tuples:none
Defined Rule Symbols:

fib1, add, top, fib, cons, sel, s, proper

Defined Pair Symbols:

FIB1, ADD, FIB, CONS, SEL, S, TOP

Compound Symbols:

c, c1, c2, c3, c4, c5, c8, c9, c10, c11, c12, c13, c14, c15, c16, c7

(11) CdtUsableRulesProof (EQUIVALENT transformation)

The following rules are not usable and were removed:

fib1(mark(z0), z1) → mark(fib1(z0, z1))
fib1(z0, mark(z1)) → mark(fib1(z0, z1))
fib1(ok(z0), ok(z1)) → ok(fib1(z0, z1))
add(ok(z0), ok(z1)) → ok(add(z0, z1))
add(z0, mark(z1)) → mark(add(z0, z1))
add(mark(z0), z1) → mark(add(z0, z1))
top(ok(z0)) → top(active(z0))
top(mark(z0)) → top(proper(z0))
fib(ok(z0)) → ok(fib(z0))
fib(mark(z0)) → mark(fib(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
cons(mark(z0), z1) → mark(cons(z0, z1))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
s(ok(z0)) → ok(s(z0))
s(mark(z0)) → mark(s(z0))

(12) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(0) → ok(0)
Tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
TOP(mark(z0)) → c7(TOP(proper(z0)))
S tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
TOP(mark(z0)) → c7(TOP(proper(z0)))
K tuples:none
Defined Rule Symbols:

proper

Defined Pair Symbols:

FIB1, ADD, FIB, CONS, SEL, S, TOP

Compound Symbols:

c, c1, c2, c3, c4, c5, c8, c9, c10, c11, c12, c13, c14, c15, c16, c7

(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

TOP(mark(z0)) → c7(TOP(proper(z0)))
We considered the (Usable) Rules:

proper(0) → ok(0)
And the Tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
TOP(mark(z0)) → c7(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(ADD(x1, x2)) = 0   
POL(CONS(x1, x2)) = 0   
POL(FIB(x1)) = 0   
POL(FIB1(x1, x2)) = 0   
POL(S(x1)) = 0   
POL(SEL(x1, x2)) = 0   
POL(TOP(x1)) = x1   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c11(x1)) = x1   
POL(c12(x1)) = x1   
POL(c13(x1)) = x1   
POL(c14(x1)) = x1   
POL(c15(x1)) = x1   
POL(c16(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = [1]   
POL(ok(x1)) = 0   
POL(proper(x1)) = 0   

(14) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(0) → ok(0)
Tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
TOP(mark(z0)) → c7(TOP(proper(z0)))
S tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
K tuples:

TOP(mark(z0)) → c7(TOP(proper(z0)))
Defined Rule Symbols:

proper

Defined Pair Symbols:

FIB1, ADD, FIB, CONS, SEL, S, TOP

Compound Symbols:

c, c1, c2, c3, c4, c5, c8, c9, c10, c11, c12, c13, c14, c15, c16, c7

(15) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
TOP(mark(z0)) → c7(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(ADD(x1, x2)) = 0   
POL(CONS(x1, x2)) = x2   
POL(FIB(x1)) = 0   
POL(FIB1(x1, x2)) = 0   
POL(S(x1)) = 0   
POL(SEL(x1, x2)) = 0   
POL(TOP(x1)) = 0   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c11(x1)) = x1   
POL(c12(x1)) = x1   
POL(c13(x1)) = x1   
POL(c14(x1)) = x1   
POL(c15(x1)) = x1   
POL(c16(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = 0   
POL(ok(x1)) = [1] + x1   
POL(proper(x1)) = 0   

(16) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(0) → ok(0)
Tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
TOP(mark(z0)) → c7(TOP(proper(z0)))
S tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
K tuples:

TOP(mark(z0)) → c7(TOP(proper(z0)))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
Defined Rule Symbols:

proper

Defined Pair Symbols:

FIB1, ADD, FIB, CONS, SEL, S, TOP

Compound Symbols:

c, c1, c2, c3, c4, c5, c8, c9, c10, c11, c12, c13, c14, c15, c16, c7

(17) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
We considered the (Usable) Rules:none
And the Tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
TOP(mark(z0)) → c7(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(ADD(x1, x2)) = 0   
POL(CONS(x1, x2)) = 0   
POL(FIB(x1)) = x1   
POL(FIB1(x1, x2)) = 0   
POL(S(x1)) = x1   
POL(SEL(x1, x2)) = x2   
POL(TOP(x1)) = 0   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c11(x1)) = x1   
POL(c12(x1)) = x1   
POL(c13(x1)) = x1   
POL(c14(x1)) = x1   
POL(c15(x1)) = x1   
POL(c16(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = [1] + x1   
POL(ok(x1)) = [1] + x1   
POL(proper(x1)) = 0   

(18) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(0) → ok(0)
Tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
TOP(mark(z0)) → c7(TOP(proper(z0)))
S tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
K tuples:

TOP(mark(z0)) → c7(TOP(proper(z0)))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
Defined Rule Symbols:

proper

Defined Pair Symbols:

FIB1, ADD, FIB, CONS, SEL, S, TOP

Compound Symbols:

c, c1, c2, c3, c4, c5, c8, c9, c10, c11, c12, c13, c14, c15, c16, c7

(19) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
TOP(mark(z0)) → c7(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(ADD(x1, x2)) = x1   
POL(CONS(x1, x2)) = x1   
POL(FIB(x1)) = 0   
POL(FIB1(x1, x2)) = 0   
POL(S(x1)) = x1   
POL(SEL(x1, x2)) = x1   
POL(TOP(x1)) = 0   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c11(x1)) = x1   
POL(c12(x1)) = x1   
POL(c13(x1)) = x1   
POL(c14(x1)) = x1   
POL(c15(x1)) = x1   
POL(c16(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = [1] + x1   
POL(ok(x1)) = [1] + x1   
POL(proper(x1)) = 0   

(20) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(0) → ok(0)
Tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
TOP(mark(z0)) → c7(TOP(proper(z0)))
S tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
K tuples:

TOP(mark(z0)) → c7(TOP(proper(z0)))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
Defined Rule Symbols:

proper

Defined Pair Symbols:

FIB1, ADD, FIB, CONS, SEL, S, TOP

Compound Symbols:

c, c1, c2, c3, c4, c5, c8, c9, c10, c11, c12, c13, c14, c15, c16, c7

(21) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
We considered the (Usable) Rules:

proper(0) → ok(0)
And the Tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
TOP(mark(z0)) → c7(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(ADD(x1, x2)) = 0   
POL(CONS(x1, x2)) = [2]x2   
POL(FIB(x1)) = x1   
POL(FIB1(x1, x2)) = [2]x1   
POL(S(x1)) = 0   
POL(SEL(x1, x2)) = [2]x2   
POL(TOP(x1)) = [2]x1   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c11(x1)) = x1   
POL(c12(x1)) = x1   
POL(c13(x1)) = x1   
POL(c14(x1)) = x1   
POL(c15(x1)) = x1   
POL(c16(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = [2] + x1   
POL(ok(x1)) = x1   
POL(proper(x1)) = 0   

(22) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(0) → ok(0)
Tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
TOP(mark(z0)) → c7(TOP(proper(z0)))
S tuples:

FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
K tuples:

TOP(mark(z0)) → c7(TOP(proper(z0)))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
FIB1(mark(z0), z1) → c(FIB1(z0, z1))
Defined Rule Symbols:

proper

Defined Pair Symbols:

FIB1, ADD, FIB, CONS, SEL, S, TOP

Compound Symbols:

c, c1, c2, c3, c4, c5, c8, c9, c10, c11, c12, c13, c14, c15, c16, c7

(23) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
TOP(mark(z0)) → c7(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(ADD(x1, x2)) = x2   
POL(CONS(x1, x2)) = 0   
POL(FIB(x1)) = 0   
POL(FIB1(x1, x2)) = [2]x2   
POL(S(x1)) = 0   
POL(SEL(x1, x2)) = [2]x1 + [2]x2   
POL(TOP(x1)) = 0   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c11(x1)) = x1   
POL(c12(x1)) = x1   
POL(c13(x1)) = x1   
POL(c14(x1)) = x1   
POL(c15(x1)) = x1   
POL(c16(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = [1] + x1   
POL(ok(x1)) = x1   
POL(proper(x1)) = 0   

(24) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(0) → ok(0)
Tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
TOP(mark(z0)) → c7(TOP(proper(z0)))
S tuples:

FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
K tuples:

TOP(mark(z0)) → c7(TOP(proper(z0)))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
Defined Rule Symbols:

proper

Defined Pair Symbols:

FIB1, ADD, FIB, CONS, SEL, S, TOP

Compound Symbols:

c, c1, c2, c3, c4, c5, c8, c9, c10, c11, c12, c13, c14, c15, c16, c7

(25) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)

Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.

FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
TOP(mark(z0)) → c7(TOP(proper(z0)))
The order we found is given by the following interpretation:
Polynomial interpretation :

POL(0) = 0   
POL(ADD(x1, x2)) = 0   
POL(CONS(x1, x2)) = x2   
POL(FIB(x1)) = 0   
POL(FIB1(x1, x2)) = x1   
POL(S(x1)) = 0   
POL(SEL(x1, x2)) = 0   
POL(TOP(x1)) = 0   
POL(c(x1)) = x1   
POL(c1(x1)) = x1   
POL(c10(x1)) = x1   
POL(c11(x1)) = x1   
POL(c12(x1)) = x1   
POL(c13(x1)) = x1   
POL(c14(x1)) = x1   
POL(c15(x1)) = x1   
POL(c16(x1)) = x1   
POL(c2(x1)) = x1   
POL(c3(x1)) = x1   
POL(c4(x1)) = x1   
POL(c5(x1)) = x1   
POL(c7(x1)) = x1   
POL(c8(x1)) = x1   
POL(c9(x1)) = x1   
POL(mark(x1)) = x1   
POL(ok(x1)) = [1] + x1   
POL(proper(x1)) = 0   

(26) Obligation:

Complexity Dependency Tuples Problem
Rules:

proper(0) → ok(0)
Tuples:

FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
TOP(mark(z0)) → c7(TOP(proper(z0)))
S tuples:none
K tuples:

TOP(mark(z0)) → c7(TOP(proper(z0)))
CONS(ok(z0), ok(z1)) → c10(CONS(z0, z1))
FIB(ok(z0)) → c8(FIB(z0))
FIB(mark(z0)) → c9(FIB(z0))
SEL(ok(z0), ok(z1)) → c13(SEL(z0, z1))
SEL(z0, mark(z1)) → c14(SEL(z0, z1))
S(ok(z0)) → c15(S(z0))
S(mark(z0)) → c16(S(z0))
ADD(ok(z0), ok(z1)) → c3(ADD(z0, z1))
ADD(mark(z0), z1) → c5(ADD(z0, z1))
CONS(mark(z0), z1) → c11(CONS(z0, z1))
SEL(mark(z0), z1) → c12(SEL(z0, z1))
FIB1(mark(z0), z1) → c(FIB1(z0, z1))
FIB1(z0, mark(z1)) → c1(FIB1(z0, z1))
ADD(z0, mark(z1)) → c4(ADD(z0, z1))
FIB1(ok(z0), ok(z1)) → c2(FIB1(z0, z1))
Defined Rule Symbols:

proper

Defined Pair Symbols:

FIB1, ADD, FIB, CONS, SEL, S, TOP

Compound Symbols:

c, c1, c2, c3, c4, c5, c8, c9, c10, c11, c12, c13, c14, c15, c16, c7

(27) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)

The set S is empty

(28) BOUNDS(1, 1)