* Step 1: Sum WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            2nd(mark(X)) -> mark(2nd(X))
            2nd(ok(X)) -> ok(2nd(X))
            active(2nd(X)) -> 2nd(active(X))
            active(2nd(cons(X,XS))) -> mark(head(XS))
            active(cons(X1,X2)) -> cons(active(X1),X2)
            active(from(X)) -> from(active(X))
            active(from(X)) -> mark(cons(X,from(s(X))))
            active(head(X)) -> head(active(X))
            active(head(cons(X,XS))) -> mark(X)
            active(s(X)) -> s(active(X))
            active(sel(X1,X2)) -> sel(X1,active(X2))
            active(sel(X1,X2)) -> sel(active(X1),X2)
            active(sel(0(),cons(X,XS))) -> mark(X)
            active(sel(s(N),cons(X,XS))) -> mark(sel(N,XS))
            active(take(X1,X2)) -> take(X1,active(X2))
            active(take(X1,X2)) -> take(active(X1),X2)
            active(take(0(),XS)) -> mark(nil())
            active(take(s(N),cons(X,XS))) -> mark(cons(X,take(N,XS)))
            cons(mark(X1),X2) -> mark(cons(X1,X2))
            cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
            from(mark(X)) -> mark(from(X))
            from(ok(X)) -> ok(from(X))
            head(mark(X)) -> mark(head(X))
            head(ok(X)) -> ok(head(X))
            proper(0()) -> ok(0())
            proper(2nd(X)) -> 2nd(proper(X))
            proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
            proper(from(X)) -> from(proper(X))
            proper(head(X)) -> head(proper(X))
            proper(nil()) -> ok(nil())
            proper(s(X)) -> s(proper(X))
            proper(sel(X1,X2)) -> sel(proper(X1),proper(X2))
            proper(take(X1,X2)) -> take(proper(X1),proper(X2))
            s(mark(X)) -> mark(s(X))
            s(ok(X)) -> ok(s(X))
            sel(X1,mark(X2)) -> mark(sel(X1,X2))
            sel(mark(X1),X2) -> mark(sel(X1,X2))
            sel(ok(X1),ok(X2)) -> ok(sel(X1,X2))
            take(X1,mark(X2)) -> mark(take(X1,X2))
            take(mark(X1),X2) -> mark(take(X1,X2))
            take(ok(X1),ok(X2)) -> ok(take(X1,X2))
            top(mark(X)) -> top(proper(X))
            top(ok(X)) -> top(active(X))
        - Signature:
            {2nd/1,active/1,cons/2,from/1,head/1,proper/1,s/1,sel/2,take/2,top/1} / {0/0,mark/1,nil/0,ok/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,active,cons,from,head,proper,s,sel,take
            ,top} and constructors {0,mark,nil,ok}
    + Applied Processor:
        Sum {left = someStrategy, right = someStrategy}
    + Details:
        ()
* Step 2: DecreasingLoops WORST_CASE(Omega(n^1),?)
    + Considered Problem:
        - Strict TRS:
            2nd(mark(X)) -> mark(2nd(X))
            2nd(ok(X)) -> ok(2nd(X))
            active(2nd(X)) -> 2nd(active(X))
            active(2nd(cons(X,XS))) -> mark(head(XS))
            active(cons(X1,X2)) -> cons(active(X1),X2)
            active(from(X)) -> from(active(X))
            active(from(X)) -> mark(cons(X,from(s(X))))
            active(head(X)) -> head(active(X))
            active(head(cons(X,XS))) -> mark(X)
            active(s(X)) -> s(active(X))
            active(sel(X1,X2)) -> sel(X1,active(X2))
            active(sel(X1,X2)) -> sel(active(X1),X2)
            active(sel(0(),cons(X,XS))) -> mark(X)
            active(sel(s(N),cons(X,XS))) -> mark(sel(N,XS))
            active(take(X1,X2)) -> take(X1,active(X2))
            active(take(X1,X2)) -> take(active(X1),X2)
            active(take(0(),XS)) -> mark(nil())
            active(take(s(N),cons(X,XS))) -> mark(cons(X,take(N,XS)))
            cons(mark(X1),X2) -> mark(cons(X1,X2))
            cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
            from(mark(X)) -> mark(from(X))
            from(ok(X)) -> ok(from(X))
            head(mark(X)) -> mark(head(X))
            head(ok(X)) -> ok(head(X))
            proper(0()) -> ok(0())
            proper(2nd(X)) -> 2nd(proper(X))
            proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
            proper(from(X)) -> from(proper(X))
            proper(head(X)) -> head(proper(X))
            proper(nil()) -> ok(nil())
            proper(s(X)) -> s(proper(X))
            proper(sel(X1,X2)) -> sel(proper(X1),proper(X2))
            proper(take(X1,X2)) -> take(proper(X1),proper(X2))
            s(mark(X)) -> mark(s(X))
            s(ok(X)) -> ok(s(X))
            sel(X1,mark(X2)) -> mark(sel(X1,X2))
            sel(mark(X1),X2) -> mark(sel(X1,X2))
            sel(ok(X1),ok(X2)) -> ok(sel(X1,X2))
            take(X1,mark(X2)) -> mark(take(X1,X2))
            take(mark(X1),X2) -> mark(take(X1,X2))
            take(ok(X1),ok(X2)) -> ok(take(X1,X2))
            top(mark(X)) -> top(proper(X))
            top(ok(X)) -> top(active(X))
        - Signature:
            {2nd/1,active/1,cons/2,from/1,head/1,proper/1,s/1,sel/2,take/2,top/1} / {0/0,mark/1,nil/0,ok/1}
        - Obligation:
            innermost runtime complexity wrt. defined symbols {2nd,active,cons,from,head,proper,s,sel,take
            ,top} and constructors {0,mark,nil,ok}
    + Applied Processor:
        DecreasingLoops {bound = AnyLoop, narrow = 10}
    + Details:
        The system has following decreasing Loops:
          2nd(x){x -> mark(x)} =
            2nd(mark(x)) ->^+ mark(2nd(x))
              = C[2nd(x) = 2nd(x){}]

WORST_CASE(Omega(n^1),?)