(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, 1).
The TRS R consists of the following rules:
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
from(X) → cons(X)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
first(0, z0) → nil
first(s(z0), cons(z1)) → cons(z1)
from(z0) → cons(z0)
Tuples:
FIRST(0, z0) → c
FIRST(s(z0), cons(z1)) → c1
FROM(z0) → c2
S tuples:
FIRST(0, z0) → c
FIRST(s(z0), cons(z1)) → c1
FROM(z0) → c2
K tuples:none
Defined Rule Symbols:
first, from
Defined Pair Symbols:
FIRST, FROM
Compound Symbols:
c, c1, c2
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing nodes:
FIRST(0, z0) → c
FIRST(s(z0), cons(z1)) → c1
FROM(z0) → c2
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
first(0, z0) → nil
first(s(z0), cons(z1)) → cons(z1)
from(z0) → cons(z0)
Tuples:none
S tuples:none
K tuples:none
Defined Rule Symbols:
first, from
Defined Pair Symbols:none
Compound Symbols:none
(5) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(6) BOUNDS(1, 1)