(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^2).
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(activate(XS))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
from(X) → n__from(X)
take(X1, X2) → n__take(X1, X2)
activate(n__from(X)) → from(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
from(z0) → cons(z0, n__from(s(z0)))
from(z0) → n__from(z0)
head(cons(z0, z1)) → z0
2nd(cons(z0, z1)) → head(activate(z1))
take(0, z0) → nil
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
take(z0, z1) → n__take(z0, z1)
sel(0, cons(z0, z1)) → z0
sel(s(z0), cons(z1, z2)) → sel(z0, activate(z2))
activate(n__from(z0)) → from(z0)
activate(n__take(z0, z1)) → take(z0, z1)
activate(z0) → z0
Tuples:
FROM(z0) → c
FROM(z0) → c1
HEAD(cons(z0, z1)) → c2
2ND(cons(z0, z1)) → c3(HEAD(activate(z1)), ACTIVATE(z1))
TAKE(0, z0) → c4
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
TAKE(z0, z1) → c6
SEL(0, cons(z0, z1)) → c7
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
ACTIVATE(n__from(z0)) → c9(FROM(z0))
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
ACTIVATE(z0) → c11
S tuples:
FROM(z0) → c
FROM(z0) → c1
HEAD(cons(z0, z1)) → c2
2ND(cons(z0, z1)) → c3(HEAD(activate(z1)), ACTIVATE(z1))
TAKE(0, z0) → c4
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
TAKE(z0, z1) → c6
SEL(0, cons(z0, z1)) → c7
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
ACTIVATE(n__from(z0)) → c9(FROM(z0))
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
ACTIVATE(z0) → c11
K tuples:none
Defined Rule Symbols:
from, head, 2nd, take, sel, activate
Defined Pair Symbols:
FROM, HEAD, 2ND, TAKE, SEL, ACTIVATE
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 8 trailing nodes:
TAKE(0, z0) → c4
TAKE(z0, z1) → c6
ACTIVATE(n__from(z0)) → c9(FROM(z0))
HEAD(cons(z0, z1)) → c2
FROM(z0) → c
ACTIVATE(z0) → c11
SEL(0, cons(z0, z1)) → c7
FROM(z0) → c1
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
from(z0) → cons(z0, n__from(s(z0)))
from(z0) → n__from(z0)
head(cons(z0, z1)) → z0
2nd(cons(z0, z1)) → head(activate(z1))
take(0, z0) → nil
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
take(z0, z1) → n__take(z0, z1)
sel(0, cons(z0, z1)) → z0
sel(s(z0), cons(z1, z2)) → sel(z0, activate(z2))
activate(n__from(z0)) → from(z0)
activate(n__take(z0, z1)) → take(z0, z1)
activate(z0) → z0
Tuples:
2ND(cons(z0, z1)) → c3(HEAD(activate(z1)), ACTIVATE(z1))
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
S tuples:
2ND(cons(z0, z1)) → c3(HEAD(activate(z1)), ACTIVATE(z1))
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
K tuples:none
Defined Rule Symbols:
from, head, 2nd, take, sel, activate
Defined Pair Symbols:
2ND, TAKE, SEL, ACTIVATE
Compound Symbols:
c3, c5, c8, c10
(5) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
from(z0) → cons(z0, n__from(s(z0)))
from(z0) → n__from(z0)
head(cons(z0, z1)) → z0
2nd(cons(z0, z1)) → head(activate(z1))
take(0, z0) → nil
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
take(z0, z1) → n__take(z0, z1)
sel(0, cons(z0, z1)) → z0
sel(s(z0), cons(z1, z2)) → sel(z0, activate(z2))
activate(n__from(z0)) → from(z0)
activate(n__take(z0, z1)) → take(z0, z1)
activate(z0) → z0
Tuples:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
2ND(cons(z0, z1)) → c3(ACTIVATE(z1))
S tuples:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
2ND(cons(z0, z1)) → c3(ACTIVATE(z1))
K tuples:none
Defined Rule Symbols:
from, head, 2nd, take, sel, activate
Defined Pair Symbols:
TAKE, SEL, ACTIVATE, 2ND
Compound Symbols:
c5, c8, c10, c3
(7) CdtLeafRemovalProof (ComplexityIfPolyImplication transformation)
Removed 1 leading nodes:
2ND(cons(z0, z1)) → c3(ACTIVATE(z1))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
from(z0) → cons(z0, n__from(s(z0)))
from(z0) → n__from(z0)
head(cons(z0, z1)) → z0
2nd(cons(z0, z1)) → head(activate(z1))
take(0, z0) → nil
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
take(z0, z1) → n__take(z0, z1)
sel(0, cons(z0, z1)) → z0
sel(s(z0), cons(z1, z2)) → sel(z0, activate(z2))
activate(n__from(z0)) → from(z0)
activate(n__take(z0, z1)) → take(z0, z1)
activate(z0) → z0
Tuples:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
S tuples:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
K tuples:none
Defined Rule Symbols:
from, head, 2nd, take, sel, activate
Defined Pair Symbols:
TAKE, SEL, ACTIVATE
Compound Symbols:
c5, c8, c10
(9) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
head(cons(z0, z1)) → z0
2nd(cons(z0, z1)) → head(activate(z1))
sel(0, cons(z0, z1)) → z0
sel(s(z0), cons(z1, z2)) → sel(z0, activate(z2))
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
activate(n__from(z0)) → from(z0)
activate(n__take(z0, z1)) → take(z0, z1)
activate(z0) → z0
from(z0) → cons(z0, n__from(s(z0)))
from(z0) → n__from(z0)
take(0, z0) → nil
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
take(z0, z1) → n__take(z0, z1)
Tuples:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
S tuples:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
K tuples:none
Defined Rule Symbols:
activate, from, take
Defined Pair Symbols:
TAKE, SEL, ACTIVATE
Compound Symbols:
c5, c8, c10
(11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
We considered the (Usable) Rules:none
And the Tuples:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(ACTIVATE(x1)) = 0
POL(SEL(x1, x2)) = x1
POL(TAKE(x1, x2)) = 0
POL(activate(x1)) = [1] + x1
POL(c10(x1)) = x1
POL(c5(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x2
POL(from(x1)) = [1]
POL(n__from(x1)) = 0
POL(n__take(x1, x2)) = x1 + x2
POL(nil) = 0
POL(s(x1)) = [1] + x1
POL(take(x1, x2)) = [1] + x1 + x2
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
activate(n__from(z0)) → from(z0)
activate(n__take(z0, z1)) → take(z0, z1)
activate(z0) → z0
from(z0) → cons(z0, n__from(s(z0)))
from(z0) → n__from(z0)
take(0, z0) → nil
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
take(z0, z1) → n__take(z0, z1)
Tuples:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
S tuples:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
K tuples:
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
Defined Rule Symbols:
activate, from, take
Defined Pair Symbols:
TAKE, SEL, ACTIVATE
Compound Symbols:
c5, c8, c10
(13) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
We considered the (Usable) Rules:
take(z0, z1) → n__take(z0, z1)
from(z0) → cons(z0, n__from(s(z0)))
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
activate(n__take(z0, z1)) → take(z0, z1)
take(0, z0) → nil
from(z0) → n__from(z0)
activate(n__from(z0)) → from(z0)
activate(z0) → z0
And the Tuples:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(ACTIVATE(x1)) = x1
POL(SEL(x1, x2)) = x1·x2
POL(TAKE(x1, x2)) = x2
POL(activate(x1)) = x1
POL(c10(x1)) = x1
POL(c5(x1)) = x1
POL(c8(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x2
POL(from(x1)) = 0
POL(n__from(x1)) = 0
POL(n__take(x1, x2)) = [1] + x1 + x2
POL(nil) = [1]
POL(s(x1)) = [2] + x1
POL(take(x1, x2)) = [1] + x1 + x2
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
activate(n__from(z0)) → from(z0)
activate(n__take(z0, z1)) → take(z0, z1)
activate(z0) → z0
from(z0) → cons(z0, n__from(s(z0)))
from(z0) → n__from(z0)
take(0, z0) → nil
take(s(z0), cons(z1, z2)) → cons(z1, n__take(z0, activate(z2)))
take(z0, z1) → n__take(z0, z1)
Tuples:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
S tuples:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
K tuples:
SEL(s(z0), cons(z1, z2)) → c8(SEL(z0, activate(z2)), ACTIVATE(z2))
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
Defined Rule Symbols:
activate, from, take
Defined Pair Symbols:
TAKE, SEL, ACTIVATE
Compound Symbols:
c5, c8, c10
(15) CdtKnowledgeProof (EQUIVALENT transformation)
The following tuples could be moved from S to K by knowledge propagation:
TAKE(s(z0), cons(z1, z2)) → c5(ACTIVATE(z2))
ACTIVATE(n__take(z0, z1)) → c10(TAKE(z0, z1))
Now S is empty
(16) BOUNDS(1, 1)