* Step 1: Sum WORST_CASE(Omega(n^1),O(n^1))
    + Considered Problem:
        - Strict TRS:
            2nd(cons(X,XS)) -> head(activate(XS))
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            head(cons(X,XS)) -> X
            s(X) -> n__s(X)
            sel(0(),cons(X,XS)) -> X
            sel(s(N),cons(X,XS)) -> sel(N,activate(XS))
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
            take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
        - Signature:
            {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,from,head,s,sel,take} and constructors {0
            ,cons,n__from,n__s,n__take,nil}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
** Step 1.a:1: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            2nd(cons(X,XS)) -> head(activate(XS))
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            head(cons(X,XS)) -> X
            s(X) -> n__s(X)
            sel(0(),cons(X,XS)) -> X
            sel(s(N),cons(X,XS)) -> sel(N,activate(XS))
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
            take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
        - Signature:
            {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,from,head,s,sel,take} and constructors {0
            ,cons,n__from,n__s,n__take,nil}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          activate(x){x -> n__from(x)} =
            activate(n__from(x)) ->^+ from(activate(x))
              = C[activate(x) = activate(x){}]

** Step 1.b:1: InnermostRuleRemoval WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            2nd(cons(X,XS)) -> head(activate(XS))
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            head(cons(X,XS)) -> X
            s(X) -> n__s(X)
            sel(0(),cons(X,XS)) -> X
            sel(s(N),cons(X,XS)) -> sel(N,activate(XS))
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
            take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
        - Signature:
            {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,from,head,s,sel,take} and constructors {0
            ,cons,n__from,n__s,n__take,nil}
    + Applied Processor:
        InnermostRuleRemoval
    + Details:
        Arguments of following rules are not normal-forms.
          sel(s(N),cons(X,XS)) -> sel(N,activate(XS))
          take(s(N),cons(X,XS)) -> cons(X,n__take(N,activate(XS)))
        All above mentioned rules can be savely removed.
** Step 1.b:2: DependencyPairs WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict TRS:
            2nd(cons(X,XS)) -> head(activate(XS))
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            head(cons(X,XS)) -> X
            s(X) -> n__s(X)
            sel(0(),cons(X,XS)) -> X
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
        - Signature:
            {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,activate,from,head,s,sel,take} and constructors {0
            ,cons,n__from,n__s,n__take,nil}
    + Applied Processor:
        DependencyPairs {dpKind_ = WIDP}
    + Details:
        We add the following weak innermost dependency pairs:
        
        Strict DPs
          2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
          activate#(X) -> c_2()
          activate#(n__from(X)) -> c_3(from#(activate(X)))
          activate#(n__s(X)) -> c_4(s#(activate(X)))
          activate#(n__take(X1,X2)) -> c_5(take#(activate(X1),activate(X2)))
          from#(X) -> c_6()
          from#(X) -> c_7()
          head#(cons(X,XS)) -> c_8()
          s#(X) -> c_9()
          sel#(0(),cons(X,XS)) -> c_10()
          take#(X1,X2) -> c_11()
          take#(0(),XS) -> c_12()
        Weak DPs
          
        
        and mark the set of starting terms.
** Step 1.b:3: UsableRules WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
            activate#(X) -> c_2()
            activate#(n__from(X)) -> c_3(from#(activate(X)))
            activate#(n__s(X)) -> c_4(s#(activate(X)))
            activate#(n__take(X1,X2)) -> c_5(take#(activate(X1),activate(X2)))
            from#(X) -> c_6()
            from#(X) -> c_7()
            head#(cons(X,XS)) -> c_8()
            s#(X) -> c_9()
            sel#(0(),cons(X,XS)) -> c_10()
            take#(X1,X2) -> c_11()
            take#(0(),XS) -> c_12()
        - Strict TRS:
            2nd(cons(X,XS)) -> head(activate(XS))
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            head(cons(X,XS)) -> X
            s(X) -> n__s(X)
            sel(0(),cons(X,XS)) -> X
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
        - Signature:
            {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,s#/1,sel#/2
            ,take#/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0
            ,c_9/0,c_10/0,c_11/0,c_12/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd#,activate#,from#,head#,s#,sel#
            ,take#} and constructors {0,cons,n__from,n__s,n__take,nil}
    + Applied Processor:
        UsableRules
    + Details:
        We replace rewrite rules by usable rules:
          activate(X) -> X
          activate(n__from(X)) -> from(activate(X))
          activate(n__s(X)) -> s(activate(X))
          activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
          from(X) -> cons(X,n__from(n__s(X)))
          from(X) -> n__from(X)
          s(X) -> n__s(X)
          take(X1,X2) -> n__take(X1,X2)
          take(0(),XS) -> nil()
          2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
          activate#(X) -> c_2()
          activate#(n__from(X)) -> c_3(from#(activate(X)))
          activate#(n__s(X)) -> c_4(s#(activate(X)))
          activate#(n__take(X1,X2)) -> c_5(take#(activate(X1),activate(X2)))
          from#(X) -> c_6()
          from#(X) -> c_7()
          head#(cons(X,XS)) -> c_8()
          s#(X) -> c_9()
          sel#(0(),cons(X,XS)) -> c_10()
          take#(X1,X2) -> c_11()
          take#(0(),XS) -> c_12()
** Step 1.b:4: WeightGap WORST_CASE(?,O(n^1))
    + Considered Problem:
        - Strict DPs:
            2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
            activate#(X) -> c_2()
            activate#(n__from(X)) -> c_3(from#(activate(X)))
            activate#(n__s(X)) -> c_4(s#(activate(X)))
            activate#(n__take(X1,X2)) -> c_5(take#(activate(X1),activate(X2)))
            from#(X) -> c_6()
            from#(X) -> c_7()
            head#(cons(X,XS)) -> c_8()
            s#(X) -> c_9()
            sel#(0(),cons(X,XS)) -> c_10()
            take#(X1,X2) -> c_11()
            take#(0(),XS) -> c_12()
        - Strict TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
        - Signature:
            {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,s#/1,sel#/2
            ,take#/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0
            ,c_9/0,c_10/0,c_11/0,c_12/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd#,activate#,from#,head#,s#,sel#
            ,take#} and constructors {0,cons,n__from,n__s,n__take,nil}
    + Applied Processor:
        WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs}
    + Details:
        The weightgap principle applies using the following constant growth matrix-interpretation:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(from) = {1},
            uargs(s) = {1},
            uargs(take) = {1,2},
            uargs(from#) = {1},
            uargs(head#) = {1},
            uargs(s#) = {1},
            uargs(take#) = {1,2},
            uargs(c_1) = {1},
            uargs(c_3) = {1},
            uargs(c_4) = {1},
            uargs(c_5) = {1}
          
          Following symbols are considered usable:
            all
          TcT has computed the following interpretation:
                    p(0) = [2]                   
                  p(2nd) = [1] x1 + [1]          
             p(activate) = [5] x1 + [1]          
                 p(cons) = [1] x2 + [4]          
                 p(from) = [1] x1 + [15]         
                 p(head) = [4] x1 + [1]          
              p(n__from) = [1] x1 + [4]          
                 p(n__s) = [1] x1 + [2]          
              p(n__take) = [1] x1 + [1] x2 + [2] 
                  p(nil) = [1]                   
                    p(s) = [1] x1 + [9]          
                  p(sel) = [1] x2 + [1]          
                 p(take) = [1] x1 + [1] x2 + [7] 
                 p(2nd#) = [7] x1 + [0]          
            p(activate#) = [5] x1 + [6]          
                p(from#) = [1] x1 + [1]          
                p(head#) = [1] x1 + [3]          
                   p(s#) = [1] x1 + [0]          
                 p(sel#) = [1] x1 + [2] x2 + [10]
                p(take#) = [1] x1 + [1] x2 + [4] 
                  p(c_1) = [1] x1 + [0]          
                  p(c_2) = [2]                   
                  p(c_3) = [1] x1 + [8]          
                  p(c_4) = [1] x1 + [9]          
                  p(c_5) = [1] x1 + [12]         
                  p(c_6) = [0]                   
                  p(c_7) = [0]                   
                  p(c_8) = [0]                   
                  p(c_9) = [0]                   
                 p(c_10) = [0]                   
                 p(c_11) = [1]                   
                 p(c_12) = [8]                   
          
          Following rules are strictly oriented:
                  2nd#(cons(X,XS)) = [7] XS + [28]                  
                                   > [5] XS + [4]                   
                                   = c_1(head#(activate(XS)))       
          
                      activate#(X) = [5] X + [6]                    
                                   > [2]                            
                                   = c_2()                          
          
             activate#(n__from(X)) = [5] X + [26]                   
                                   > [5] X + [10]                   
                                   = c_3(from#(activate(X)))        
          
                activate#(n__s(X)) = [5] X + [16]                   
                                   > [5] X + [10]                   
                                   = c_4(s#(activate(X)))           
          
                          from#(X) = [1] X + [1]                    
                                   > [0]                            
                                   = c_6()                          
          
                          from#(X) = [1] X + [1]                    
                                   > [0]                            
                                   = c_7()                          
          
                 head#(cons(X,XS)) = [1] XS + [7]                   
                                   > [0]                            
                                   = c_8()                          
          
              sel#(0(),cons(X,XS)) = [2] XS + [20]                  
                                   > [0]                            
                                   = c_10()                         
          
                      take#(X1,X2) = [1] X1 + [1] X2 + [4]          
                                   > [1]                            
                                   = c_11()                         
          
                       activate(X) = [5] X + [1]                    
                                   > [1] X + [0]                    
                                   = X                              
          
              activate(n__from(X)) = [5] X + [21]                   
                                   > [5] X + [16]                   
                                   = from(activate(X))              
          
                 activate(n__s(X)) = [5] X + [11]                   
                                   > [5] X + [10]                   
                                   = s(activate(X))                 
          
          activate(n__take(X1,X2)) = [5] X1 + [5] X2 + [11]         
                                   > [5] X1 + [5] X2 + [9]          
                                   = take(activate(X1),activate(X2))
          
                           from(X) = [1] X + [15]                   
                                   > [1] X + [10]                   
                                   = cons(X,n__from(n__s(X)))       
          
                           from(X) = [1] X + [15]                   
                                   > [1] X + [4]                    
                                   = n__from(X)                     
          
                              s(X) = [1] X + [9]                    
                                   > [1] X + [2]                    
                                   = n__s(X)                        
          
                       take(X1,X2) = [1] X1 + [1] X2 + [7]          
                                   > [1] X1 + [1] X2 + [2]          
                                   = n__take(X1,X2)                 
          
                      take(0(),XS) = [1] XS + [9]                   
                                   > [1]                            
                                   = nil()                          
          
          
          Following rules are (at-least) weakly oriented:
          activate#(n__take(X1,X2)) =  [5] X1 + [5] X2 + [16]               
                                    >= [5] X1 + [5] X2 + [18]               
                                    =  c_5(take#(activate(X1),activate(X2)))
          
                              s#(X) =  [1] X + [0]                          
                                    >= [0]                                  
                                    =  c_9()                                
          
                      take#(0(),XS) =  [1] XS + [6]                         
                                    >= [8]                                  
                                    =  c_12()                               
          
        Further, it can be verified that all rules not oriented are covered by the weightgap condition.
** Step 1.b:5: PredecessorEstimation WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            activate#(n__take(X1,X2)) -> c_5(take#(activate(X1),activate(X2)))
            s#(X) -> c_9()
            take#(0(),XS) -> c_12()
        - Weak DPs:
            2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
            activate#(X) -> c_2()
            activate#(n__from(X)) -> c_3(from#(activate(X)))
            activate#(n__s(X)) -> c_4(s#(activate(X)))
            from#(X) -> c_6()
            from#(X) -> c_7()
            head#(cons(X,XS)) -> c_8()
            sel#(0(),cons(X,XS)) -> c_10()
            take#(X1,X2) -> c_11()
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
        - Signature:
            {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,s#/1,sel#/2
            ,take#/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0
            ,c_9/0,c_10/0,c_11/0,c_12/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd#,activate#,from#,head#,s#,sel#
            ,take#} and constructors {0,cons,n__from,n__s,n__take,nil}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {3}
        by application of
          Pre({3}) = {1}.
        Here rules are labelled as follows:
          1: activate#(n__take(X1,X2)) -> c_5(take#(activate(X1),activate(X2)))
          2: s#(X) -> c_9()
          3: take#(0(),XS) -> c_12()
          4: 2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
          5: activate#(X) -> c_2()
          6: activate#(n__from(X)) -> c_3(from#(activate(X)))
          7: activate#(n__s(X)) -> c_4(s#(activate(X)))
          8: from#(X) -> c_6()
          9: from#(X) -> c_7()
          10: head#(cons(X,XS)) -> c_8()
          11: sel#(0(),cons(X,XS)) -> c_10()
          12: take#(X1,X2) -> c_11()
** Step 1.b:6: PredecessorEstimation WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            activate#(n__take(X1,X2)) -> c_5(take#(activate(X1),activate(X2)))
            s#(X) -> c_9()
        - Weak DPs:
            2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
            activate#(X) -> c_2()
            activate#(n__from(X)) -> c_3(from#(activate(X)))
            activate#(n__s(X)) -> c_4(s#(activate(X)))
            from#(X) -> c_6()
            from#(X) -> c_7()
            head#(cons(X,XS)) -> c_8()
            sel#(0(),cons(X,XS)) -> c_10()
            take#(X1,X2) -> c_11()
            take#(0(),XS) -> c_12()
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
        - Signature:
            {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,s#/1,sel#/2
            ,take#/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0
            ,c_9/0,c_10/0,c_11/0,c_12/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd#,activate#,from#,head#,s#,sel#
            ,take#} and constructors {0,cons,n__from,n__s,n__take,nil}
    + Applied Processor:
        PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    + Details:
        We estimate the number of application of
          {1}
        by application of
          Pre({1}) = {}.
        Here rules are labelled as follows:
          1: activate#(n__take(X1,X2)) -> c_5(take#(activate(X1),activate(X2)))
          2: s#(X) -> c_9()
          3: 2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
          4: activate#(X) -> c_2()
          5: activate#(n__from(X)) -> c_3(from#(activate(X)))
          6: activate#(n__s(X)) -> c_4(s#(activate(X)))
          7: from#(X) -> c_6()
          8: from#(X) -> c_7()
          9: head#(cons(X,XS)) -> c_8()
          10: sel#(0(),cons(X,XS)) -> c_10()
          11: take#(X1,X2) -> c_11()
          12: take#(0(),XS) -> c_12()
** Step 1.b:7: RemoveWeakSuffixes WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            s#(X) -> c_9()
        - Weak DPs:
            2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
            activate#(X) -> c_2()
            activate#(n__from(X)) -> c_3(from#(activate(X)))
            activate#(n__s(X)) -> c_4(s#(activate(X)))
            activate#(n__take(X1,X2)) -> c_5(take#(activate(X1),activate(X2)))
            from#(X) -> c_6()
            from#(X) -> c_7()
            head#(cons(X,XS)) -> c_8()
            sel#(0(),cons(X,XS)) -> c_10()
            take#(X1,X2) -> c_11()
            take#(0(),XS) -> c_12()
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
        - Signature:
            {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,s#/1,sel#/2
            ,take#/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0
            ,c_9/0,c_10/0,c_11/0,c_12/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd#,activate#,from#,head#,s#,sel#
            ,take#} and constructors {0,cons,n__from,n__s,n__take,nil}
    + Applied Processor:
        RemoveWeakSuffixes
    + Details:
        Consider the dependency graph
          1:S:s#(X) -> c_9()
             
          
          2:W:2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
             -->_1 head#(cons(X,XS)) -> c_8():9
          
          3:W:activate#(X) -> c_2()
             
          
          4:W:activate#(n__from(X)) -> c_3(from#(activate(X)))
             -->_1 from#(X) -> c_7():8
             -->_1 from#(X) -> c_6():7
          
          5:W:activate#(n__s(X)) -> c_4(s#(activate(X)))
             -->_1 s#(X) -> c_9():1
          
          6:W:activate#(n__take(X1,X2)) -> c_5(take#(activate(X1),activate(X2)))
             -->_1 take#(0(),XS) -> c_12():12
             -->_1 take#(X1,X2) -> c_11():11
          
          7:W:from#(X) -> c_6()
             
          
          8:W:from#(X) -> c_7()
             
          
          9:W:head#(cons(X,XS)) -> c_8()
             
          
          10:W:sel#(0(),cons(X,XS)) -> c_10()
             
          
          11:W:take#(X1,X2) -> c_11()
             
          
          12:W:take#(0(),XS) -> c_12()
             
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          10: sel#(0(),cons(X,XS)) -> c_10()
          6: activate#(n__take(X1,X2)) -> c_5(take#(activate(X1),activate(X2)))
          11: take#(X1,X2) -> c_11()
          12: take#(0(),XS) -> c_12()
          4: activate#(n__from(X)) -> c_3(from#(activate(X)))
          7: from#(X) -> c_6()
          8: from#(X) -> c_7()
          3: activate#(X) -> c_2()
          2: 2nd#(cons(X,XS)) -> c_1(head#(activate(XS)))
          9: head#(cons(X,XS)) -> c_8()
** Step 1.b:8: Trivial WORST_CASE(?,O(1))
    + Considered Problem:
        - Strict DPs:
            s#(X) -> c_9()
        - Weak DPs:
            activate#(n__s(X)) -> c_4(s#(activate(X)))
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
        - Signature:
            {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,s#/1,sel#/2
            ,take#/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0
            ,c_9/0,c_10/0,c_11/0,c_12/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd#,activate#,from#,head#,s#,sel#
            ,take#} and constructors {0,cons,n__from,n__s,n__take,nil}
    + Applied Processor:
        Trivial
    + Details:
        Consider the dependency graph
          1:S:s#(X) -> c_9()
             
          
          5:W:activate#(n__s(X)) -> c_4(s#(activate(X)))
             -->_1 s#(X) -> c_9():1
          
        The dependency graph contains no loops, we remove all dependency pairs.
** Step 1.b:9: EmptyProcessor WORST_CASE(?,O(1))
    + Considered Problem:
        - Weak TRS:
            activate(X) -> X
            activate(n__from(X)) -> from(activate(X))
            activate(n__s(X)) -> s(activate(X))
            activate(n__take(X1,X2)) -> take(activate(X1),activate(X2))
            from(X) -> cons(X,n__from(n__s(X)))
            from(X) -> n__from(X)
            s(X) -> n__s(X)
            take(X1,X2) -> n__take(X1,X2)
            take(0(),XS) -> nil()
        - Signature:
            {2nd/1,activate/1,from/1,head/1,s/1,sel/2,take/2,2nd#/1,activate#/1,from#/1,head#/1,s#/1,sel#/2
            ,take#/2} / {0/0,cons/2,n__from/1,n__s/1,n__take/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0,c_8/0
            ,c_9/0,c_10/0,c_11/0,c_12/0}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd#,activate#,from#,head#,s#,sel#
            ,take#} and constructors {0,cons,n__from,n__s,n__take,nil}
    + Applied Processor:
        EmptyProcessor
    + Details:
        The problem is already closed. The intended complexity is O(1).

WORST_CASE(Omega(n^1),O(n^1))