0 CpxTRS
↳1 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxWeightedTrs
↳3 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxTypedWeightedTrs
↳5 CompletionProof (UPPER BOUND(ID), 0 ms)
↳6 CpxTypedWeightedCompleteTrs
↳7 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 8 ms)
↳10 CpxRNTS
↳11 InliningProof (UPPER BOUND(ID), 84 ms)
↳12 CpxRNTS
↳13 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 203 ms)
↳18 CpxRNTS
↳19 IntTrsBoundProof (UPPER BOUND(ID), 47 ms)
↳20 CpxRNTS
↳21 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 832 ms)
↳24 CpxRNTS
↳25 IntTrsBoundProof (UPPER BOUND(ID), 62 ms)
↳26 CpxRNTS
↳27 FinalProof (⇔, 0 ms)
↳28 BOUNDS(1, n^1)
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(X) → X
first(0, X) → nil [1]
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z))) [1]
from(X) → cons(X, n__from(s(X))) [1]
first(X1, X2) → n__first(X1, X2) [1]
from(X) → n__from(X) [1]
activate(n__first(X1, X2)) → first(X1, X2) [1]
activate(n__from(X)) → from(X) [1]
activate(X) → X [1]
first(0, X) → nil [1]
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z))) [1]
from(X) → cons(X, n__from(s(X))) [1]
first(X1, X2) → n__first(X1, X2) [1]
from(X) → n__from(X) [1]
activate(n__first(X1, X2)) → first(X1, X2) [1]
activate(n__from(X)) → from(X) [1]
activate(X) → X [1]
first :: 0:s → nil:cons:n__first:n__from → nil:cons:n__first:n__from 0 :: 0:s nil :: nil:cons:n__first:n__from s :: 0:s → 0:s cons :: 0:s → nil:cons:n__first:n__from → nil:cons:n__first:n__from n__first :: 0:s → nil:cons:n__first:n__from → nil:cons:n__first:n__from activate :: nil:cons:n__first:n__from → nil:cons:n__first:n__from from :: 0:s → nil:cons:n__first:n__from n__from :: 0:s → nil:cons:n__first:n__from |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
first
from
activate
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
nil => 0
activate(z) -{ 1 }→ X :|: X >= 0, z = X
activate(z) -{ 1 }→ from(X) :|: z = 1 + X, X >= 0
activate(z) -{ 1 }→ first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
first(z, z') -{ 1 }→ 0 :|: z' = X, X >= 0, z = 0
first(z, z') -{ 1 }→ 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2
first(z, z') -{ 1 }→ 1 + Y + (1 + X + activate(Z)) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z
from(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
from(z) -{ 1 }→ 1 + X + (1 + (1 + X)) :|: X >= 0, z = X
from(z) -{ 1 }→ 1 + X + (1 + (1 + X)) :|: X >= 0, z = X
from(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
activate(z) -{ 1 }→ X :|: X >= 0, z = X
activate(z) -{ 1 }→ first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z = 1 + X, X >= 0, X' >= 0, X = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z = 1 + X, X >= 0, X' >= 0, X = X'
first(z, z') -{ 1 }→ 0 :|: z' = X, X >= 0, z = 0
first(z, z') -{ 1 }→ 1 + X1 + X2 :|: X1 >= 0, X2 >= 0, z = X1, z' = X2
first(z, z') -{ 1 }→ 1 + Y + (1 + X + activate(Z)) :|: Z >= 0, z = 1 + X, Y >= 0, X >= 0, z' = 1 + Y + Z
from(z) -{ 1 }→ 1 + X :|: X >= 0, z = X
from(z) -{ 1 }→ 1 + X + (1 + (1 + X)) :|: X >= 0, z = X
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
first(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
first(z, z') -{ 1 }→ 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
first(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
{ from } { first, activate } |
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
first(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
first(z, z') -{ 1 }→ 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
first(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
first(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
first(z, z') -{ 1 }→ 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
first(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
from: runtime: ?, size: O(n1) [3 + 2·z] |
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
first(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
first(z, z') -{ 1 }→ 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
first(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
from: runtime: O(1) [1], size: O(n1) [3 + 2·z] |
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
first(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
first(z, z') -{ 1 }→ 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
first(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
from: runtime: O(1) [1], size: O(n1) [3 + 2·z] |
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
first(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
first(z, z') -{ 1 }→ 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
first(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
from: runtime: O(1) [1], size: O(n1) [3 + 2·z] first: runtime: ?, size: O(n1) [1 + z + 2·z'] activate: runtime: ?, size: O(n1) [1 + 2·z] |
activate(z) -{ 1 }→ z :|: z >= 0
activate(z) -{ 1 }→ first(X1, X2) :|: X1 >= 0, X2 >= 0, z = 1 + X1 + X2
activate(z) -{ 2 }→ 1 + X' :|: z - 1 >= 0, X' >= 0, z - 1 = X'
activate(z) -{ 2 }→ 1 + X' + (1 + (1 + X')) :|: z - 1 >= 0, X' >= 0, z - 1 = X'
first(z, z') -{ 1 }→ 0 :|: z' >= 0, z = 0
first(z, z') -{ 1 }→ 1 + Y + (1 + (z - 1) + activate(Z)) :|: Z >= 0, Y >= 0, z - 1 >= 0, z' = 1 + Y + Z
first(z, z') -{ 1 }→ 1 + z + z' :|: z >= 0, z' >= 0
from(z) -{ 1 }→ 1 + z :|: z >= 0
from(z) -{ 1 }→ 1 + z + (1 + (1 + z)) :|: z >= 0
from: runtime: O(1) [1], size: O(n1) [3 + 2·z] first: runtime: O(n1) [5 + 2·z'], size: O(n1) [1 + z + 2·z'] activate: runtime: O(n1) [9 + 2·z], size: O(n1) [1 + 2·z] |